
RegMiner: Mining Replicable Regression Dataset
from Code Repositories

Xuezhi Song
Fudan University

China
songxuezhi@fudan.edu.cn

Yun Lin∗
Shanghai Jiao Tong University

National University of Singapore
China/Singapore

llmhyy@gmail.com

Yijian Wu∗
Fudan University

China
wuyijian@fudan.edu.cn

Yifan Zhang
National University of Singapore

Singapore
zyifan828@gmail.com

Siang Hwee Ng
National University of Singapore

Singapore
sianghwee@u.nus.edu

Xin Peng
Fudan University

China
pengxin@fudan.edu.cn

Jin Song Dong
National University of Singapore

Singapore
dcsdjs@nus.edu.sg

Hong Mei
Peking University

China
meih@pku.edu.cn

ABSTRACT
In this work, we introduce a tool, RegMiner, to automate the process
of collecting replicable regression bugs from a set of Git reposito-
ries. In the code commit history, RegMiner searches for regressions
where a test can pass a regression-fixing commit, fail a regression-
inducing commit, and pass a previous working commit again. Tech-
nically, RegMiner (1) identifies potential regression-fixing commits
from the code evolution history, (2) migrates the test and its code
dependencies in the commit over the history, and (3) minimizes the
compilation overhead during the regression search. Our experients
show that RegMiner can successfully collect 1035 regressions over
147 projects in 8 weeks, creating the largest replicable regression
dataset within the shortest period, to the best of our knowledge.
In addition, our experiments further show that (1) RegMiner can
construct the regression dataset with very high precision and ac-
ceptable recall, and (2) the constructed regression dataset is of high
authenticity and diversity. The source code of RegMiner is available
at https://github.com/SongXueZhi/RegMiner, the mined regression
dataset is available at https://regminer.github.io/, and the demon-
stration video is available at https://youtu.be/yzcM9Y4unok.

CCS CONCEPTS
• Software and its engineering→ Software evolution;Main-
taining software; Software testing and debugging.

∗Corresponding author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3558929

KEYWORDS
mining code repository, bug collection, regression bug

ACM Reference Format:
Xuezhi Song, Yun Lin, YijianWu, Yifan Zhang, Siang Hwee Ng, Xin Peng, Jin
Song Dong, and Hong Mei. 2022. RegMiner: Mining Replicable Regression
Dataset from Code Repositories. In Proceedings of the 30th ACM Joint Euro-
pean Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE ’22), November 14–18, 2022, Singapore, Sin-
gapore. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3540250.
3558929

1 INTRODUCTION
Regression bugs, which make a working function fail, often appear
in software projects. A typical regression bug can be formalized
into an observation that a test case 𝑡 can pass a version 𝑉𝑝𝑎𝑠𝑠 but
fail a version 𝑉𝑓 𝑎𝑖𝑙 . Researchers have proposed many techniques
for regression analysis, specifically,

• Regression testing works, e.g., the detection of whether a new
version can fail a working function or what test cases can discover
a regression bug [2, 10, 17, 25].

• Regression localization works, e.g., the explanation why the new
version 𝑉𝑓 𝑎𝑖𝑙 causes the failure, and the location of the failure
inducing changes between𝑉𝑓 𝑎𝑖𝑙 and𝑉𝑝𝑎𝑠𝑠 [12, 13, 16, 26, 34, 39].

• Regression repair works, e.g., the generation of a fixing version
from 𝑉𝑝𝑎𝑠𝑠 and 𝑉𝑓 𝑎𝑖𝑙 to pass the test 𝑡 [19, 31].

