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Abstract

Understanding how the predictions of deep learning models
are formed during the training process is crucial to improve
model performance and fix model defects, especially when
we need to investigate nontrivial training strategies such as
active learning, and track the root cause of unexpected train-
ing results such as performance degeneration.
In this work, we propose a time-travelling visual solution
DeepVisualInsight (DVI), aiming to manifest the spatio-
temporal causality while training a deep learning image clas-
sifier. The spatio-temporal causality demonstrates how the
gradient-descent algorithm and various training data sam-
pling techniques can influence and reshape the layout of
learnt input representation and the classification boundaries
in consecutive epochs. Such causality allows us to observe
and analyze the whole learning process in the visible low di-
mensional space. Technically, we propose four spatial and
temporal properties and design our visualization solution to
satisfy them. These properties preserve the most important in-
formation when projecting and inverse-projecting input sam-
ples between the visible low-dimensional and the invisible
high-dimensional space, for causal analyses. Our extensive
experiments show that, comparing to baseline approaches, we
achieve the best visualization performance regarding the spa-
tial/temporal properties and visualization efficiency. More-
over, our case study shows that our visual solution can well
reflect the characteristics of various training scenarios, show-
ing good potential of DVI as a debugging tool for analyzing
deep learning training processes.

1 Introduction
Interpreting model predictions is a well-reconsigned chal-
lenge when training and analyzing deep learning models
(Zhang et al. 2021). Various explainable AI techniques have
been proposed to understand model predictions including
input attribution analysis, training data analysis, model ab-
straction, etc. Generally, existing solutions focus on:

• Individual prediction analysis: identifying the most im-
portant features of an individual input to explain a model
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prediction (Sundararajan, Taly, and Yan 2017; Chattopad-
hyay et al. 2019; Kapishnikov et al. 2019; Simonyan,
Vedaldi, and Zisserman 2013; Selvaraju et al. 2017; Chat-
topadhay et al. 2018);

• Training data slicing: identifying the most influential
training samples that impact the model (Sagadeeva and
Boehm 2021; Bhatt et al. 2021; Koh and Liang 2017);

• Model abstraction: abstracting simplified and explain-
able models (e.g., SVMs and decision trees) to explain the
deep learning models (Ribeiro, Singh, and Guestrin 2016;
Frosst and Hinton 2017; Zhang et al. 2019).

Despite those techniques are useful for explaining a
trained model, few works are proposed to explain how the
model predictions are formed during the training process.
While some works focusing on the progressive training in-
formation (e.g., loss and accuracy) can be useful, they fail
to abstract the underlying model evolving semantics. The
semantic questions can be (but not limited to): (1) how the
(re)training process gradually improves the model robust-
ness, and reshapes the classification boundary? (2) how the
model gradually makes a trade-off to fit some samples while
sacrificing the others? (3) how the model struggles to fit and
learn the hard samples?

In this work, we design a time-travelling visualization
solution DeepVisualInsight (DVI), focusing on manifesting
the spatio-temporal causality of the training progress of deep
learning classifiers. DVI projects the learned input repre-
sentation and their classification landscape into a visible
low dimensional space, showing how model predictions are
formed during training process, from both spatial and tem-
poral perspectives. Spatially, DVI visualizes (1) the layout of
learned input representation and (2) the classification land-
scape describing the “territory” of each class. Temporally,
DVI visualizes (1) how the classification landscape and the
training input representation evolve over the training and (2)
how the new sampled training inputs reshape the classifica-
tion boundaries. The spatio-temporal information allows us
to observe training anomalies (e.g. noisy dataset) and verify
some specific training strategies (e.g. effectiveness of active
learning sampling strategies).

Comparing to designing measurements to analyze spe-
cific sample or model properties (e.g., Shapley value (An-



(a) Iteration 1
- adv acc 51.3%
- testing acc 92.3%

(b) Iteration 2
- adv acc 67.8%
- testing acc 90.3%

(c) Iteration 3
- adv acc 68.8%
- testing acc 89.9%

Figure 1: Adversarial training process: dynamics of one test-
ing point and its ten neighbor adversarial points (adv acc and
test acc stand for adversarial accuracy and test accuracy)

cona, Oztireli, and Gross 2019) and hard sample detection
(Wu et al. 2017)), we design DVI to support open-ended ex-
ploration. That is, DVI faithfully reflects how deep models
are learned through the training process, which not only can
confirm known model properties, but also support the dis-
covery of unknown phenomena and model defects.

