
Locating Vulnerabilities in Binaries via Memory Layout
Recovering

Haijun Wang
Shenzhen University

China
Nanyang Technological University

Singapore

Xiaofei Xie∗
Nanyang Technological University

Singapore

Shang-Wei Lin
Nanyang Technological University

Singapore

Yun Lin
National University of Singapore

Singapore

Yuekang Li
Nanyang Technological University

Singapore

Shengchao Qin
Teesside University
United Kingdom

Yang Liu
Nanyang Technological University

Singapore

Ting Liu
Xi’an Jiaotong University

China

ABSTRACT

Locating vulnerabilities is an important task for security auditing,

exploit writing, and code hardening. However, it is challenging

to locate vulnerabilities in binary code, because most program

semantics (e.g., boundaries of an array) is missing after compilation.

Without program semantics, it is difficult to determine whether a

memory access exceeds its valid boundaries in binary code. In this

work, we propose an approach to locate vulnerabilities based on

memory layout recovery. First, we collect a set of passed executions

and one failed execution. Then, for passed and failed executions, we

restore their program semantics by recovering fine-grainedmemory

layouts based on the memory addressing model. With the memory

layouts recovered in passed executions as reference, we can locate

vulnerabilities in failed execution by memory layout identification

and comparison. Our experiments show that the proposed approach

is effective to locate vulnerabilities on 24 out of 25 DARPA’s CGC

programs (96%), and can effectively classifies 453 program crashes

(in 5 Linux programs) into 19 groups based on their root causes.

CCS CONCEPTS

• Theory of computation → Program analysis; • Software

and its engineering→ Software reverse engineering.

KEYWORDS

Reverse Engineering; Software Vulnerability; Program Analysis

∗Xiaofei Xie (xfxie@ntu.edu.sg) is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338966

ACM Reference Format:

Haijun Wang, Xiaofei Xie, Shang-Wei Lin, Yun Lin, Yuekang Li, Shengchao

Qin, Yang Liu, and Ting Liu. 2019. Locating Vulnerabilities in Binaries via

Memory Layout Recovering. In Proceedings of the 27th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Soft-

ware Engineering (ESEC/FSE ’19), August 26–30, 2019, Tallinn, Estonia. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3338906.3338966

1 INTRODUCTION

For memory unsafe languages like C/C++, memory corruption

vulnerability is one of the most severe defects, as it can lead to

software crash or even allows adversaries to take full control of

the software. Buffer overflow is one of the most common memory

corruption vulnerabilities, which is also the focus of this paper.

There have been a number of techniques [1–4] that can locate

buffer overflows, and most of them are in the source code level, such

as AddressSanitizer [1]. However, the source code is not always

available (e.g., closed-source software). Further, the semantics of bi-

nary code may be different from its source code [5]. For the purpose

of binary security auditing, exploit writing and code hardening, it is

highly significant to locate buffer overflows in binary code directly.

However, it is much more challenging to locate buffer overflows

in the binary code. When the source code is compiled into the

binary, its program semantics is missing, i.e., we are not able to

identify variables of program and their memory boundaries any-

more. Without the memory boundaries, locating buffer overflows

in binary code becomes very difficult. Although there have been

some techniques working on the binary code (e.g., Valgrind Mem-

checks [3]), none of them can locate buffer overflows within the

stack/global memory regions (e.g., overflow beyond an array but

still within its resident stack frame) [1]. To address these issues,

recovering the program semantics, i.e., memory boundaries of vari-

ables, is necessary to locate buffer overflows in binary code.

In addition, locating vulnerabilities highly benefits triaging pro-

gram crashes in binaries [6]. It is shown that the same vulnerability

can produce various symptoms, leading to different crashes. For

example, the fuzzing system (e.g., fairfuzz, aflfast and aflgo [7–11])

usually generates a large number of crashes. However, not all of

718

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia H. Wang, X. Xie, S. Lin, Y. Lin, Y. Li, S. Qin, Y. Liu, T. Liu

these crashes are unique. Many of them are due to the same vulner-

ability. If the crashes can be grouped according to their root causes,

it would greatly improve the efficiency of analysis.

Aiming at addressing the above challenges, we propose an ap-

proach, based on dynamic execution information, to locate buffer

overflows in binaries. Our approach mainly consists of two parts:

recovering memory layout and locating vulnerabilities.

Recovering Memory Layout. A memory layout represents

the static data structure of a variable in source code, e.g., a data

structure with its members. In our approach, we actually use the

dynamic execution information in binary code to restore static data

structure information of variables in source code. First, we iden-

tify the relevant addressing instructions for each memory access

in dynamic execution information. Second, we recover a memory

layout for each memory access based on the memory addressing

model. Third, if multiple memory layouts access the same variable,

we merge them into a memory layout, generating a more complete

static data structure for that variable. Compared to existing tech-

niques [12–16], our approach can precisely recover fine-grained

memory layouts of variables (c.f. Section 6.1).

Locating Vulnerabilities. To locate buffer overflows, we need

to determine whether the recovered memory layout in failed ex-

ecution exceeds its valid boundaries. To infer the boundaries, we

collect a failed execution and a set of passed executions. In this

paper, the failed execution means to cause the program crash, while

the passed execution would not. The failed execution is the input

to our approach, and passed executions can be obtained easily from

existing tools or test suites (c.f. Section 5.2). For passed executions,

we recover their memory layouts (called passed memory layouts),

which are considered as the memory layouts within valid bound-

aries. For the failed execution, we also recover its memory layouts

(called failed memory layouts), which may include memory layouts

exceeding valid boundaries (called vulnerable memory layouts).

With the memory layouts recovered in passed executions as refer-

ence, we can locate vulnerable memory layout, i.e., candidate buffer

overflow, in the failed execution by memory layout identification

and comparison (see Section 4).

We have implemented the proposed approach in a prototype

tool, and evaluated its effectiveness in two different aspects: 1) lo-

cating vulnerabilities, and 2) triaging program crashes. In locating

vulnerabilities, our approach is effective to locate buffer overflow

vulnerabilities on 24 out of 25 DARPA’s CGC programs (96%). In

triaging experiments, our approach is able to classify the 453 pro-

gram crashes (in 5 widely used Linux programs) into 19 groups,

while AFL reports 320 unique crashes (groups).

The contributions of this work are summarized as follows:

• We formalize a memory addressing model, based on which, to-

gether with the dynamic execution information, we propose a

general approach to precisely recover the static fine-grained hi-

erarchical memory layouts of program variables.

• With the memory layouts recovered in passed executions as

reference, we propose an approach to locate buffer overflows in

failed execution bymemory layout identification and comparison.

By using fine-grained memory layouts, our approach can locate

buffer overflows within stack, global memory regions, and data

structures in binary code.

• We implemented the proposed approach and evaluated its effec-

tiveness on binary programs with diverse kinds of vulnerabilities.

2 APPROACH OVERVIEW

2.1 Motivating Example

Fig. 2 (a) shows a program with a buffer overflow vulnerability. If

the input of function test is (1,4), the program crashes at Line 14.

The buffer overflow is triggered in the loop (Line 11). The variable

ptr → stu[1].name contains three elements, but is assigned with

four elements. As a result, the variable ptr → stu[1].func is over-

written, and the program crashes when Line 14 is executed (where

ptr → stu[1].func is accessed).

After being compiled into binaries, the program semantics is

missing, making it difficult to identify the variables and their bound-

aries. For example, the variable ptr → stu[1].name and its memory

boundaries (its size is 12 bytes) are missing in binaries. Without

this information, the buffer overflow cannot be identified when it

is written with 16 bytes.

2.2 Overview of our Approach

To address this issue, we propose an approach to locate buffer

overflows in binaries. The overall flow of the proposed approach

is shown in Fig. 1. The input to our approach is a set of concrete

execution information (either passed or failed).

The proposed approach consists of four steps. In the first step,

given passed and failed executions, we identify relevant addressing

instructions for each memory access. In the second step, we recover

the memory layout for each memory access. Since one execution

may have multiple memory accesses, we may have more than

one memory layout recovered. If some of the recovered memory

layouts access the same variable, we merge them into one in the

third step. After this step, we have recovered memory layouts for

each execution (either passed or failed). In the fourth step, we use

the memory layouts of passed executions as reference to locate

buffer overflows in the failed execution. In the following, we walk

through these steps using the motivating example in Fig. 2.

Step 1. We identify relevant addressing instructions for each

memory access. To access a variable, the program first determines

its memory address. For a memory access instruction, we perform

a backward taint analysis to identify the relevant instructions used

to compute its memory address. Fig. 2 (b) shows several sets of

identified instructions. For example,m6 is a memory access instruc-

tion, we perform backward taint analysis and identify the relevant

instructionsm1 . . .m6, which correspond to Line 10 in Fig. 2 (a).