While the research works for regression bugs are emerging, the
community still lacks a scalable benchmark (such as Defects4j [14])
to evaluate them in a systematic way. Our investigation on 14
research works from the year of 1999 to 2021 [1, 5, 6, 15, 27, 31, 34–
40] shows that themean number of evaluated real-world regressions
is 16.7 and the median is 12.5. Moreover, different benchmarks
are used in different work, making it difficult to compare their
performance. A large-scale benchmark can largely mitigate the
issue.

https://github.com/SongXueZhi/RegMiner
https://regminer.github.io/
https://youtu.be/yzcM9Y4unok
https://doi.org/10.1145/3540250.3558929
https://doi.org/10.1145/3540250.3558929
https://doi.org/10.1145/3540250.3558929


ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Xuezhi Song, Yun Lin, Yijian Wu, Yifan Zhang, Siang Hwee Ng, Xin Peng, Jin Song Dong, and Hong Mei

However, the process of collecting and labelling a regression
is very costly, which requires to (1) prepare a regression-fixing
version𝑉𝑓 𝑖𝑥 , a regression-introducing version𝑉𝑓 𝑎𝑖𝑙 , and a previous
working version 𝑉𝑝𝑎𝑠𝑠 , (2) set up at least one test case passing 𝑉𝑓 𝑖𝑥
and failing𝑉𝑓 𝑎𝑖𝑙 , and passing𝑉𝑝𝑎𝑠𝑠 , and (3) isolate an environment
where the bug can be well replicated.

In this work, we introduce, RegMiner, to automate the collec-
tion of runnable regression bugs from the code repository with
zero human intervention. RegMiner takes a set of code repositories
as input, and isolates a set of regressions with their running and
replicable environment as output. Technically, we construct a re-
gression by searching in code repositories for a regression-fixing
commit denoted as rfc, a regression-inducing commit denoted as
ric, a working commit (before ric) denoted as wc, and a test case
denoted as 𝑡 so that 𝑡 can pass rfc and wc, and fail ric. To this end,
our approach addresses the technical challenges of (1) predicting
the commits with larger potential as regression-fixing commits, (2)
identifying relevant code changes in a commit to migrate through
the code evolution history, (3) adopting the library upgrades with
the history, and (4) minimizing the compilation overhead and han-
dling incompilable revisions. More technical details are reported in
our research track work (in ISSTA’22) [29].

We implement RegMiner tool for mining regression bugs from
Java projects supported by either Maven or Gradle. We evaluate our
approach with a close-world and an open-world experiment. In the
close-world experiment, RegMiner achieves 100% precision and 56%
recall on a benchmark consisting of 50 regression bugs and 50 non-
regression bugs. In the open-world experiment, we run RegMiner on
147 code repositories within 8 weeks. RegMiner reports 1035 regres-
sions which construct the largest Java regression dataset to the best
of our knowledge. Our ablation study also shows the effectiveness
and efficiency of our technical designs. The source code of RegMiner
is available at https://github.com/SongXueZhi/RegMiner, the mined
regression dataset is available at https://regminer.github.io/, and the
demonstration video is available at https://youtu.be/yzcM9Y4unok.

2 REGMINER TOOL
2.1 Mining Process Dashboard
Figure 1 shows the dashboard user interface to run the regression-
bug mining process from the Git repositories.

Start, Resume, and Stop of the Mining Process. On the up-right
corner of the dashboard, there is a “Start” button allowing the users
to start the mining process. In addition, the user can click the “Stop”
button to suspend the mining process, and click the “Start” button
to resume the process.

Mining Progress. Once the mining process starts, RegMiner visu-
alizes two processes:
• Progress of Processing Projects: We show under the “pro-
cessed projects” section the ratio of the number of the processed
projects over that of the total projects.

• Progress of Processing Bug-fixing Commits: We show un-
der the “processed bug-fixing commits” section the ratio of the
number of the processed bug-fixing commits over that of the
total found bug-fixing commits. Note that, RegMiner will extract
potential bug-fixing commits from the code repositories, along

with their verifying test cases which pass the commit and fail the
commit before. The process verifies whether a bug-fixing commit
is a regression-fixing commit, by searching for a working commit
where the test case can pass.