Our approach takes inputs as classifiers trained under
different training stages and its training/testing dataset,
then learns visualization models (i.e., via an autoencoder)
to (1) project high-dimensional samples into a visible
low-dimensional space, (2) inverse-project low-dimensional
points back to high dimensional space (for visualizing clas-
sification landscape), and (3) ensure that the visualization
models can satisfy a set of spatial and temporal constraints.
We propose four visualization properties for any time-
travelling visualization solutions, to preserve (1) the topo-
logical structure between high and low dimensional mani-
folds, (2) the distance between training sample representa-
tions and latent decision boundaries, (3) the semantics of
samples after projection and inverse-projection to low/high-
dimensional space, and (4) the continuity of visualized land-
scape of all trained classifiers in chronological orders. In
summary, we make the following contributions:

• We propose a time-travelling visualization solution,
DeepVisualInsight (or DVI), which aims to visualize the
evolving of classification landscape with spatio-temporal
causality, to facilitate verifying the model properties and
discovering new model behaviors.

• We propose four spatial and temporal properties for any
time-travelling visualization techniques, and design a
deep learning solution to satisfy them, for reflecting the
classification landscape.

• We build our visualization framework DVI to support vi-
sualizing various deep classifiers.

• We conduct extensive experiments and case studies,
showing (1) the effectiveness of DVI to satisfy the prop-
erties and (2) how DVI can help understand the training
process and diagnose model behaviors.

More details of our tool/experiments are at (DVI 2021).

2 Motivating Example
Figure 1 shows our visualization of an adversarial train-
ing process on CIFAR-10 dataset. Each point represents a
sample and each color represents a class. The color of a

point represents its label, and the color of a region repre-
sents the predicted class. For example, a point in red (class
cat) located in brown (class dog) territory indicates that it
is labelled as cat but classified as dog. Moreover, the color
shade indicates the confidence of prediction, unconfident re-
gions (i.e. classification boundaries) are visualized as white
regions. Overall, the classification regions and boundaries
form the classification landscape. Here, the model fitting
process is visualized by the process of (1) classification
boundaries being reshaped and (2) those data points being
pulled towards the territory of their corresponding colors.

Figure 1 shows that DVI manifests (1) the boundary re-
shaping process when the model is adapting new adversarial
and training samples, and (2) the process of trade-off be-
ing made between adversarial robustness and testing accu-
racy. For clarity, we show one testing point (large red point
with yellow edge) and its ten nearest neighbour adversarial
points (in brown) in Figure 1. During adversarial training,
(1) the adversarial points are gradually pulled to their color-
aligned territory, while (2) the testing point is also gradually
“pulled” away from its color-aligned territory to the territory
of its adversarial neighbours. Such trade-off is formed grad-
ually. In (DVI 2021), we further show such trade-off exists
by visualizing the dynamics of overall data points. DVI tool
can further visualize the process as animation. In addition, it
supports samples and iteration queries from users to observe
the dynamics of interested samples and iterations of interest,
gaining deep insights into the model training process.

3 Related Work
Explainable AI (XAI) via Attribution Techniques To
understand the causality of (in)correct model predictions, re-
searchers have proposed approaches to track the prediction
back to input, i.e. attribution method (Selvaraju et al. 2017;
Sundararajan, Taly, and Yan 2017; Chattopadhyay et al.
2019; Simonyan, Vedaldi, and Zisserman 2013; Shrikumar
et al. 2016; Kapishnikov et al. 2019). Attribution solutions
evaluate the contribution of any input components (e.g. some
pixels in the image) to the prediction outcome. (Sundarara-
jan, Taly, and Yan 2017) proposed two axioms that every
attribution method should satisfy, and developed integrated
gradients(IG). (Chattopadhyay et al. 2019) proposed average
causal effect (ACE) to mitigate the bias introduced by IG. To
visualize the attribution explanation, (Selvaraju et al. 2017)
proposes the Grad-Cam solution to highlight the pixels on
input images to explain the predictions.

Different from those approaches explaining an individual
sample, DVI visualizes the process how the classification
landscape is formed. Noted that DVI and attribution anal-
ysis are complementary. Users can use DVI to observe an
overview of classification landscape and the distribution of
the input samples, then use any attribution technique to in-
spect individual samples.