Step 2. We recover memory layout based on identified instruc-

tions for each memory access. In general, the memory address of a

variable is computed by iteratively adding an offset to the address

of its enclosing variable. Based on this iterative process, we identify

the memory blocks (c.f. Definition 1), which represent the enclosed

variables. In addition, we construct their hierarchical structure, and

finally form a memory layout.

For example, consider instructionsp1 . . .p6, which correspond to
Line 12 (e.g., ptr → stu[1].name[2] = 41). The recovered memory

layout is L3, as shown in Fig. 2 (c), where the red part is the real

memory layout of the variable, and the blue part is the recovered

memory layout (double-headed arrows below indicate memory

719

Locating Vulnerabilities in Binaries via Memory Layout Recovering ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

1 Identify relevant
instructions

2 Recover memory layout
on single access

3 Merge memory layouts
on multiple accesses 4 Locate vulnerabilities Reports

Static memory layout recoveryPassed and failed
test cases

Binary program

Passed and failed
execution information

Dynamic execution information

Figure 1: Overview of our approach

12: ptr->stu[a].name[i] = 41;

typedef struct{
int name[3];
void (*func)(void);
}Stu;
typedef struct{
Stu stu[2];
int a;
}Info;

static int num = 1;
1: void f(void){
2: ...
3: }
4: void test(int a, int b) {
5: Info *ptr = (Info*)malloc(sizeof(Info));
6: char *str = (char*)malloc(b);
7: for(int i=0; i<b; i++){
8: *str = 'a';
9: str = str +1;

}
10: ptr->stu[a].func = &f;
11: for (int i=0; i<b; i++)
12: ptr->stu[a].name[i] = 41;
13: ptr->stu[a].name[5*num -3] = 42;
14: ptr->stu[a].func();
15:}

…...
l1: mov -0x3c(%ebp),%eax
l2: movb $0x61,(%eax)
l3: addl $0x1,-0x3c(%ebp)
…...
m1: mov -0xc(%ebp),%eax
m2: mov 0x8(%ebp),%edx
m3: shl $0x4,%edx
m4: add %edx,%eax
m5: add $0xc,%eax
m6: movl $0x804843b,(%eax)
…...
p1: mov -0xc(%ebp),%eax
p2: mov 0x8(%ebp),%edx
p3: lea 0x0(,%edx,4),%ecx
p4: mov -0x10(%ebp),%edx
p5: add %ecx,%edx
p6: movl $0x29,(%eax,%edx,4)
…...
q1: mov 0x804a020,%edx
q2: mov %edx,%eax
q3: shl $0x2,%eax
q4: add %edx,%eax
q5: lea -0x3(%eax),%ecx
q6: mov -0xc(%ebp),%eax
q7: mov 0x8(%ebp),%edx
q8: shl $0x2,%edx
q9: add %ecx,%edx
q10: movl $0x2a,(%eax,%edx,4)
…...

0 12 363228

0 1 432

16 3224 28

Real memory layout

Recovered memory layout

ptr->stu[a].func = &f;

ptr->stu[a].name[i] = 41;
ptr->stu[a].name[5*num -3] = 42;

(a) Source code (d) Merged memory layout(c) Memory layout on single access(b) Identified relevant instructions

str[0] str[1] str[3]str[2]

L1

L2

16

ptr->stu[0] ptr->stu[1]
a

name namefunc func

0 12 36322816

ptr->stu[0] ptr->stu[1]
aname func func

24

[2]name[0,1]

0 12 3228

L4

16

ptr->stu[0] ptr->stu[1]
aname func func

24

[2]name[0,1]

0

Memory block

36

x1 x1+16 28

L3

Lp

0 16 3228 overflow

(e) Reported root cause

Lf

3228

Failed memory layout

Passed memory layout

32

Step 1 Step 2

Step 3

Step 4

Figure 2: Illustration example for our approach

blocks). Based on identified instructions, we can infer that: the

memory address is computed by adding two offsets (16 and 8) to the

base address, and then is written with four bytes. Based on this infor-

mation, we identify two memory blocks [0, 28] and [16, 28], where

0 represents a relative base address. In addition, we construct their

hierarchical structures. The memory block [16, 28] is enclosed in

[0, 28]. The identified memory blocks actually correspond to the

variables in source code. For example, [0, 28] and [16, 28] represents

arrays ptr → stu and ptr → stu[1].name, respectively. The hierar-

chical structures reflect the enclosing/enclosed relationships of

variables. The variable ptr → stu[1].name is enclosed in ptr → stu.

Step 3. When multiple memory accesses operate on the same

variable in the executions (e.g., in the unrolled loop), corresponding

recovered memory layouts should be merged. For example, the

memory layouts L2 and L3 in Fig. 2 (c) represent the same variable,

we merge them into a more complete memory layout Lp , as shown
in Fig. 2 (d), which reflects not only the variable ptr → stu[1].func

but also ptr → stu[1].name.

Step 4. With above three steps, we recover memory layouts of

variables. To locate vulnerabilities, we need to determine whether

the recovered memory layout in failed execution exceeds its valid

boundaries. With the memory layouts recovered in passed execu-

tions as reference, we locate buffer overflows in failed execution

by memory layout identification and comparison. For example, we

recover a passed memory layout , i.e., test(1,3), and a failed memory

layout , i.e., test(1,4), as shown in Lp and Lf of Fig. 2 (d). By memory

layout identification, memory blocks [16, 28] in Lp and [16, 32]

in Lf are compared, and [28, 32] (i.e., ptr → stu[1].func) in Lf is

considered to be overflowed, as shown in Fig. 2 (e).

The proposed approach can help users in two scenarios: (1)

One wants to disassemble or debug the binary program. With the

recovered fine-grained memory layouts as debug symbols, he/she

can interpret some key data structures. (2) One has a binary program

crashed, and he/she wants to figure out whether the crash is due to

the buffer overflow and its root causes.

3 MEMORY LAYOUT RECOVERY

We first formalize a memory addressing model, and then introduce

the memory layout recovery based on memory addressing model.

3.1 Memory Addressing Model

Before a variable is accessed, its memory address needs to be deter-

mined first. In binary code, there are usually two addressing modes

for memory access: direct and indirect addressing [12]. In direct

addressing, the address is encoded in the instruction itself, usually

used to access a scalar variable.

The indirect addressing mode is typically used to access an ar-

ray or a data structure. Generally, the address is computed by an

equation: address = base + (index ∗ scale) + offset, where index rep-
resents the index of an array, scale is the size of unit element in the

array, and offset implies the offset calculation for the member of a

data structure.

The equation for indirect addressing depends on the hierarchical

structure of a variable. For example, a data structure may contain

an array as its member or the element of an array can be a data

structure. Hence, there could be more than one index ∗ scale and
offset. A more general equation is:

address = base +
n∑
i=1

(indexi ∗ scalei) + offset (1)

In general, offset may be an optimized value due to the compilation,

i.e., offset =
∑n
i=1 offseti , where each offseti corresponds to one

720

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia H. Wang, X. Xie, S. Lin, Y. Lin, Y. Li, S. Qin, Y. Liu, T. Liu

indexi ∗ scalei and offseti ≥ 0. The addressing equation is the key

insight for recovering memory layouts of variables in this paper.

Example 1. Considerptr → stu[index1].name[index2] in Fig. 2(a),
the memory address is calculated by:base+offset1+index1∗scale1+
offset2 + index2 ∗ scale2, where base = ptr is the base address;

offset1 = 0 is the offset of stu in data structure ptr ; index1 ∗ scale1
calculates the address of the index1

th element of stu; offset2 = 0

is the offset of name in data structure stu[index1]; index2 ∗ scale2
calculates the address of the index2

th element of name .

3.2 Definition of Memory Layout

Definition 1. A memory blockm is a tuple (m� ,m� ,m̃), where
m� is the start address andm� is the end address. If it represents an
array, m̃ is the size of its unit element; Otherwise, m̃ is zero. We use←→m to denote the size ofm.

Definition 2. A memory layout L = (m,M ,E) is a directed

acyclic graph (DAG), wherem is the root memory block,M is a set of

memory blocks, and E ⊂ M ×M is a set of directed edges connecting

memory blocks such that (m1,m2) ∈ E ifm�1 ≤ m�2 ∧m�2 ≤ m�1 .

Definition 3. Given two memory blocksm1 andm2, ifm1 and

m2 represent the same variable, they are the alias memory blocks; if

the variable represented bym1 is enclosed in that represented bym2,

thenm1 is an inner memory block ofm2.