Timeline. During the mining process, we further allow the users
to investigate any of the found regression bugs on how it is found
during the search on the commit history. The “Timeline” session
shows stepwise search process to locate the working commit. Each
point represents a visited commit during the search. The green
points represent the commits where the test case can pass, the red
points represent the commits where the test case can fail, and the
grey points represent the commits which cannot be compiled. The
search process starts with the regression-fixing commit, and ends
with the working commit. Users can replay the search process by
clicking the “Next” and “Previous” buttons.

2.2 Regression Details
Moreover, the user can further investigate the code and its diff in-
formation. In addition, we can also run the commits (i.e., regression-
fixing commit, regression-introducing commit, and the working
commit), and show the runtime results in the console, as shown
in Figure 2. More details can be investigated in our website https:
//regminer.github.io/.

3 TOOL DESIGN
Figure 3 shows an overview of the RegMiner design. RegMiner takes
input as a set of code repositories (a.k.a., Git repositories), and gen-
erates regressions formalized as a 4-tuple 𝑟𝑒𝑔 = ⟨𝑡𝑒𝑠𝑡, 𝑟 𝑓 𝑐, 𝑟𝑖𝑐,𝑤𝑐⟩
where 𝑟 𝑓 𝑐 represents a regression-fixing commit, 𝑟𝑖𝑐 represents
a regression-introducing commit,𝑤𝑐 represents working commit,
and 𝑡𝑒𝑠𝑡 represents a test case passing 𝑟 𝑓 𝑐 , failing 𝑟𝑖𝑐 , and passing
𝑤𝑐 . The RegMiner framework consists of three high-level modules:

• Repository Parsing Module: The module parses the Git repos-
itories into a pool of bugs (i.e., candidate regression) for further
mining. With a set of Git repositories, a Repository Parsing Mod-
ule first scans the bug-fixing commits with regression poten-
tial. Specially, the Repository Parsing Module reports a set of
3-tuple 𝑏𝑢𝑔 = ⟨𝑡𝑒𝑠𝑡, 𝑏 𝑓 𝑐, 𝑝⟩ where (1) the test case 𝑡𝑒𝑠𝑡 can pass
a bug-fixing commit 𝑏𝑓 𝑐 and fail the commit before 𝑏𝑓 𝑐 (noted
as 𝑏𝑓 𝑐 − 1) and (2) the likelihood of 𝑏𝑢𝑔 turns out to be a regres-
sion. Note that the bug-fixing commits with very low regression
potential score 𝑝 are discarded. More details of the probability
calculation can be referred in [29].

• Commit Validation Module: The module verifies each bug in
the candidate bug pool by whether it can find a commit before
𝑏𝑓 𝑐 − 1 where 𝑡𝑒𝑠𝑡 can pass. During the search, the module
automatically compiles the project1, migrates the test case 𝑡 a
previous commit, and heuristically locates the target commit
with a balance of efficiency and completeness. As a result, we
construct a regression bug as a 4-tuple 𝑟𝑒𝑔 = ⟨𝑡𝑒𝑠𝑡, 𝑟 𝑓 𝑐, 𝑟𝑖𝑐,𝑤𝑐⟩
where 𝑡𝑒𝑠𝑡 can pass 𝑟 𝑓 𝑐 , fail 𝑟𝑖𝑐 , and pass𝑤𝑐 .

• User Interaction Module: The module provides an intuitive
user interface based on the minded regression bug dataset.

1We now support Maven and Gradle project.

https://github.com/SongXueZhi/RegMiner
https://regminer.github.io/
https://youtu.be/yzcM9Y4unok
https://regminer.github.io/
https://regminer.github.io/


RegMiner ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Figure 1: User interface of RegMiner: We show progressive information to mine regression bugs from predefined Git projects.

Figure 2: User interface of details of an individual regression bug. User can run the test case against the commits/versions to
check their runtime output in the console.

(1) Critical Change Recommendation: Given a regression-
fixing commit or regression-introducing commit, we adopt
state-of-the-art delta-debugging technique to recommend
their critical changes.