Model Visualization Typically, model visualization is
transformed to a dimension reduction problem. Exist-
ing techniques include linear methods (e.g. PCA (Wold,
Esbensen, and Geladi 1987), LDA (Pritchard, Stephens,
and Donnelly 2000), etc) and non-linear methods (e.g. t-



Table 1: Notation table for C-class classification task

Notation Definition Dimension
S/X/Y Training data inputs,

representations, and low-
dimensional embeddings

R
N×d,RN×h,RN×l

S/X/Y Input space, manifold
space, low-dimensional
embedding space

S ⊂ R
d,X ⊂

R
h,Y = R

l

ϕ(·) Projection function R
h → R

l

ψ(·) Inverse-projection function R
l → R

h

f(·) Feature function R
d → R

h

g(·) Prediction function R
h → R

C

c(·) Classifier, i.e. g(f(·)) R
d → R

C

B Boundary points in Rh ∀bi ∈ B,bi ∈ R
h

SNE (Van der Maaten and Hinton 2008), UMAP (McInnes,
Healy, and Melville 2018). Non-linear solutions preserve the
neighbor relations after projecting data to a low-dimensional
space. To this end, (Van der Maaten and Hinton 2008)
proposed t-SNE, which transforms the distance of high-
dimensional samples into a conditional probability with
Gaussian distribution and that of low-dimensional samples
into a conditional probability with Student t-distribution as
similarity measurements. (Tang et al. 2016) and (McInnes,
Healy, and Melville 2018) propose LargeViz and UMAP to
further improves the performance. (Rauber et al. 2016) vi-
sualized the trajectories of samples using t-SNE. Different
from DVI, they visualize sample layout instead of the clas-
sification landscape.

One relevant work is DeepView (Schulz, Hinder, and
Hammer 2019), aiming to visualize the decision bound-
aries of a classifier. DeepView projects high-dimensional
sample into low-dimensional space via UMAP, with a cus-
tomized manifold distance regarding the prediction outcome
and the Euclidean distance in the input space. DeepView
inverse-projects a low-dimensional point regarding the high-
dimensional counterparts of its neighbours. DVI is different
from DeepView in two folds. First, DVI is way more effi-
cient and scalable than DeepView (see Section 6). Second,
DVI considers boundary-preserving property and temporal
property, which are essential in time-travelling visualization.

4 Properties of Time-Travelling Visualization
In this section, we propose four properties for any time-
travelling visualization techniques.

4.1 Notation Definition
We denote a C-class classifier as c(·). The input space is
denoted as S ⊂ R

d. S = [s1, s2, ...sN ]T is training input
set. f : Rd → R

h is a feature function, such that x = f(s)
is a representation vector with h dimensions for an input
s ∈ S. We denote the manifold space of the representation
vectors as X where X ⊂ R

h. The learnt representations for
training data is denoted as X where X = [x1,x2, ...xN ]T .
Let g : Rh → R

C be the prediction function, where g(x)i
represents the logits for ith class. A classifier c consists of f
and g, i.e. c = g ◦ f : Rd → R

C . Taking c and its training
inputs, we derive a visualization model V = ⟨ϕ, ψ⟩:

• A projection function ϕ : Rh → R
l, which projects mani-

fold space X to a visible low-dimensional space Y where
Y = R

l (l is 2 or 3). Projecting X on to Y (i.e. Y = ϕ(X))
produces their counterparts Y = [y1,y2, ...yN ]T .

• An inverse-projection function ψ : R
l → R

h, which
inverse-projects visible low-dimensional space Y back to
representation space X .

4.2 Neighbour Preserving Property
Definition 1 (k-witness). Given a training dataset S
and a distance metric defined on X, d : R

h ×
R
h → R≥0. For a given xi ∈ X, we denote

the index set of its k-nearest neighbors as Nk(xi) =
argminJ⊂{1..N}\{i},|J |=k

∑
j∈J d(xj ,xi). We say xj is k-

witnessed by xi in X if j ∈ Nk(xi).

Given a data sample s, with its representation being x ∈
X and low-dimensional counterpart being y ∈ Y, any x′

being k-witnessed by x should have its counterpart y′ being
k-witnessed by y, and vice versa.