Specifically, a directed edge (m1,m2) in memory layout L represents
thatm2 is the inner memory block ofm1. A memory layout actually

reflects the static hierarchical data structure of a variable (i.e., the

enclosing/enclosed relationship).

Theorem 1. Given two memory blocks m1 and m2, if they are

intersected (i.e.,m�1 < m
�
2 ∧m�1 > m�2), and 0 < m̃2 ≤ m̃1 is true,m2

is the alias or inner memory block ofm1.

Theorem 2. Given two memory blocks m1 and m2, if they are

intersected (i.e.,m�1 < m
�
2 ∧m�1 > m�2), and 0 < m̃2 ≤ m̃1∧←→m2 > m̃1

is true,m2 is the alias memory block ofm1.

3.3 Memory Layout Recovery on Single

Memory Access

Memory layouts are recovered based on memory addressing model.

For the direct addressing, the recovered memory layout contains

only one memory blockm, i.e., the accessed memory block, and its

unit element size is zero (i.e., m̃ = 0). For the indirect addressing,

the memory layout is recovered based on the following four steps:

3.3.1 Identifying Relevant Instructions. We first identify the rel-

evant instructions, which compute the address for the memory

access. To achieve this goal, we perform a backward taint analysis,

in which the memory access instruction is regarded as the sink. Dif-

ferent from traditional taint analysis, we only propagate the taints

among the registers (not including registers esp and ebp), since
the memory address is computed by registers [17]. For example,

in Fig. 2(b) Linem6 is a memory access instruction. Based on the

taint propagation among registers, we continue to identify Lines

m1 −m5. At Lines m1 and m2, we stop the taint propagation as

their source operands are memory, not registers. As a result, the

identified addressing instructions are Linesm1-m6.

Algorithm 1: GenerateLayout

input :address = base +
∑n
i=1 (indexi ∗ scalei) + offset

output : a memory layout L = (m,M, E)

1 Let offset =
∑n
i xi , where xi represents offseti and xi ≥ 0;

2 start ←− base ;
3 end ←− address + sizeof (accessed memory) ;

4 if ∀1 ≤ i ≤ n: indexi ∗scalei ≥ 0 then

5 M ←− ∅, E ←− ∅ ;

6 for i = 1 : n do

7 start ←− start + xi ;

8 mi ←− (start, end , scalei);

9 M ←− M ∪ {mi } ;
10 if i ≥ 2 then

11 E ←− E ∪ (mi−1,mi) ;

12 start ←− start + indexi ∗scalei ;
13 m ←−m1 ;

14 else

15 m ←− (start, end , 0) ;

16 M ←− {m }, E ←− ∅ ;

17 return L ;

3.3.2 Recovering Addressing Equation. After identifying relevant

instructions, we recover the addressing equation, based on the ad-

dress calculation in identified instructions, in the form of Equation 1.

For example, we identify instructions (Lines m1-m6) in Fig. 2(b),

where Linem6 is a memory access instruction. At Linem1, it stores

the address pointed by ptr to register eax , which is the base address.
At Linem2, it stores the value of variable a to register edx , which is

index1. Then, index1 is multiplied by 16 at Linem3, and thus scale1
is 16. At Linem4, it adds index1∗scale1 to the base address. At Line
m5, it adds offset (i.e., 0xc) to compute the memory address. Thus,

the recovered addressing equation is: eax + (edx ∗ 16) + 12.
3.3.3 Optimizing Addressing Equation. The addressing equation

is optimized as follows: 1) Sorting n terms indexi ∗ scalei based
on the descending order of scalei for i ∈ {1, . . . ,n}. 2) Merging

some terms of indexi ∗ scalei if possible. For two adjacent terms

indexi ∗ scalei and indexi+1 ∗ scalei+1 (1 ≤ i < n), if scalei <
indexi+1 ∗ scalei+1, they are merged into one term index ∗ scale ,
where scale = gcd(scalei ,scalei+1) (i.e., greatest common divi-

sor) and index = (indexi ∗ scalei + indexi+1 ∗ scalei+1)/scale .
In fact, these two terms are used together to access the same

array. For example, the equation for array access int a[2p + q]

is recovered as: base +p ∗ (2 ∗ sizeof (int)) + q ∗ sizeof (int), where
p ∗ (2 ∗ sizeof (int)) and q ∗ sizeof (int) are used together to access

an array. Hence, they should be merged.

3.3.4 Recovering Memory Layout. Based on the optimized address-

ing equation, we recover the memory layout in Algorithm 1. It takes

the addressing equation as input, and outputs a recovered memory

layout. As described in Section 3.1, offset in the equation may be

an optimized value. Thus, at Line 1 we introduce the parameter xi
to represent each possible offseti . We recover the memory layout

based on two cases: (1) if every indexi ∗ scalei in the equation is

greater than or equal to zero, the memory layout can be recovered

normally (Lines 4–13). We iteratively identify the memory blocks

and construct their hierarchical structure (Lines 6–12). In this loop,

721

Locating Vulnerabilities in Binaries via Memory Layout Recovering ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

we first compute the start address of a memory block by adding

the offset xi (Line 7). Then, we recover this memory blockmi at

Line 8, and its unit size is scalei . At Line 11, we add a directed edge

(mi−1,mi). Last, we calculate the address of the indexi
th element

and continue to recover the next memory block (Line 12). (2) If there

is an indexi∗scalei that is negative (i.e., indexi is negative), it may

be used to access an array with other index j∗scalej together. For
example, in ptr → stu[a].name[5 ∗num− 3], -3 (i.e., indexi) is used
to access array name with 5 ∗ num (i.e., index j) together. However,
we cannot determine whether a or 5 ∗ num is used to access an

array together. In this case, we adopt a conservative strategy to

only recover the largest memory block (Line 15).

Example 2. In Fig. 2(a), we assume that the address pointed

by pointer ptr is 0 and the value of variable a is 1. Based on Lines

m1−m6 in Fig. 2(b), we can recover an equation: 0+1∗16+12.We use

x1 and x2 to represent the optimized offsets, i.e., x1+x2 = 12. Based

on Line 8 of Algorithm 1, a memory block (x1,32,16) is identified.
Hence, we recover a memory layout, as L2 in Fig. 2(c). For Lines

q1 −q10, we recover an equation: 0+ 1 ∗ 20+ 1 ∗ 16+ (−3 ∗ 4). Since
index3 ∗ scale3 (i.e., −3 ∗ 4) is negative, we only recover the largest

memory block (0,28,0), as L4 in Fig. 2(c).

3.4 Memory Layout Recovery on Multiple

Memory Accesses

When multiple memory accesses operate on the same variable (e.g.,

in the unrolled loop), corresponding recovered memory layouts

should be merged to generate a more complete one. Notice that

multiple memory accesses could happen in the same or different

executions. It is non-trivial to infer which memory layouts can be

merged because their concrete memory addresses cannot be used as

a unique identification. Hence, we first index the memory layouts

to make their memory addresses in a relative coordinate system so

that we can determine whether they can be merged.

3.4.1 Indexing Memory Layout. Assume that the address space of a

program consists of several non-overlapping memory-regions [12,

18]: stack, heap, and global, which correspond to functions, heap-

allocation statements and global/static variables, respectively. Specif-

ically, each function has a memory-region, i.e., its stack frame; one

heap-allocation statement has a memory-region; the data section is

a memory-region including global/static variables. Hence, the con-

crete memory address can be indexed by a pair: (memory-region,

offset). The indexing process is described as follows:

• For variable a which is a local variable in a function f (stack

memory), we index its memory address by the pair (f ,&a − fp),
where f represents the memory region associated with f , &a is

the concrete memory address of a, and fp is the frame pointer of

f (e.g., register ebp).
• For variable a which is an enclosed variable (e.g., the member of

a data structure) in heap memory allocated at statement s , we
index its memory address by the pair (s , &a − ptr (s)), where s rep-
resents the memory region associated with the heap-allocation

statement s , &a is the concrete memory address of a, and ptr (s)
is the base address of memory allocated at statement s .
• For variable a which is a global/static variable in global memory,

we index its memory address by the pair (д,&a − ds), where д is

Algorithm 2: MergeLayout

input :memory layouts L1=(m1,M1,E1) and L2=(m2,M2,E2)

output :merged memory layout L′=(m′, M ′, E′)
1 if m�1 < m�2 ∧m�1 > m�2 then

2 L′ ←− MergeBlock(L1, L2);

3 L′ ←− UpdateLayout(L′) ;
4 return L′ ;
5 else return NIL ;

the memory region associated with data section (often denoted

.data in binary code), &a is the concrete memory address of a,
and ds is the base address of data section.