(2) Change Annotation: We further support users to confirm
the recommended critical changes and annotate the mis-
reported changes.

(3) Bug Search: In addition, we integrate a keyword-based search
engine for users to look for their interested regression bugs,
e.g., regarding concurrency, socket, IO, etc.

4 EXPERIMENT
We build RegMiner to mine Java regressions, supporting Maven
and Gradle projects in its current implementation. We evaluate
RegMiner with the following research questions, more details of
our experiment are available at our website (https://regminer.github.
io/).

• RQ1 (Close-world Experiment): Whether RegMiner can mine
regressions from Git repositories accurately and completely?

• RQ2 (Open-world Experiment): Whether RegMiner can con-
tinuously mine authentic regressions from real-world Git reposi-
tories? How diverse is our constructed regression dataset?

https://regminer.github.io/
https://regminer.github.io/


ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Xuezhi Song, Yun Lin, Yijian Wu, Yifan Zhang, Siang Hwee Ng, Xin Peng, Jin Song Dong, and Hong Mei

User Interaction ModuleCode 
Repository1

Code 
Repository1

Code 
Repository1

Repository 
Parsing Module

...

candidate 
bug pool

Regression Dataset

Critical Change 
Recommendation

Change 
Annotation

Bug Searchtest case 
selection

regression-
potential 
commit 

estimation

Commit Validation 
Module

project 
compilation

test case 
migration

regression-
introducing 

commit search

(commit producer) (commit consumer)

Figure 3: Design of RegMiner: A producer-consumer architecture to progressively search for the regression bugs. Follow-up
analysis is built upon the collected regression bugs such as critical change recommendation, change annotation, and bug search.

• RQ3 (Ablation Study): How each component in RegMiner, i.e.,
regression potential estimation, test dependency migration, and
validation effort minimization, contribute to the mining effective-
ness and efficiency?

3.1 Results (RQ1): Close-world Experiment. We evaluate RegMiner
in the close-world experiment regarding precision and recall. In
this study, we manually collect 50 regression-fixing commits and
50 non-regression fixing commits from Github repositories for the
measurement of precision and recall. To avoid bias, we construct
the regression benchmark without any help of RegMiner. Specifi-
cally, we search for closed Github issues each of which uniquely
mentions a commit as its solution. Then, we filter those issues based
on its labels and description. We prioritize the issues with labels
as “regression” or “bug”, or with description with the keyword of
“regression”. Then, we confirm the real regressions by manually
checking the evolution history for regression-inducing commits,
and migrating the test cases. As a result, we confirmed 50 regres-
sions from 23 Java projects by this means. By similar means, we
identified 50 non-regression bugs.

We apply RegMiner on all the regression and non-regression
fixing commits to measure the precision and recall. Let the number
of true regressions to be 𝑁 (𝑁 = 50), the number of reported
regressions to be𝑀 , and the number of reported true regressions to
be 𝐾 , the precision is 𝐾

𝑀
, the recall is 𝐾

𝑁
. Overall, we achieve 100%

precision and 56% recall in the experiment.

3.2 Results (RQ2): Open-world Experiment. RegMiner is designed to
mine regressions from Git repositories with zero human interven-
tion. In this experiment, we collect Git repositories from Github
and run RegMiner to mine regressions for 8 weeks. We evaluate
RegMiner regarding the authenticity and the diversity of the mined
regressions in both quantitative and qualitative manner.

Overall, RegMiner constructs a regression dataset consisting of
1035 regressions over the 147 projects within 8 weeks.

3.3 Results (RQ3): Ablation Study. In the study, we disable and enable
the function of test case migration and validation effort minimiza-
tion respectively to evaluate their effectiveness. Table 1 shows that
the overall regression retrieval performance. Overall, comparing to
the baselines, our solutions show their effectiveness.