Assuming the manifold X of X is known, we de-
note the distance between xi and xj in manifold as
dM(xi,xj). Similarly, we denote the distance of their
counterparts yi and yj as dE(yi,yj) in Euclidean
space. Given a witness value k, we define Nk(xi) :=
argminJ⊂{1..N}\{i},|J |=k

∑
j∈J dM(xj ,xi) and Nk(yi)

:= argminJ⊂{1..N}\{i},|J |=k

∑
j∈J dE(yj ,yi), represent-

ing two index sets of neighbours being k-witnessed by
xi and its counterpart yi respectively. The neighbour-
preserving property requires to maximize the k spatial
neighbour preserving rate

nnpv(k) :=
1

N

N∑
i=1

|Nk(xi) ∩Nk(yi)|
k

(1)

4.3 Boundary Distance Preserving Property
Definition 2 (δ-Boundary). For a small δ ∈ [0, 1), a pre-
diction function g : Rh → R

C and a min-max rescaling
function r : RC → [0, 1]C , let r(g(x))top1 and r(g(x))top2
be the largest and second largest value of r(g(x)) re-
spectively. We say that a point x lies on δ-Boundary if
|r(g(x))top1 − r(g(x))top2| ≤ δ.

We define classification boundary as a set of points B =
{b|b is on δ-boundary}. Similar to neighbour preserving
property, the boundary distance preserving property requires
that any xi ∈ X should preserve its k nearest boundary
neighbours after being projected to yi by ϕ(.). If we de-
note b as a boundary point in R

h, and its counterpart in
R
l as b′. Extending Definition 1, we define N (b)

k (xi) :=

argminJ⊂{1..|B|},|J |=k

∑
j∈J dM(bj ,xi), N

(b′)
k (yi) :=

argminJ⊂{1..|B|},|J |=k

∑
j∈J dE(b

′
j ,yi) representing two

index sets of being k-boundary-witnessed by xi and its
counterpart yi. We require the projection function ϕ(·)
should maximize:

boundarypv(k) :=
1

N

N∑
i=1

|N (b)
k (xi) ∩N (b′)

k (yi)|
k

(2)



4.4 Inverse-Projection Preserving Property
To visualize the classification landscape, the visualization
solution needs an inverse projection function ψ(·) to re-
construct high-dimensional representation vectors from low-
dimensional vectors in Y . Such a reconstruction needs to sat-
isfy that (1) any low-dimensional vector yi projected from
a representation vector xi, should be reconstructed to a x′

i
as close to xi as possible; and (2) it can generalize to ar-
bitrary low-dimensional vectors. The first requirement en-
sures that the projection cause little information loss. More-
over, when representing each class as a distinct color, the
second requirement allows us to color arbitrary points in
a low-dimensional canvas. Given H = {hi|hi ∈ X}, this
property requires that ψ(·) can minimize the reconstruction
error:

recpv :=
1

|H|

|H|∑
i=1

∥hi − ψ(ϕ(hi))∥2 (3)

4.5 Temporal Preserving Property
Different from existing static visualization as UMAP and
t-SNE, our visualized classification landscape requires to
preserve the temporal continuity of the classification land-
scape change of the subject classifier. Assuming that two
classifiers ct and ct+1 are classifiers trained in two consec-
utive epochs, their classification landscapes are supposed to
be similar. Thus, their visualization solutions V t and V t+1

should provide similar visualization results.
We consider (1) classifiers ct = gt ◦ f t and ct+1 =

gt+1 ◦f t+1 taken in chronological order, and (2) a measure-
ment function evalsem(·) to evaluate the semantic similarity
of representations xt = f t(s) and xt+1 = f t+1(s) of any
input s ∈ S. Here, we evaluate the semantic of a input as
the index set of its k-nearest-neighbors in manifold space.
We denote the semantic similarity as evalsem(xt,xt+1, k).
If two epochs have similar semantics, the visualization so-
lutions V t and V t+1 should project xt and xt+1 to sim-
ilar positions in R

l, or have a negative correlation with
dE(ϕ

t(xt), ϕt+1(xt+1)). We define the correlation as:
temporalpv(k) :=

corr(evalsem(xt,xt+1, k), dE(ϕt(x
t), ϕt+1(xt+1)))

(4)

Then we require projection function ϕt(·) and ϕt+1(·) to
minimize temporalpv(k):

To the best of our knowledge, none of the exist-
ing approaches have addressed all four properties. t-SNE
and UMAP only satisfy the neighbour preserving prop-
erty; DeepView satisfies the neighbour preserving and the
inverse-preserving property. We make the first solution re-
garding all four properties.