After indexing, the addresses of memory layouts are in the same

coordinate, i.e., they are relative to the beginning of a memory-

region. Hence, we can merge the memory layouts.

3.4.2 MergingMemory Layouts. Given twomemory layouts L1 and
L2, we merge them based on two cases, as shown in Algorithm 2.

The first case is that their root memory blocks m1 and m2 are

intersected (Line 1). We first merge the root memory blocks of

L1 and L2 by MergeBlock (i.e., Algorithm 3), and construct a new

memory layout L′. Then, we continue to merge the children of L′
by UpdateLayout (i.e., Algorithm 5). The second case is thatm1

andm2 are not intersected. They represent different variables, and

cannot be merged. Next, we introduce the merging in the first case.

Algorithm 3 introduces how to merge root memory blocksm1

andm2 of L1 and L2. At Line 1, it makes sure that m̃2 ≤ m̃1 is true.

Thus,m2 is the alias or inner memory block ofm1 (c.f. Theorem 1).

At Lines 2-3, it mergesm1 andm2 as a new memory blockm′, and
constructs a new memory layout L′. Then, it determines whether

m2 is the inner memory block ofm′ by DetermineLevel (i.e., Al-
gorithm 4). If so, m2 is added as the inner memory block of m′
(Line 6). Otherwise,m2 andm

′ are alias memory blocks, or their

relationship cannot be determined. It adds the inner memory blocks

(i.e., children) ofm2 as the inner memory blocks ofm′ (Lines 8-10),
and deletesm2 (Line 11). Note that, when the relationship between

m2 andm
′ cannot be determined, the algorithm ignores the case

thatm2 is the inner memory block ofm′. As a result, it may lose

some precision but is still correct. If the unit size ofm2 is zero, the

unit size ofm′ is updated as zero (Line 12).

Given two memory blocksm1 andm2 such that m̃2 ≤ m̃1 (c.f.

Algorithm 3), Algorithm 4 determines whetherm2 is the alias or

inner memory block ofm1. At Lines 1-3, it decides thatm2 is the

alias memory block ofm1 (c.f. Theorem 2). If it cannot determine

m2 is the alias memory block ofm1, we consider the inner memory

blockmc ofm1 at Lines 5-11. It first checks whetherm2 andmc

are intersected (Line 6). Then, it checks whether m̃2 ≤ m̃c is true

(Line 7). If so, m2 is the alias or inner memory layout of mc (c.f.

Theorem 1). Based on transitivity,m2 is the inner block ofm1. At

Line 10, it checkswhetherm2 is the alias block ofmc (c.f. Theorem 2).

If so,m2 is also the inner block ofm1 based on transitivity.

3.4.3 Update Memory Layout. Algorithm 5 iteratively merges sub-

memory layouts by a queueQ . The input is a memory layout L and

the output is an updated one L′. For the memory blockmq , it first

identifies two sub-memory layouts L1 and L2 (Line 6-7). If their root
memory blocksm1 andm2 are intersected (Line 8), we merge them

722

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia H. Wang, X. Xie, S. Lin, Y. Lin, Y. Li, S. Qin, Y. Liu, T. Liu

Algorithm 3: MergeBlock

input :memory layouts L1=(m1,M1,E1) and L2=(m2,M2,E2)

output :merged memory layout L′=(m′, M ′, E′)
1 if 0 < m̃1 < m̃2 then swap(L1, L2) ;

2 (m′,M ′, E′) ←− (m1,M1 ∪M2, E1 ∪ E2);
3 (m′�,m′�, m̃′) ←− (min (m�1 ,m

�
2),max (m�1 ,m

�
2), m̃1);

4 status ←− DetermineLevel(m′,m2);

5 if m2 is the inner memory block ofm′ in status then
6 E′ ←− E′ ∪ {(m′,m2) };
7 else

8 foreachmc ∈ Child (m2) do
9 E ←− E \ {(m2,mc) } ;

10 E ←− E ∪ {(m′,mc) } ;
11 M ←− M \ {m2 };
12 if m̃2 == 0 then m̃′ ←− 0 ;

13 return L′ ;

Algorithm 4: DetermineLevel

input :memory blocksm1 andm2

output : determining relationship betweenm1 andm2

1 if m̃1 � 0 and m̃2 � 0 then

2 if ←→m2 > m̃1 then

3 returnm2 is alias memory block ofm1;

4 else

5 foreachmc ∈ Child (m1) do
6 if m�c < m�2 andm�c > m�2 then

7 if m̃2 ≤ m̃c then

8 returnm2 is inner memory block ofm1;

9 else

10 if ←→mc > m̃2 then

11 returnm2 is inner block ofm1;

12 return it is unknown

to construct a new memory layout L3 by MergeBlock (Line 9). At
Lines 10-12, it replaces L1 and L2 with L3. Since the memory layout

is updated, we continue to update L′ by UpdateLayout (Line 13).

If sub-memory layouts ofmq cannot be merged, it adds children

of mq into Q (Lines 15-16) and continues to merge the children

iteratively. If there is no merging between any two sub memory

layouts, the algorithm terminates.

Example 3. Fig. 3 shows the process of merging two memory

layouts, which correspond to L2 and L3 in Fig. 2(c). We can infer that

m1 (x1,32,16) andm2 (0,28,16) are intersected, where 0 ≤ x1 ≤ 12,

m̃1 = m̃2 = 16 and←→m2 = 28. Based on Lines 1-3 in Algorithm 4,m1

andm2 are the alias memory blocks. Hence, they are merged as

m′=(0,32,16), andm3 is added as the inner memory block ofm′.

3.4.4 Merging for Pointer Arithmetics. The pointer arithmetic gen-

erally yields a new pointer that still points the same memory alloca-

tion [4]. Multiple memory accesses by dereferencing these pointers

can lead to many memory layouts, which cannot be merged with

Algorithm 2 (because they are not intersected). However, these

memory layouts belong to the same memory allocation and should

be merged together. To improve the precision, we merge them

together as follows:

Algorithm 5: UpdateLayout

input :memory layout L = (m,M, E)
output : updated memory layout L′ = (m,M ′, E′)

1 L′ ←− L ;

2 Let Q be an empty queue ;

3 Q .ENQUEUE(m) ;

4 while Q is not empty do

5 mq ←− Q .DEQUEUE() ;

6 foreach (m1,m2) s .t .m1,m2 ∈ Child (mq) do
7 Let L1 = (m1,M1, E1) and L2 = (m2,M2, E2) be two sub

layouts of L′, whose roots arem1 andm2;

8 if m�1 < m�2 andm�1 > m�2 then

9 L3 : (m3,M3, E3) ←− MergeBlock(L1, L2) ;

10 M ′ ←− M ′ \ (M1 ∪M2) ∪M3 ;

11 E′ ←− E′ \ (E1 ∪ E2) ∪ E3 ;
12 E′ ←− E′ \ {(mq,m1), (mq,m2) }∪{(mq,m3) } ;
13 L′ ←− UpdateLayout(L′);
14 return L′;

15 foreachmc ∈ Child (mq) do
16 Q .ENQUEUE(mc) ;

17 return L′ ;

m1(x,32,16) m2(0,28,16)

m3(16,28,4)

m'(0,32,16)

m3(16,28,4)

L2 L3 Lp

Figure 3: Example to illustrate merging memory layouts.

Given such two memory layouts L1 = (m1,M1,E1) and L2 =
(m2,M2,E2), they are merged into a new memory layout L3 =
(m3,M3,E3), where m3 = (min(m�1 ,m

�
2),max (m�1 ,m

�
2),0), M3 =

M1 ∪M2 ∪ {m3} and E3 = E1 ∪ E2 ∪ {(m3,m1), (m3,m2)}.
Example 4. In Fig. 2(b), Lines l1 − l3 are executed four times (in

the unrolled loop), and we recover four memory layouts, which

cannot be merged with Algorithm 2. Due to the pointer arithmetics,

these four memory layouts are then merged as L1 in Fig. 2(c).

4 LOCATING VULNERABILITIES

In this section, we introduce how to locate buffer overflow vulnera-

bilities by leveraging recovered memory layouts.

4.1 Locating Vulnerabilities

A buffer overflow occurs when dereferencing a pointer that goes

out of the bounds of its pointed object. To locate the buffer overflow,

we collect a set of passed executions and a failed execution. With

the fine-grained memory layouts recovered in passed executions

as reference, the vulnerable memory layout in failed execution can

be identified by memory layout identification and comparison.