Table 1: The overall performance of regression retrieval

Approach
Close-world
Experiment

Open-world
Experiment

Prec Rec Time (h) #Reg Time (h)
RegMiner 1.0 0.56 4.29 1035 135.38
RegMiner¬𝑇𝐷𝑀 1.0 0.32 2.21 604 64.29
RegMiner¬𝑉𝐸𝑀+𝑏𝑖𝑠𝑒𝑡 1.0 0.47 2.74 629 73.84

5 RELATEDWORK
Researchers have constructed many bug datasets in the community.
Many datasets are constructed from (1) programming assignments
and competitions such as Marmoset [30], QuixBugs [20], IntroClass
[18], Codeflaws [32], etc., (2) open source projects (e.g., SIR [8],
DbgBench [4], Defects4j [14], BugsJS [11], Bugs.jar [28], etc.), and
(3) runtime continuous integration scenarios (e.g., BEARS [24] and
BugSwarm [33]). The most relevant dataset CoREBench [3], which
is a regression dataset of 70 C/C++ regressions.

Those manually constructed bug datasets limit the scalability
and representativeness of the bugs. Dallmeier and Zimmermann [7]
make the first attempt to construct bug dataset in a semi-automatic
way. They construct the dataset by linking the bug issues and com-
mits. Zhao et. al [41] replicate bugs based on Android bug reports.
Recently, CI (Continuous Integration)-based techniques are emerg-
ing. BEARS [24] and BugSwarm [33] construct the bug dataset by
collecting the buggy and the patched versions on Continuous Inte-
gration systems. In comparison, RegMiner is the first tool to mine
regression bugs, with fewer assumptions (i.e., we only require Git
repositories supported by Maven or Gradle).

6 CONCLUSION
In this work, we introduce RegMiner which can automatically con-
struct a regression dataset. In the future, we will further improve the
regression retrieval efficiency such as synthesizing regression tests
for enlarging the pool of regression-fixing commits, and designing
more accurate migration techniques. Moreover, we will enhance
RegMiner by supporting manual correction of recommended criti-
cal changes and providing relevant APIs from RegMiner to facilitate
a variety of research experiments on software testing, debugging,
and repair [9, 19, 21–23, 31, 34, 39].



RegMiner ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

ACKNOWLEDGMENTS
We sincerely thank anonymous reviewers for their comments to
improve this work. This research is supported in part by the Min-
ister of Education, Singapore (T2EP20120-0019, T1-251RES1901,
MOET32020-0004), A*STAR, CISCO Systems (USA) Pte. Ltd and
National University of Singapore under its Cisco-NUS Accelerated
Digital Economy Corporate Laboratory (Award I21001E0002), and
National Natural Science Foundation of China (62172099).

REFERENCES
[1] Cyrille Artho. 2011. Iterative delta debugging. International Journal on Software

Tools for Technology Transfer 13, 3 (2011), 223–246.
[2] Antonia Bertolino, Antonio Guerriero, Breno Miranda, Roberto Pietrantuono,

and Stefano Russo. 2020. Learning-to-rank vs ranking-to-learn: strategies for
regression testing in continuous integration. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. 1–12.

[3] Marcel Böhme and Abhik Roychoudhury. 2014. Corebench: Studying complexity
of regression errors. In Proceedings of the 2014 international symposium on software
testing and analysis. 105–115.

[4] Marcel Böhme, Ezekiel O Soremekun, Sudipta Chattopadhyay, Emamurho
Ugherughe, and Andreas Zeller. 2017. Where is the bug and how is it fixed? an
experiment with practitioners. In Proceedings of the 2017 11th joint meeting on
foundations of software engineering. 117–128.

[5] Robert Brummayer and Armin Biere. 2009. Fuzzing and delta-debugging SMT
solvers. In Proceedings of the 7th International Workshop on Satisfiability Modulo
Theories. 1–5.

[6] Dekel Cohen and Amiram Yehudai. 2015. Localization of real world regression
Bugs using single execution. arXiv preprint arXiv:1505.01286 (2015).