5 Approach
Overview As showed in Figure 2, DVI takes as input
a sequence of classifiers trained in chronological order,
C =

{
c1, c2, ..., cT

}
as subject models, and generates a

corresponding sequence of visualization models (i.e. autoen-
coders) V =

{
V 1, V 2, ..., V T

}
to derive visualized classi-

fication landscape. We use superscript to denote the chrono-
logical order of all notations. For each visualization model

φt ψt

x
t

y
t

x  
tct

visualization model

φt-1 ψt-1

x
t-1

y
t-1

x  
t-1ct-1

Vt

subject model

......

input visualized 
landscape

s

Figure 2: Overview of DeepVisualInsight

V t = ⟨ϕt, ψt⟩, the encoder serves as projection function ϕt
and decoder as inverse-projection function ψt.

A non-white color is assigned to each class, V t can (1)
calculate the coordinate of each input s ∈ S via ϕt(f t(s)),
and (2) color arbitrary point y via gt(ψt(y)). If y lies on δ-
boundary (see Definition 2), it is colored in white; otherwise,
it is colored in the representing color of class gt(ψt(y))top1.

Each visualization model V t for ct is trained regard-
ing the four spatial and temporal properties. We (1) esti-
mate representative δ-boundary points for ct; (2) construct
a topological complex for boundary/training representation
vectors and preserve its structure after projection to satisfy
(boundary) neighbour-preserving property; (3) minimize the
distance between x and reconstructed ψt(ϕt(x)) to satisfy
the inverse-projection preserving property; and (4) build the
continuity between (1) ϕt+1 and ϕt and (2) ψt+1 and ψt

(t ≥ 1) to satisfy the temporal-preserving property.

5.1 δ-Boundary Estimation.
We estimate δ-boundary by synthesizing boundary samples,
regarding the efficiency, authenticity, and diversity.

Efficiency and Authenticity We propose a novel mixup-
based point synthesis method. Given a classifier c(·) and two
input images si, sj ∈ S from two different predicted classes,
our rationale lies in that,
1. Their mixed-up inputs (i.e. images) can still largely pre-

serve its inherent distribution of S (see Figure 3);
2. Assuming continuity of c(.), and the linear interpolation

sb = λ · si +(1−λ) · sj , λ ∈ [0, 1], we can find a λ such
that sb lies on the δ-boundary within O(log2

dE(si,sj)
width(δ) )

rounds of binary search, where width(δ) is the width of
δ-boundary on the line segment connecting si and sj in
Euclidean space.
To synthesize an authentic boundary sample, we set an

upper bound for λ. Comparing to adversarial sample gener-
ation techniques (e.g., DeepFool (Moosavi-Dezfooli, Fawzi,
and Frossard 2016)) which require expensive search over-
head and highly depend on the model gradients, our mixup-
based approach has more guarantee to synthesize a boundary
sample within a limited search budget.



(a) Image 1 (b) Image 2 (c) Mixed-up

Figure 3: Example of mixed-up image, λ=0.35

Diversity Given C classes in a classifier c(·), we synthe-
size boundary samples for

(
C
2

)
pairs of classes. Regarding

both diversity and efficiency of synthesis, we favour the pairs
(1) with less number of boundary samples generated so far
and (2) with high successful synthesis rate. Specifically,

Pr(p = (Ci, Cj)) = α · Pr(s(Ci, Cj))

+ (1− α) · succ(Ci, Cj)
(5)

In Equation 5, we introduce a trade-off parameter α ∈
[0, 1], between Pr(s(Ci, Cj)) (i.e., the relative boundary
sample abundance) and succ(Ci, Cj) (i.e., the success rate
to synthesize a boundary point). Specifically,

Pr(s(Ci, Cj)) =
max(0, ρ− num(Ci, Cj))∑

k ̸=mmax(0, (ρ− num(Ck, Cm)))
(6)

num((Ci, Cj)) is the generated boundary points between
class Ci and Cj so far, and ρ is the mean number of gener-
ated point over all pairs of classes.

We estimate the successful synthesis rate of a pair as:

succ(Ci, Cj) =
numb(Ci, Cj)

numsyn(Ci, Cj)
(7)

numsyn(·) is the number of trials to synthesize boundary
between a pair and numb(·) is the number of successful tri-
als within a search budget.