Note that the size of a memory blockmay not be fixed as we intro-

duce the parameters in Algorithm 1 (i.e., xi at Line 1). To locate the
buffer overflow, we adopt a conservative strategy to determine their

values: let the size of the passed memory layout be the maximum

and the size of the failed memory layout be the minimum. Specifi-

cally, in a memory layout L = (m,M ,E), the size of each memory

blockmi ∈ M is: end− (base+ · · ·+ (xi−1+indexi−1 ∗scalei−1)+xi)

723

Locating Vulnerabilities in Binaries via Memory Layout Recovering ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Algorithm 6: CompareLayout

input :memory layouts L1=(m1,M1,E1) and L2=(m2,M2,E2)

output : determining the buffer overflow

1 Let Q1 be an empty queue ;

2 Q1 .ENQUEUE(m1) ;

3 while Q1 is not empty do

4 m′1 ←− Q1 .DEQUEUE() ;

5 if m̃′1 == 0 then

6 if m′�1 < m�2 < m′�1 orm′�1 < m�2 < m′�1 then

7 return find buffer overflow

8 else

9 Let Q2 be an empty queue ;

10 Q2 .ENQUEUE(m2) ;

11 while Q2 is not empty do

12 m′2 ←− Q2 .DEQUEUE() ;

13 if m′�1 < m′�2 < m′�1 orm′�1 < m′�2 < m′�1 then

14 if m′1 is alias or inner block ofm
′
2 then

15 return find buffer overflow

16 foreachmc ∈ Child (m′2) do
17 Q2 .ENQUEUE(mc) ;

18 foreachmc ∈ Child (m′1) do
19 Q1 .ENQUEUE(mc) ;

20 return not find buffer overflow

(c.f. Algorithm 1). For the passed memory layout, we make the size

of eachmi ∈ M maximum, i.e., (∀1 ≤ i < n : xi = 0) ∧ xn = offset.

For the failed memory layout, we make the size of each mi∈M
minimum, i.e., x1 = offset ∧ (∀1 < i ≤ n : xi = 0).

Algorithm 6 shows how to locate the buffer overflow. It takes a

failed memory layout L1 and a passed memory layout L2 as inputs.
Its intuition is as follows: for each memory blockm′1 of L1, ifm′1 is
the alias or inner memory block of some memory blockm′2 of L2,
andm′1 is beyondm′2, then it is a candidate buffer overflow.

At Line 5, it checks whether m̃′1 is zero. If so, it cannot determine

the relationship betweenm′1 andm′2. Thus, it only comparesm′1
with the root memory blockm2 of L2. Ifm

′
1 is beyondm2 (Line 6),

there is a candidate buffer overflow inm′1. At Line 9-17, it checks
m′1 with each memory blockm′2 of L2. Ifm′1 is beyondm′2 (Line 13),
the algorithm checks the relationship betweenm′1 andm′2. Ifm′1 is
the alias or inner memory block ofm′2 (Line 14), there is a candidate
buffer overflow inm′1.

Notice that, for the heap memory whose size is controlled by

inputs, its memory layout is not fixed with different inputs. Al-

though we recover the maximum memory range after merging, it

still cannot be used to locate vulnerabilities. For example, in the

statement p = malloc (input), if the maximum value of input in
passed test cases is 5, we recover a memory block whose size is 5

bytes (the maximum). If the value of input in the failed test case is

10, we recover a memory block whose size is 10 bytes. Comparing

these two memory blocks introduces a false positive. In this case,

we dynamically record the memory range of allocated memory, not

to index and merge their memory layouts. To locate vulnerabili-

ties, we check whether the used memory is beyond the allocated

memory, which is the same as Valgrind Memcheck [3].

4.2 False Positive Reduction

Passed executions may only cover partial program behaviors. Thus,

the passed memory layout may also be under-approximated. Locat-

ing vulnerabilities by comparing failed memory layout with under-

approximated memory layout may introduce false positives. For

this problem, we reduce false positives based on two accompanying

phenomena: data corruption or abnormal memory address [19],

which increase the confidence of our results.

4.2.1 Data Dependence Mismatch. Buffer overflow typically incurs

data corruption (overflowed by another data) [19]. Data corruption

can lead to data dependence mismatch, describing a data depen-

dence that is not supposed to exist in the code. For example, in

Fig. 2(a), assume that the value of variable b is 4. The program

executes four times at Line 12. As a result, the value of variable

ptr → stu[a].func is corrupted by ptr → stu[a].name. At Line 14, it

uses ptr → stu[a].func. Thus, there is a data dependence between

Lines 12 and 14, which does not exist in the code. Hence, a data de-

pendence mismatch occurs. To increase the confidence, we report a

buffer overflow vulnerability only if it conducts a data dependence

mismatch as well.

To obtain data dependence relations that do exist in the code, we

use dynamic analysis as in work [19, 20]. We execute a set of passed

test cases, and compute data dependence relations. Similarly, we

also compute the data dependence relations in the failed execution.

If a data dependence relation only occurs in failed execution but

not in any passed execution, there is a data dependence mismatch.

4.2.2 Abnormal Memory Address. When the buffer is overflowed

too much, it may reach an memory address that cannot be accessed

(e.g., unallocated memory). This situation is considered as an abnor-

mal memory address access. Usually, an abnormal memory access

directly leads to a program crash. Thus, if a buffer overflow leads

to an abnormal memory address access, it is a true buffer overflow.

5 EVALUATION

We have implemented a prototype tool for our approach, and eval-

uated its effectiveness. All the experiments are performed on the

32-bit Linux system with 3.5 GHz Intel Xeon E5 CPU and 8 GB

RAM. Since our memory addressing model is general, our approach

can be easily extended to 64-bit system.

5.1 Experiment Setup

We selected 25 binary programs from the benchmarks of DARPA’s

CGC [21], which is a competition to automatically detect vulnera-

bilities. Instead of contrived simple situations, they approximate

real vulnerabilities with enough complexities and diversities, ideal

for evaluating our approach [19]. However, not all programs are

selected because: 1) they run under DARPADECREE, while our tool

runs on the Linux system. Although the team TrailofBits has mi-

grated them into Linux system, not all of them are reproducible [22];

2) we only consider the buffer overflow, the programs with other

types (e.g., null pointer dereference and use after free) are out of our

consideration. In addition, we selected four binary programs obj-

dump, readelf, ld and c++filt from binutils (about 690k LoC), which

are widely used in fuzzing system [10, 11], and one binary program

tiff2bw from libtiff (about 100k LoC). In these five programs, we

724

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia H. Wang, X. Xie, S. Lin, Y. Lin, Y. Li, S. Qin, Y. Liu, T. Liu

Table 1: Experimental results on programs from DARPA’s Cyber Grand Challenge

Name Type
Passed Inputs Trace Length

Vulnerable
Buffer Overflow Plus Accompanying Time(s)

Memory Layout

#Total #Select #Passed #Failed No. Status #Ins Root Mismatch/Abnormal #Ins Root Select Locate