[7] Valentin Dallmeier and Thomas Zimmermann. 2007. Extraction of bug local-
ization benchmarks from history. In Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering. 433–436.

[8] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. 2005. Supporting con-
trolled experimentation with testing techniques: An infrastructure and its poten-
tial impact. Empirical Software Engineering 10, 4 (2005), 405–435.

[9] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. 416–419.

[10] Patrice Godefroid, Daniel Lehmann, and Marina Polishchuk. 2020. Differen-
tial regression testing for REST APIs. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 312–323.

[11] Péter Gyimesi, Béla Vancsics, Andrea Stocco, Davood Mazinanian, Arpád
Beszédes, Rudolf Ferenc, and Ali Mesbah. 2019. BugsJS: a benchmark of JavaScript
bugs. In 2019 12th IEEE Conference on Software Testing, Validation and Verification
(ICST). IEEE, 90–101.

[12] Renáta Hodován and Ákos Kiss. 2016. Modernizing hierarchical delta debugging.
In Proceedings of the 7th International Workshop on Automating Test Case Design,
Selection, and Evaluation. 31–37.

[13] Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy. 2017. Coarse hierarchical delta
debugging. In 2017 IEEE international conference on software maintenance and
evolution (ICSME). IEEE, 194–203.

[14] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis. 437–440.

[15] Alireza Khalilian, Ahmad Baraani-Dastjerdi, and Bahman Zamani. 2021. CGen-
Prog: Adaptation of cartesian genetic programming with migration and opposite
guesses for automatic repair of software regression faults. Expert Systems with
Applications 169 (2021), 114503.

[16] Ákos Kiss, Renáta Hodován, and Tibor Gyimóthy. 2018. HDDr: a recursive
variant of the hierarchical delta debugging algorithm. In Proceedings of the 9th
ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection,
and Evaluation. 16–22.

[17] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. 2017. Measuring the
cost of regression testing in practice: A study of Java projects using continuous
integration. In Proceedings of the 2017 11th JointMeeting on Foundations of Software
Engineering. 821–830.

[18] Claire Le Goues, Neal Holtschulte, Edward K Smith, Yuriy Brun, Premkumar
Devanbu, Stephanie Forrest, and Westley Weimer. 2015. The ManyBugs and
IntroClass benchmarks for automated repair of C programs. IEEE Transactions
on Software Engineering 41, 12 (2015), 1236–1256.

[19] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2011.
Genprog: A generic method for automatic software repair. Ieee transactions on
software engineering 38, 1 (2011), 54–72.

[20] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. 2017.
QuixBugs: A multi-lingual program repair benchmark set based on the Quixey

Challenge. In Proceedings Companion of the 2017 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and Applications: Software for
Humanity. 55–56.

[21] Yun Lin, You Sheng Ong, Jun Sun, Gordon Fraser, and Jin Song Dong. 2021.
Graph-based seed object synthesis for search-based unit testing. In Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1068–1080.

[22] Yun Lin, Jun Sun, Gordon Fraser, Ziheng Xiu, Ting Liu, and Jin Song Dong. 2020.
Recovering fitness gradients for interprocedural Boolean flags in search-based
testing. In Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis. 440–451.

[23] Yun Lin, Jun Sun, Yinxing Xue, Yang Liu, and Jinsong Dong. 2017. Feedback-
based debugging. In 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE, 393–403.

[24] Fernanda Madeiral, Simon Urli, Marcelo Maia, and Martin Monperrus. 2019.
Bears: An extensible java bug benchmark for automatic program repair studies.
In 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 468–478.

[25] Gianluca Mezzetti, Anders Møller, and Martin Toldam Torp. 2018. Type regres-
sion testing to detect breaking changes in Node. js libraries. In 32nd European
Conference on Object-Oriented Programming (ECOOP 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

[26] Ghassan Misherghi and Zhendong Su. 2006. HDD: Hierarchical delta debugging.
In Proceedings of the 28th international conference on Software engineering. 142–
151.