5.2 (k)-BAVR Complex construction
Given representation vector set X and its derived bound-
ary vectors B, we construct a (k)-Boundary-Augmented
Vietoris-Rips complex on U := X ∪ B, to sample a rep-
resentative subset of edges (ui, uj) ∈ U×U for training an
encoder to preserve boundary/non-boundary neighbors.

Definition 3 ((k)-Boundary-Augmented-Vietoris-Rips
Complex). A (k)-Boundary-Augmented-Vietoris-Rips Com-
plex ((k)-BAVR Complex) (k > 0) is a simplicial complex
consisting of 0-simplices and 1-simplices such that (1)
each 0-simplex is a point from U := X ∪ B, and (2) each
1-simplex consists of two points in U and their connecting
edge, satisfying one of the following conditions:

(a) {(xi,xj) : ∀xi ∈ X, j ∈ Nk(xi)} where Nk(xi) is the
index set of points that are k-witnessed by xi in X.

(b)
{
(xi,bj) : ∀xi ∈ X, j ∈ N

(b)
k (xi)

}
, where N (b)

k (xi) is
the index set of points being k-boundary-witnessed by xi.

(c) {(bi,bj) : ∀bi ∈ B, j ∈ Nk(bi)}, where Nk(bi) is the
index set of bi’s k nearest boundary neighbors.

Intuitively, (k)-BAVR Complex captures the topological
structure of U := X∪B. Based on the complex, we sample

a positive pair set Px×x+ ⊂ X × X where p = (xi,xj) ∈
Px×x+ so that xi and xj form a 1-simplex. Similarly, we
obtain Px×b+ ⊂ X ×B and Pb×b+ ⊂ B ×B. In addition,
we randomly choose pairs from X×X, X×B, and B×B
to construct three negative pair sets, i.e., Px×x− ⊂ X ×X,
Px×b− ⊂ X×B, and Pb×b− ⊂ B×B.

Finally, given P = Px×x+ ∪Px×x− ∪Px×b+ ∪Px×b− ∪
Pb×b+∪Pb×b−, we follow the parametric umap loss function
defined in (McInnes, Healy, and Melville 2018) and (Sain-
burg, McInnes, and Gentner 2020) to train our encoder ϕ.

5.3 Inverse-Projection Preserving
We design our loss function to train the encoder ϕ and the
decoder ψ as:

Lrec :=
1

Nh

N∑
i=1

h∑
m=1

(1 + gradmi )β ||xm
i − ψ(ϕ(xm

i ))||2

(8)

gradi := abs(
∂g(xi)top1

∂xi
) + abs(

∂g(xi)top2
∂xi

) (9)

where h is the number of dimensions, g(xi)top1 is the largest
value in g(xi) and g(xi)top2 is the second largest value in
g(xi). The rationale lies in that we need to preserve the most
critical information of representation vector x after project-
ing and inverse-projecting back to the original space. In this
work, such information lies in the top-1 dimension of g(·)
(for predicting its class) and g(xi)top2 (for measuring the
boundary). By tracking the gradients from g(xi)top1 and
g(xi)top2, we can force the encoder and decoder to learn
such information.

5.4 Temporal Continuity
We preserve the temporal continuity with transfer learning
and a temporal loss function. Given V t−1(t ≥ 2), V t is ini-
tialized with V t−1’s weights. We bound the change of V t

from V t−1 by defining a temporal loss regarding the tempo-
ral neighbour preserving rate.

Lt :=
1

N

N∑
i=1

evalsem(xt−1
i ,xt

i, k)·∥Wt−1 −Wt∥2 (10)

We define input similarity semantics as its shared
k-witnessed neighbors between consecutive epochs, Let
Nk(x

t−1
i ) be the index set of all points being k-witnessed

by xt−1
i in epoch t− 1, and Nk(x

t
i) in epoch t,

evalsem(xt−1
i ,xt

i, k) :=
|Nk(x

t−1
i ) ∩Nk(x

t
i)|

k
(11)

In Equation 10, Wt is the weights of the ϕ(·) and ψ(·),
while Wt−1 is the weights of ϕ(·) and ψ(·) learned in pre-
vious epoch. The final loss function to train ϕ(·) and ψ(·) is
the weighted sum of all the loss functions, i.e.,

Ltotal = λ1 · Lumap + λ2 · Lrec + λ3 · 1(t ≥ 2) · Lt (12)
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6 Evaluation
Property Measurement. We measure the spatial and tem-
poral properties, i.e., nnpv(k), boundarypv(k), recpv , and
temporalpv(k) (see Section 4) as follows.