Sample_Shipgame Stack 620 1 20,843 32,502 1 Under 2 � M 1 � 349 50

ValveChecks Stack 10 2 5,242 104,726
1 Under 1 × – 0 –

6 51
2 Complete 1 � M+A 1 �

Bloomy_Sunday Stack 192 1 786,145 642,941 1 Complete 2 � M+A 1 � 119 147

The_Longest_Road Stack 298 1 343,992 344,668 1 Under 3 � M+A 1 � 168 110

Thermal_Controller_v2 Stack 83 1 64,752 66,291 1 Under 5 � M 3 � 52 104

XStore Stack 290 1 995,805 997,222
1 Under 1 × – 0 –

163 387
2 Under 3 � M+A 1 �

Casino_Games Stack 603 2 192,211 182,209 1 Under 1 � M+A 1 � 390 143

Palindrom Stack 61 1 106,087 5,262 1 Complete 6 � M 4 � 31 48

CableGrind Stack 818 1 17,240 18,336 1 Under 1 � M+A 1 � 432 46

stack_vm Heap 168 1 177,047 1,104,414

1 Under 1 × – 0 –

95 3782 Under 1 � A 1 �
3 Complete 1 � M 1 �

Street_map_service Heap 630 1 1,121,017 714,785 1 Complete 3 � M 1 � 468 240

humaninterface Heap 533 1 509,169 509,618 1 Complete 1 � M 1 � 279 244

AIS-Lite Heap 368 1 41,069 33,904
1 Under 3 × – 0 –

203 47
2 Complete 2 � M 1 �

matrices_for_sale Heap 34 1 170,680 6,564 1 Complete 1 � A 1 � 18 54

cotton_swab_arithmetic Heap 1065 1 2,192 2,052 1 Complete 1 � A 1 � 544 37

LMS Heap 147 1 26,710 22,425 1 Complete 2 � M 1 � 81 58

BudgIT Heap 222 1 169,483 9,502
1 Under 2 × – 0 –

123 72
2 Complete 2 � A 1 �

PKK_Steganography Heap 184 1 182,333 114,543 1 Complete 1 � A 1 � 102 178

ASCII_Content_Serve Heap 277 1 1,377,145 489,714 1 Complete 1 � A 1 � 174 551

electronictrading Internal 90 2 595,381 10,800 1 Under 2 � M 1 � 49 186

Internal 699 2 706,641 83,424

1 Under 3 × – 0 –

477 303SCUBA_Dive_Logging 2 Under 2 × – 0 –

3 Under 1 � M 1 �

Internal 583 6 999,709 131,256

1 Under 3 × – 0 –

612 1,432
CGC_Planet_Mark_ 2 Under 5 × – 0 –

Language_Parser 3 Under 3 × – 0 –

4 Under 6 × – 0 –

Square_Rabbit Global 593 1 2,917,848 837,835 1 Complete 1 � A 1 � 484 605

TAINTEDLOVE Global 52 1 201,339 100,849 1 Under 1 � A 1 � 29 73

stream_vm Global 136 1 101,184 100,145 1 Complete 1 � A 1 � 67 76

Total 4 8,756 34 11,831,264 6,665,987 36 15+21 76 25+11 25+11 30 25+0 5,515 5,620

Avg. – 350 1.4 473,251 266,639 – – 3.04 – – 1.2 – 221 225

generated 453 program crashes, which constitute real-world bench-

marks. The 25 CGC programs show the diversities of vulnerabilities,

and the 5 real-world programs show the scalability of our approach.

5.2 Experiment Design

In the experiments, we use the fuzzing system [7–11] to generate the

passed test cases and use the dynamic binary analysis framework

Pin [23] to collect the dynamic execution information. In general,

AFL generates a large number of passed test cases with different

code coverage. For efficiency, we select the passed test cases by

adopting additional coverage strategy [24]. It selects the next passed

test case, which covers more codes that are covered by the failed

test case but not covered by already-selected passed test cases,

until vulnerabilities are located. Due to the lack of ground truth

in our experiments, we manually validate the results. In total, we

manually check 478 program crashes in 30 programs and their

recovered memory layouts.

5.3 Experimental Results

We evaluated the effectiveness of our approach in three aspects:

1) recovering memory layouts, 2) locating vulnerabilities, and 3)

triaging program crashes.

5.3.1 Recovering Memory Layout. Table 1 shows the experimental

results on recovering memory layouts. Column Name lists the pro-

gram names. In column Passed Inputs, the heading #Total lists the

total number of generated passed test cases, and #Select shows the

number of selected passed test cases. The details of generation/se-

lection of passed test cases can refer to Section 5.2. Column Trace

Length lists the number of instructions in the execution, where

#Passed and #Failed represent the average numbers of instructions

in selected passed executions and failed execution, respectively.

Since a program may contain more than one vulnerable memory

layout, in column Vulnerable Memory Layout, the heading No. lists

each of them. For example, there are three vulnerable memory

layouts in the program stack_vm.

The heading Status shows the status of recovered passed mem-

ory layout, which is used for comparison to identify the vulnerable

memory layout. It indicates whether the passed memory layout rep-

resents the hierarchical structure of variables, where Under means

that we under-approximately recover the memory layout, and Com-

plete means that we recover its complete memory layouts. Notice

that we got a large number of passed memory layouts recovered in

passed executions. We manually check and report only 36 of them

(column Status) because: 1) the number of recovered memory lay-

outs is too large to manually check all; 2) these 36 memory layouts

725

Locating Vulnerabilities in Binaries via Memory Layout Recovering ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

are compared to identify vulnerable memory layouts and we need

to check its status (under-approximated or complete).

Summary. Among the reported 36 passed memory layouts, 15

memory layouts are completely recovered (i.e., the recovered static

hierarchical data structures for variables are the same with their

static hierarchical data structures in source code) and 21 are under-

approximately recovered (e.g., some internal data structures of vari-

ables are not recovered). Memory layouts are under-approximately

recovered because some elements of array or members of data

structure are not accessed in the executions. That is, our approach

achieves 100 % success rate to recover memory layouts that are

covered in the executions. Despite the under-approximate mem-

ory layout recovery, they are still useful to locate buffer overflow

vulnerabilities, which is shown in the following experiments.

5.3.2 Locating Vulnerabilities. Table 1 also shows the results of

locating buffer overflow vulnerabilities. There are multiple types of

buffer overflow vulnerabilities in the programs, as shown in column

Type. The symbols Stack, Heap, Global represent stack, heap, and

global buffer overflow, respectively. In addition, we consider another

special type of buffer overflow: overflow within a data structure, as

indicated by Internal. In binary code, ValgrindMemcheck [3] cannot

locate buffer overflows within stack, global memory regions, and

data structures [1]. Valgrind’s extension SGCheck tries to locate

stack buffer overflows, however, it still needs debug information.

Even in source code, AddressSanitizer [1] cannot detect the buffer

overflow within the data structures as well.

Column Buffer Overflow shows whether the vulnerable memory

layouts are the root causes of crash. Since one vulnerable memory

layout may be overflowed at different instructions, the heading #Ins

represents the number of instructions producing buffer overflows in

vulnerable memory layouts. The heading Root shows whether it is

a real buffer overflow. Our approach may report false positives. To

reduce them, we adopt two strategies: data dependence mismatch

(denoted by M) and abnormal memory address (denoted by A) in

the column Plus Accompanying.

After our investigation, we found that the false positives are

generated in two cases: (1) Some instructions do lead to the buffer

overflow, but do not lead to the crash. For example, in the pro-

gram Sample_Shipgame, there are 2 instructions leading to a buffer

overflow. However, one is assigned with ‘\0’, and it is not the root

cause of crash. This can be eliminated by our strategies, and thus

the number of instructions is reduced from 2 (#Ins in Buffer Over-

flow) to 1 (#Ins in Plus Accompanying). (2) Some instructions indeed

do not produce the buffer overflow. For example, in the program

CGC_Planet_Mark_Language_Parser, all the false positives are re-

duced (#Ins in Plus Accompanying).

Since our approach requires passed and failed executions, its

effectiveness depends on the test cases. For example, in program

CGC_Planet_Markup_Language_Parser, our approach fails to lo-

cate buffer overflow vulnerabilities. This is because the program

contains many special checks in the markup language parser, and

AFL does not generate passed test cases to cover the data structure

overflowed (i.e., struct City). Since our approach does not recover

the memory layout of struct City in passed executions, we fails to

locate its buffer overflow in failed execution.

Table 2: Triage Program Crash on five real-world programs

Name
Test Cases Trace Length

AFL Our Approach
#passed #failed #Passed #Failed

objdump-2.26 1,475 73 166,802 235,657 59 4 (61, 8, 3, 1)

readelf-2.28 1,780 119 162,662 68,088 69 3 (102, 15, 2)

ld-2.24 1,274 117 1,504,274 1,334,977 90 6 (45, 28, 12, 12, 3, 1)

c++filt-2.26 1,861 23 17,708 4567 18 3 (21, 1, 1)

tiff2bw-3.9.7 1,846 121 1,131,200 1,102,423 84 3 (111, 6, 4)

Column Time shows the time overhead. The heading Select shows

the time for selecting passed test cases, while Locate for locating

buffer overflow vulnerabilities (including recovering memory lay-

outs, computing data dependencies, and locating vulnerabilities).

Summary. Our experimental programs include 4 types of vul-

nerabilities (Column Type): 9 stack buffer overflows, 10 heap buffer

overflows, 3 internal data structure overflows, 3 global memory

buffer overflows, which show the diversity of vulnerabilities. For

each vulnerable memory layout, we locate 3.04 instructions on

average. In the beginning, we reports 25 true positives and 11 false

positives (Root in Buffer Overflow). After applying the proposed

elimination strategies, 25 errors are confirmed, and all of 11 false

positives are eliminated (Root in Plus Accompanying). The average

time for selecting passed test cases and locating vulnerabilities are

221 and 225 seconds. The results show that our approach is effective

to locate buffer overflow vulnerabilities.

5.3.3 Triage Program Crashes. As described in Section 1, triaging

program crashes is very important in the program analysis and de-

bugging. In the experiments, we use the fuzzing system to generate

a number of program crashes, many of which are caused by the

same vulnerability but AFL is not able to distinguish them. Our

approach can help to triage program crashes based on the root

causes of vulnerabilities.