[27] Fabrizio Pastore, Leonardo Mariani, and Alberto Goffi. 2013. RADAR: a tool for
debugging regression problems in C/C++ software. In 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 1335–1338.

[28] Ripon K Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul R Prasad.
2018. Bugs.jar: a large-scale, diverse dataset of real-world java bugs. In Proceedings
of the 15th International Conference on Mining Software Repositories. 10–13.

[29] Xuezhi Song, Yun Lin, Siang Hwee Ng, Yijian Wu, Xin Peng, Jin Song Dong, and
Hong Mei. 2022. RegMiner: Towards Constructing a Large Regression Dataset
from Code Evolution History. In The ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA). ACM, 314—-326.

[30] Jaime Spacco, Jaymie Strecker, David Hovemeyer, and William Pugh. 2005. Soft-
ware repository mining with Marmoset: An automated programming project
snapshot and testing system. In Proceedings of the 2005 international workshop on
Mining software repositories. 1–5.

[31] Shin Hwei Tan and Abhik Roychoudhury. 2015. relifix: Automated repair of
software regressions. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 1. IEEE, 471–482.

[32] Shin Hwei Tan, Jooyong Yi, Sergey Mechtaev, Abhik Roychoudhury, et al. 2017.
Codeflaws: a programming competition benchmark for evaluating automated
program repair tools. In 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C). IEEE, 180–182.

[33] David A Tomassi, Naji Dmeiri, Yichen Wang, Antara Bhowmick, Yen-Chuan
Liu, Premkumar T Devanbu, Bogdan Vasilescu, and Cindy Rubio-González. 2019.
Bugswarm: Mining and continuously growing a dataset of reproducible failures
and fixes. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 339–349.

[34] Haijun Wang, Yun Lin, Zijiang Yang, Jun Sun, Yang Liu, Jin Song Dong, Qinghua
Zheng, and Ting Liu. 2019. Explaining regressions via alignment slicing and
mending. IEEE Transactions on Software Engineering (2019).

[35] Qiuping Yi, Zijiang Yang, Jian Liu, Chen Zhao, and Chao Wang. 2015. A synergis-
tic analysis method for explaining failed regression tests. In 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, Vol. 1. IEEE, 257–267.

[36] Kai Yu and Mengxiang Lin. 2012. Towards practical debugging for regression
faults. In 2012 IEEE Fifth International Conference on Software Testing, Verification
and Validation. IEEE, 487–490.

[37] Kai Yu, Mengxiang Lin, Jin Chen, and Xiangyu Zhang. 2012. Practical isolation
of failure-inducing changes for debugging regression faults. In Proceedings of
the 27th IEEE/ACM International Conference on Automated Software Engineering.
20–29.

[38] Kai Yu, Mengxiang Lin, Jin Chen, and Xiangyu Zhang. 2012. Towards automated
debugging in software evolution: Evaluating delta debugging on real regression
bugs from the developers’ perspectives. Journal of Systems and Software 85, 10
(2012), 2305–2317.

[39] Andreas Zeller. 1999. Yesterday, my program worked. Today, it does not. Why?
ACM SIGSOFT Software engineering notes 24, 6 (1999), 253–267.

[40] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2012. Faulttracer: a
change impact and regression fault analysis tool for evolving java programs. In
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering. 1–4.

[41] Yu Zhao, Kye Miller, Tingting Yu, Wei Zheng, and Minchao Pu. 2019. Automati-
cally Extracting Bug Reproducing Steps from Android Bug Reports. In Interna-
tional Conference on Software and Systems Reuse. Springer, 100–111.


	Abstract
	1 Introduction
	2 RegMiner Tool
	2.1 Mining Process Dashboard
	2.2 Regression Details

	3 Tool Design
	4 Experiment
	5 Related Work
	6 Conclusion
	Acknowledgments
	References