• Preserving Neighbour and Boundary Distance: We use
nnpv(k) and boundarypv(k), and let k = 10, 15, 20.

• Preserving Inverse-Projection: We evaluate the predic-
tion preserving rate, i.e., PPR := |Q|

N where Q :=
{x| argmaxc gc(x) = argmaxc gc(ψ(ϕ(x))),x ∈ X}.

• Preserving Temporal Continuity: For temporalpv(k),
we use Pearson correlation and set k as 10, 15, and 20.

Dataset and Subject Model. We choose three datasets,
i.e., MNIST, Fashion-MNIST, and CIFAR-10. We use
ResNet18 (He et al. 2016) as the subject classifier, and the
output of global average pooling layer as the feature vectors
(i.e., 512 dimensions).
Baseline. We select PCA, t-SNE, UMAP, and DeepView
as baselines. We compare DVI with PCA, t-SNE, UMAP
on the whole datasets, with DeepView on subsets of
datasets due to its limitation for scalability. The subset train-
ing/testing sizes are set to 1000/200 (an empirical size suit-
able for DeepView) and the experiments are repeated 10
times to mitigate the bias.
Runtime Configuration. We design our autoencoder as fol-
lows. Given the dimension of the feature vector is h, we let
the encoder and decoder to have shape (h, h2 ,

h
2 ,

h
2 ,

h
2 , 2);

and (2, h2 ,
h
2 ,

h
2 ,

h
2 , h) respectively. Learning rate is initial-

ized with 0.01 and decay every 8 epochs by factor of 10.
The threshold δ to decide boundary point is set to be 0.1. We
generate 0.1∗N boundary points, shared by all the solutions.
The upper bound for λ in boundary point generation is set to
0.4, α in Equation 5 to 0.8, β in Equation 8 to 1.0, and the
trade-off hyper-parameters in total loss (Equation 12) to 1.0,
1.0, 0.3 respectively.
Results (Spatial Property). Figure 4, 5, 6 and Table 2 show
the performances of DVI and PCA, UMAP, and t-SNE on
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spatial properties on three datasets. Given the space limit,
we show the results with k = 15, which shares similar per-
formance when k ∈ {10, 20} (see (DVI 2021)). We report
the results of three representative epochs, i.e., the 1st epoch
(representing the beginning epoch), the ⌊ 1+n

2 ⌋th epoch (rep-
resenting the middle epoch), and the nth epoch (representing
the final epoch). We observe as follows:

• PCA vs DVI: PCA is a highly efficient solution (see Ta-
ble 2). But its linear transformation has limitation, thus
outperformed by DVI and UMAP (see Figure 4, 5, 6).

• t-SNE vs DVI: On training dataset, t-SNE significantly
outperforms all other approaches regarding the preserved
neighbours after projection. However, it cannot (1) gener-
alize the projection to any unseen samples and (2) inverse-
project a 2-dimensional point back to feature vector space.
Moreover, t-SNE fails to preserve boundary neighbours as
DVI and UMAP (see Figure 5).

• UMAP vs DVI: UMAP has comparable performance
with DVI on the neighbour-preserving projection and
prediction-preserving inverse-projection (as showed in
Figure 4 and Figure 6). However, even trained with bound-
ary samples, UMAP is largely outperformed by DVI re-
garding the boundary-neighbour preserving projection.
Noteworthy, UMAP takes a much larger runtime overhead
than DVI when inverse-projecting the low-dimensional
points to the feature space (∼16.8s for UMAP vs ∼0.002s
for DVI, see Table 2).

• DeepView vs DVI: Regardless of the limited scalability of
DeepView, DeepView is outperformed by DVI regarding:

1. DeepView is more likely to overfit the training dataset,
thus its preserved neighbours on the test set is much less
than that on the training set (see Figure 7).