Since multiple instructions may lead to the same vulnerable

memory layout (e.g., #Ins in Buffer Overflow), we decided to use

a more coarse-grained granularity, i.e., we use functions where

blamed instructions reside as blamed functions. Thus, in our ex-

periment, we identify the root causes based on vulnerable memory

layouts and blamed functions [6].

Table 2 shows the results of five real-world programs with total

453 program crashes. Column Name shows the program name.

Column Test Cases lists the number of test cases, where #Passed

and #Failed represent the number of passed and failed test cases,

respectively. Column Trace Length lists the average number of

instructions in the execution. The last two columns show the results

of triaging program crashes.

Summary. Column AFL lists the number of unique program

crashes triaged by AFL. Column Our Approach shows triaging re-

sults of our approach, where the first number is the number of

groups, and the numbers in the brackets represent the number

of crashes in each group. For example, 4(61,8,3,1) represents 73
crashes are classified into 4 groups, which include 61, 8, 3 and 1

crashes, respectively. We manually check the crashes for all groups

and confirm that our triaging results are correct. Compared to AFL,

our approach helps to reduce the number of unique program crashes

significantly. Thus, it can save manual resources for analyzing them.

There are 16 crashes that are not grouped in program ld-2.24, as

our approach fails to locate their vulnerabilities. We look closely

726

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia H. Wang, X. Xie, S. Lin, Y. Lin, Y. Li, S. Qin, Y. Liu, T. Liu

into this program, and these 16 crashes are due to the null pointer

dereference, which is out of the scope of this work.

5.4 Threats to Validity

If the passed executions do not cover the root causes, our approach

cannot recover their memory layouts and fails to locate vulnera-

bilities. As the alternative solutions, the existing test suite [25–28],

symbolic execution [29–37], and other test case generation tech-

niques can also be used in our approach to obtain high-quality test

cases. Since our approach is not to pursue high code coverage, these

techniques are orthogonal to our approach.

The passed test cases may only access partial elements of a vari-

able (e.g., array and struct), and thus the recovered memory layouts

are under-approximated. In this case, our approach may produce

false positives in locating buffer overflow vulnerabilities. For this

issue, we propose two conservative strategies (c.f.Section 4.2) to

eliminate false positives. The evaluation results show that our re-

duction strategies are effective.

6 RELATEDWORK

6.1 Reverse Engineering

Reverse engineering of data structures is an active area in binary

code analysis [38–42]. Thomas and Gogul [12] also proposed an

approach to recover memory ranges of variables in binary code. Its

main difference from ours is that they recover memory information

using static analysis (value-set analysis), while we use dynamic

execution information. Our results are under-approximated and

theirs are over-approximated. Our under-approximated memory

layout introduces less false negatives and false positives in locating

buffer overflow vulnerabilities. Built on the work [12], Brumley et

al. developed TIE [13], which recovers the memory information

of data structures and their types. TIE has the same limitations as

work [12] when used for locating buffer overflow vulnerabilities.

Lin et al. proposed Rewards [14], the reverse engineering of

data structures using dynamic analysis. It infers the types of data

structures based on arguments of well-known functions, and we

recover memory layouts based on the memory addressing model.

Hence, Rewards only recovers a small portion of data structures [15],

and our approach is more general for data structures.

Slowinska et al. developed Howard [15, 16], which is the closest

work to ours. However, there are still two main differences. The first

is that Howard may miss internal layouts of data structures in some

cases. Howard [15] only records a base pointer for each memory

access. It may miss the internal layouts in the case where memory

address is computed based on multiple base addresses. Take the

memory access at Line 12 in Fig 2 for example, Howard considers its

base pointer is ptr. However, its memory address is computed based

on ptr, stu and name. Hence, Howard misses the internal layouts.

The second difference is that Howard detects arrays which are

accessed in loops while our approach can recover arrays generally

based on the memory addressing model. Thus, our approach is

more general to recover the fine-grained layouts of data structures.

In addition, some loop analysis and summarization techniques [43–

45] can be further applied to improve the memory layout recovery

on the variables inside the loop.

6.2 Locating Vulnerabilities

Source code analysis. There has been lots of work aiming at locat-

ing vulnerabilities in source code (e.g.,[46–49]). AddressSanitizer [1]

is a widely used tool in practice. It instruments a program, inserts

undefined memory (i.e., redzones) between the objects and detects

an access to the undefined memory. DieHard [46] and its successor

DieHarder [47] populate newly allocated memory and freed mem-

ory with magic values. They also add redzones around the allocated

memory region to detect the spatial errors. The tools SoftBound [2],

CETS [4] and LowFat [48, 49] keep track of per-pointer capability

and checks capability when accessing an object.

Although these techniques can also locate buffer overflows, they

are applicable to different scenarios (i.e., source code vs. binary

code). Since the source code is not always available, our approach

is applicable to more scenarios. In addition, some source code based

techniques do not recognize the internal structures of data struc-

tures, such as AddressSanitizer. Hence, they cannot locate internal

overflow within a data structure. Since our approach recovers fine-

grained memory layouts of variables, this is not an issue anymore.

Binary code analysis. Locating vulnerabilities in binary code

has also been widely studied [50–55]. Valgrind Memchecks [3]

uses the valid value bit and address bit in shadow memory to cap-

ture reading undefined memory and out-of-bounds access. Besides,

Valgrind’s extension SGCheck also wants to locate stack buffer

overflows, however, it still needs the help of debug information. Dr.

Memory [52] is similar to Valgrind Memchecks in many ways. It is

further equipped with a multi-threaded binary translation system.

Purify [53] shadows every byte of memory with a two-bit value that

encodes one of three states: unaddressable, writable, and readable.

These techniques locate heap buffer overflow without false posi-

tives, which is achieved by our approach as well. Due to the lack

of program semantics in binary code, it is very difficult to identify

the boundaries of variables in stack and global memory regions.

Thus, none of these techniques can locate buffer overflow within

the stack and global memory regions [1].

7 CONCLUSION

In this work, we propose an approach to locate buffer overflows in

binaries. We first recover the memory layouts based on memory

addressing model together with dynamic execution information.

The recovered memory layouts actually represent the hierarchical

structure of variables in source code. Then, based on recovered

memory layouts we locate buffer overflows. In future, we would

like to further apply the memory layout recovery on more appli-

cations, e.g., use after free, diagnose the bottleneck of memory

consumption.

ACKNOWLEDGMENT

This research was supported (in part) by Natural Science Founda-

tion of China (Grant No. 61772347, 61632015, 61772408, U1766215,

61833015), the National Research Foundation, Prime Ministers Of-

fice, Singapore under its National Cybersecurity R&D Program

(Award No. NRF2018NCR-NCR005-0001), National Satellite of Ex-

cellence in Trustworthy Software System (Award No. NRF2018NCR-

NSOE003-0001) administered bythe National Cybersecurity R&D

Directorate.

727

Locating Vulnerabilities in Binaries via Memory Layout Recovering ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Addresssanitizer: A

fast address sanity checker.” in USENIX Annual Technical Conference, 2012, pp.
309–318.

[2] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound: Highly
compatible and complete spatial memory safety for c,” ACM Sigplan Notices,
vol. 44, no. 6, pp. 245–258, 2009.

[3] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic
binary instrumentation,” in ACM Sigplan notices, vol. 42, no. 6. ACM, 2007, pp.
89–100.

[4] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Cets: compiler enforced
temporal safety for c,” in ACM Sigplan Notices, vol. 45, no. 8. ACM, 2010, pp.
31–40.

[5] X. Meng and B. P. Miller, “Binary code is not easy,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis. ACM, 2016, pp.
24–35.

[6] W. Cui, M. Peinado, S. K. Cha, Y. Fratantonio, and V. P. Kemerlis, “Retracer:
Triaging crashes by reverse execution from partial memory dumps,” in Proceedings
of the 38th International Conference on Software Engineering. ACM, 2016, pp.
820–831.

[7] AFL, “American fuzzy lop. http://lcamtuf.coredump.cx/afl/.”
[8] C. Lemieux, R. Padhye, K. Sen, and D. Song, “Perffuzz: automatically generat-

ing pathological inputs,” in Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis. ACM, 2018, pp. 254–265.

[9] C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy for increasing
greybox fuzz testing coverage,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. ACM, 2018, pp. 475–485.

[10] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed greybox
fuzzing,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 2329–2344.

[11] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based greybox fuzzing
as markov chain,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2016, pp. 1032–1043.

[12] G. Balakrishnan and T. Reps, “Analyzing memory accesses in x86 executables,”
in International conference on compiler construction. Springer, 2004, pp. 5–23.