2. DeepView can hardly preserve the prediction results af-
ter projection and inverse-projection (see Figure 8).

Results (Temporal). We compares the temporalpv value
on (1) UMAP trained with transfer learning (denoted as
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Table 2: Visualization Overhead (in seconds)

Solution Overhead Type CIFAR-10 MNIST FMNIST

DVI
Offline 792.784 914.921 896.296
Online 0.016 0.010 0.010

UMAP
Offline 50.170 58.311 58.748
Online 1819.598 2187.888 2150.703

tSNE
Offline 207.757 286.068 282.725
Online / / /

PCA
Offline 0.803 0.958 0.951
Online 0.035 0.036 0.035

DVI
(1000 samples)

Offline 19.801 17.150 18.896
Online 0.004 0.004 0.004

DeepView
(1000 samples)

Offline 1305.229 506.839 506.394
Online 563.471 204.473 204.436

UMAP-T); (2) DVI trained with transfer learning but with-
out temporal loss (denoted as DVI-T); and (3) DVI (denoted
as DVI); The results are shown in on Table 3. Overall, DVI
surpasses UMAP-T and DVI-T regarding the temporal con-
tinuity.
Runtime Efficiency. Table 2 shows the runtime efficiency of
all the solutions. In Table 2, the offline overhead is the time
spent on training the visualization model; the online over-
head is the time spent on visualizing a new sample. Overall,
DVI takes more time to train the encoder and decoder, while
it is very efficient to visualize the runtime new data. In con-
trast, UMAP is efficient to train but takes considerable time
to inverse-project the low-dimensional points back to repre-
sentation vector space. Moreover, DVI surpasses DeepView
in both the offline and online efficiency.

(a) Random (b) Coreset (c) LL4AL

Figure 9: Visualized active learning (sampling) strategies

7 Case Study
In this section, we introduce two case studies showing how
DVI can support noise (hard) sample detection and active
learning strategy comparison. Readers can refer to more case
studies in (DVI 2021).

Noise (Hard) Sample Detection We generate symmetric
noise by flipping the label of 10% of the CIFAR-10 sam-
ples to train a classifier. Figure 10 shows the process of how

Table 3: Temporal Results, i.e., temporalpv value (k=15)

Solution
CIFAR-10 MNIST FMNIST

train test train test train test
UMAP-T -0.453 -0.448 -0.581 -0.578 -0.622 -0.613

DVI-T -0.442 -0.460 -0.463 -0.466 -0.291 -0.286
DVI -0.463 -0.498 -0.609 -0.611 -0.626 -0.632

clean/noisy sample embeddings are learned during train-
ing. For clarify, we show the dynamics of representative
clean samples (orange dots) and noisy samples (orange dots
tainted with a black core). Comparing to the clean samples
smoothly pulled into their color-aligned territory in the first
few epochs, noisy samples show “reluctance” to be pulled
(i.e., learned). Those “hard” samples continue to stay in their
“original” territory in early-mid epochs, but some are force-
fully pulled into their “expected” territory in late epochs.

By searching and pinpointing the interested samples and
tracking their movements, DVI can further allow users to
zoom in to a local region and check the sample details in-
cluding labels and appearances, which can serve as a poten-
tial model debugging facility.

(a) E10,
60.42%

(b) E50,
80.83%

(c) E100,
83.59%

(d) E150,
87.78%

(e) E200,
88.44%

Figure 10: Visualized Training Process With Noise Data
(epoch number and training accuracy)

Active Learning Strategies Comparison Active learning
algorithms sample the most informative unlabelled samples
to retrain the classifier. Various algorithms samples data re-
garding their diversity and uncertainty (i.e., how unconfident
the classifier predict the samples). Figure 9 compares the
new sampled data by different active learning algorithms on
the same classification landscape. We select Core-set (Sener
and Savarese 2017) and LL4AL (Yoo and Kweon 2019) as
diversity and uncertainty based methods in this study. Com-
paring to random (dots concentrated in color-aligned ter-
ritory), core-set selects samples that are more evenly dis-
tributed in whole landscape and LL4AL selects samples that
lie closer to decision boundaries, confirming the effective-
ness of DVI visualization. Further investigation based on
DVI allows users to inspect how those new selected sam-
ples are trained (i.e., pulled) and how they can influence the
classification landscape in the subsequent epochs.

8 Conclusion
We propose a time-travelling solution DVI to visualize how
classification predictions are formed. DVI can serve the pur-
pose of education, anomaly diagnose, and sampling strategy
comparison for model training processes. In this work, we
formally define four properties that any visualization tools
should satisfy for spatio-temporal causality analyses. We de-
velop DVI to satisfy them, which visualizes the layout of
input samples and classification boundaries.
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