[13] J. Lee, T. Avgerinos, and D. Brumley, “Tie: Principled reverse engineering of types
in binary programs,” 2011.

[14] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data structures
from binary execution,” in Proceedings of the 11th Annual Information Security
Symposium. CERIAS-Purdue University, 2010, p. 5.

[15] A. Slowinska, T. Stancescu, and H. Bos, “Howard: A dynamic excavator for reverse
engineering data structures.” in Proceedings of the Network and Distributed System
Security Symposium , year=2011, organization=Citeseer.

[16] ——, “Body armor for binaries: Preventing buffer overflows without recompila-
tion.” in USENIX Annual Technical Conference, 2012, pp. 125–137.

[17] J. Devietti, C. Blundell, M. M. Martin, and S. Zdancewic, “Hardbound: architec-
tural support for spatial safety of the c programming language,” ACM SIGARCH
Computer Architecture News, vol. 36, no. 1, pp. 103–114, 2008.

[18] W. N. Sumner and X. Zhang, “Memory indexing: canonicalizing addresses across
executions,” in Proceedings of the eighteenth ACM SIGSOFT international sympo-
sium on Foundations of software engineering. ACM, 2010, pp. 217–226.

[19] Y. Chen, M. Khandaker, and Z. Wang, “Pinpointing vulnerabilities,” in Proceedings
of the 2017 ACM on Asia Conference on Computer and Communications Security.
ACM, 2017, pp. 334–345.

[20] H. Wang, T. Liu, X. Guan, C. Shen, Q. Zheng, and Z. Yang, “Dependence guided
symbolic execution,” IEEE Transactions on Software Engineering, vol. 43, no. 3, pp.
252–271, 2016.

[21] DARPA, “Cyber grand challenge repository.
https://github.com/cybergrandchallenge/.”

[22] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu, “Steelix: program-
state based binary fuzzing,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. ACM, 2017, pp. 627–637.

[23] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: building customized program analysis tools with
dynamic instrumentation,” in Acm sigplan notices, vol. 40, no. 6. ACM, 2005, pp.
190–200.

[24] Y. Lu, Y. Lou, S. Cheng, L. Zhang, D. Hao, Y. Zhou, and L. Zhang, “How does
regression test prioritization perform in real-world software evolution?” in 2016
IEEE/ACM 38th International Conference on Software Engineering. IEEE, 2016,
pp. 535–546.

[25] D. Hao, L. Zhang, L. Zang, Y. Wang, X. Wu, and T. Xie, “To be optimal or not in
test-case prioritization,” IEEE Transactions on Software Engineering, vol. 42, no. 5,
pp. 490–505, 2016.

[26] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei, “Bridging the gap between
the total and additional test-case prioritization strategies,” in Proceedings of the
2013 International Conference on Software Engineering. IEEE Press, 2013, pp.
192–201.

[27] S. A. Khalek and S. Khurshid, “Efficiently running test suites using abstract undo
operations,” in 2011 IEEE 22nd International Symposium on Software Reliability
Engineering. IEEE, 2011, pp. 110–119.

[28] W. Masri and F. A. Zaraket, “Coverage-based software testing: Beyond basic test
requirements,” in Advances in Computers. Elsevier, 2016, vol. 103, pp. 79–142.

[29] A. Filieri, C. S. Păsăreanu, and W. Visser, “Reliability analysis in symbolic
pathfinder,” in 2013 35th International Conference on Software Engineering. IEEE,
2013, pp. 622–631.

[30] S. Person, G. Yang, N. Rungta, and S. Khurshid, “Directed incremental symbolic
execution,” in Acm Sigplan Notices, vol. 46, no. 6. ACM, 2011, pp. 504–515.

[31] J. H. Siddiqui and S. Khurshid, “Staged symbolic execution,” in Proceedings of the
27th Annual ACM Symposium on Applied Computing. ACM, 2012, pp. 1339–1346.

[32] Y. Li, Z. Su, L. Wang, and X. Li, “Steering symbolic execution to less traveled
paths,” in ACM SigPlan Notices, vol. 48, no. 10. ACM, 2013, pp. 19–32.

[33] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte, “Fitness-guided path explo-
ration in dynamic symbolic execution,” in IEEE/IFIP International Conference on
Dependable Systems & Networks. Citeseer, 2009, pp. 359–368.

[34] B. C. Parrino, J. P. Galeotti, D. Garbervetsky, andM. F. Frias, “Tacoflow: optimizing
sat program verification using dataflow analysis,” Software & Systems Modeling,
vol. 14, no. 1, pp. 45–63, 2015.

[35] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs.” in USENIX Symposium on
Operating Systems Design and Implementation, vol. 8, 2008, pp. 209–224.

[36] W. Visser, C. S. Pasareanu, and S. Khurshid, “Test input generation with java
pathfinder,” ACM SIGSOFT Software Engineering Notes, vol. 29, no. 4, pp. 97–107,
2004.

[37] S. Anand, C. S. Păsăreanu, andW. Visser, “Jpf–se: A symbolic execution extension
to java pathfinder,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2007, pp. 134–138.

[38] G. Balakrishnan and T. Reps, “Divine: Discovering variables in executables,” in
InternationalWorkshop on Verification, Model Checking, and Abstract Interpretation.
Springer, 2007, pp. 1–28.

[39] A. Cozzie, F. Stratton, H. Xue, and S. T. King, “Digging for data structures.” in
USENIX Symposium on Operating Systems Design and Implementation, vol. 8, 2008,
pp. 255–266.

[40] E. Dolgova and A. Chernov, “Automatic reconstruction of data types in the
decompilation problem,” Programming and Computer Software, vol. 35, no. 2, pp.
105–119, 2009.

[41] X. Chen, A. Slowinska, D. Andriesse, H. Bos, and C. Giuffrida, “Stackarmor:
Comprehensive protection from stack-based memory error vulnerabilities for
binaries.” in Proceedings of the Network and Distributed System Security Symposium.
Citeseer, 2015.

[42] V. Braberman, D. Garbervetsky, S. Hym, and S. Yovine, “Summary-based inference
of quantitative bounds of live heap objects,” Science of Computer Programming,
vol. 92, pp. 56–84, 2014.

[43] X. Xie, B. Chen, Y. Liu, W. Le, and X. Li, “Proteus: computing disjunctive loop
summary via path dependency analysis,” in Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering. ACM,
2016, pp. 61–72.

[44] X. Xie, B. Chen, L. Zou, Y. Liu, W. Le, and X. Li, “Automatic loop summarization
via path dependency analysis,” IEEE Transactions on Software Engineering, 2018.

[45] X. Xie, Y. Liu, W. Le, X. Li, and H. Chen, “S-looper: Automatic summarization for
multipath string loops,” in Proceedings of the 2015 International Symposium on
Software Testing and Analysis. ACM, 2015, pp. 188–198.

[46] E. D. Berger and B. G. Zorn, “Diehard: probabilistic memory safety for unsafe
languages,” in Acm sigplan notices, vol. 41, no. 6. ACM, 2006, pp. 158–168.

[47] G. Novark and E. D. Berger, “Dieharder: securing the heap,” in Proceedings of the
17th ACM conference on Computer and communications security. ACM, 2010, pp.
573–584.

[48] G. J. Duck and R. H. Yap, “Heap bounds protection with low fat pointers,” in
Proceedings of the 25th International Conference on Compiler Construction. ACM,
2016, pp. 132–142.

[49] G. J. Duck, R. H. Yap, and L. Cavallaro, “Stack bounds protection with low fat
pointers,” in Symposium on Network and Distributed System Security, 2017.

[50] D. Andriesse, X. Chen, V. van der Veen, A. Slowinska, and H. Bos, “An in-depth
analysis of disassembly on full-scale x86/x64 binaries.” in USENIX Security Sym-
posium, 2016, pp. 583–600.

[51] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-force: Force-executing
binary programs for security applications.” in USENIX Security Symposium, 2014,
pp. 829–844.

[52] D. Bruening and Q. Zhao, “Practical memory checking with dr. memory,” in Pro-
ceedings of the 9th Annual IEEE/ACM International Symposium on Code Generation
and Optimization. IEEE Computer Society, 2011, pp. 213–223.

[53] R. Hastings and B. Joyce, “Purify: Fast detection of memory leaks and access
errors,” in Proceedings of the 1992 USENIX Conference. Citeseer, 1991.

[54] Intel, “Intel inspector. https://software.intel.com/en-us/intel-inspector-xe/.”
[55] Oracle, “Sun memory error discovery tool.

https://docs.oracle.com/cd/e18659_01/html/821-1784/gentextid-302.html.”

728

