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ABSTRACT
In this work, we introduce a tool, RegMiner, to automate the process
of collecting replicable regression bugs from a set of Git reposito-
ries. In the code commit history, RegMiner searches for regressions
where a test can pass a regression-fixing commit, fail a regression-
inducing commit, and pass a previous working commit again. Tech-
nically, RegMiner (1) identifies potential regression-fixing commits
from the code evolution history, (2) migrates the test and its code
dependencies in the commit over the history, and (3) minimizes the
compilation overhead during the regression search. Our experients
show that RegMiner can successfully collect 1035 regressions over
147 projects in 8 weeks, creating the largest replicable regression
dataset within the shortest period, to the best of our knowledge.
In addition, our experiments further show that (1) RegMiner can
construct the regression dataset with very high precision and ac-
ceptable recall, and (2) the constructed regression dataset is of high
authenticity and diversity. The source code of RegMiner is available
at https://github.com/SongXueZhi/RegMiner, the mined regression
dataset is available at https://regminer.github.io/, and the demon-
stration video is available at https://youtu.be/yzcM9Y4unok.

CCS CONCEPTS
• Software and its engineering→ Software evolution;Main-
taining software; Software testing and debugging.
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1 INTRODUCTION
Regression bugs, which make a working function fail, often appear
in software projects. A typical regression bug can be formalized
into an observation that a test case 𝑡 can pass a version 𝑉𝑝𝑎𝑠𝑠 but
fail a version 𝑉𝑓 𝑎𝑖𝑙 . Researchers have proposed many techniques
for regression analysis, specifically,

• Regression testing works, e.g., the detection of whether a new
version can fail a working function or what test cases can discover
a regression bug [2, 10, 17, 25].

• Regression localization works, e.g., the explanation why the new
version 𝑉𝑓 𝑎𝑖𝑙 causes the failure, and the location of the failure
inducing changes between𝑉𝑓 𝑎𝑖𝑙 and𝑉𝑝𝑎𝑠𝑠 [12, 13, 16, 26, 34, 39].

• Regression repair works, e.g., the generation of a fixing version
from 𝑉𝑝𝑎𝑠𝑠 and 𝑉𝑓 𝑎𝑖𝑙 to pass the test 𝑡 [19, 31].

While the research works for regression bugs are emerging, the
community still lacks a scalable benchmark (such as Defects4j [14])
to evaluate them in a systematic way. Our investigation on 14
research works from the year of 1999 to 2021 [1, 5, 6, 15, 27, 31, 34–
40] shows that themean number of evaluated real-world regressions
is 16.7 and the median is 12.5. Moreover, different benchmarks
are used in different work, making it difficult to compare their
performance. A large-scale benchmark can largely mitigate the
issue.

https://github.com/SongXueZhi/RegMiner
https://regminer.github.io/
https://youtu.be/yzcM9Y4unok
https://doi.org/10.1145/3540250.3558929
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However, the process of collecting and labelling a regression
is very costly, which requires to (1) prepare a regression-fixing
version𝑉𝑓 𝑖𝑥 , a regression-introducing version𝑉𝑓 𝑎𝑖𝑙 , and a previous
working version 𝑉𝑝𝑎𝑠𝑠 , (2) set up at least one test case passing 𝑉𝑓 𝑖𝑥
and failing𝑉𝑓 𝑎𝑖𝑙 , and passing𝑉𝑝𝑎𝑠𝑠 , and (3) isolate an environment
where the bug can be well replicated.

In this work, we introduce, RegMiner, to automate the collec-
tion of runnable regression bugs from the code repository with
zero human intervention. RegMiner takes a set of code repositories
as input, and isolates a set of regressions with their running and
replicable environment as output. Technically, we construct a re-
gression by searching in code repositories for a regression-fixing
commit denoted as rfc, a regression-inducing commit denoted as
ric, a working commit (before ric) denoted as wc, and a test case
denoted as 𝑡 so that 𝑡 can pass rfc and wc, and fail ric. To this end,
our approach addresses the technical challenges of (1) predicting
the commits with larger potential as regression-fixing commits, (2)
identifying relevant code changes in a commit to migrate through
the code evolution history, (3) adopting the library upgrades with
the history, and (4) minimizing the compilation overhead and han-
dling incompilable revisions. More technical details are reported in
our research track work (in ISSTA’22) [29].

We implement RegMiner tool for mining regression bugs from
Java projects supported by either Maven or Gradle. We evaluate our
approach with a close-world and an open-world experiment. In the
close-world experiment, RegMiner achieves 100% precision and 56%
recall on a benchmark consisting of 50 regression bugs and 50 non-
regression bugs. In the open-world experiment, we run RegMiner on
147 code repositories within 8 weeks. RegMiner reports 1035 regres-
sions which construct the largest Java regression dataset to the best
of our knowledge. Our ablation study also shows the effectiveness
and efficiency of our technical designs. The source code of RegMiner
is available at https://github.com/SongXueZhi/RegMiner, the mined
regression dataset is available at https://regminer.github.io/, and the
demonstration video is available at https://youtu.be/yzcM9Y4unok.

2 REGMINER TOOL
2.1 Mining Process Dashboard
Figure 1 shows the dashboard user interface to run the regression-
bug mining process from the Git repositories.

Start, Resume, and Stop of the Mining Process. On the up-right
corner of the dashboard, there is a “Start” button allowing the users
to start the mining process. In addition, the user can click the “Stop”
button to suspend the mining process, and click the “Start” button
to resume the process.

Mining Progress. Once the mining process starts, RegMiner visu-
alizes two processes:
• Progress of Processing Projects: We show under the “pro-
cessed projects” section the ratio of the number of the processed
projects over that of the total projects.

• Progress of Processing Bug-fixing Commits: We show un-
der the “processed bug-fixing commits” section the ratio of the
number of the processed bug-fixing commits over that of the
total found bug-fixing commits. Note that, RegMiner will extract
potential bug-fixing commits from the code repositories, along

with their verifying test cases which pass the commit and fail the
commit before. The process verifies whether a bug-fixing commit
is a regression-fixing commit, by searching for a working commit
where the test case can pass.

Timeline. During the mining process, we further allow the users
to investigate any of the found regression bugs on how it is found
during the search on the commit history. The “Timeline” session
shows stepwise search process to locate the working commit. Each
point represents a visited commit during the search. The green
points represent the commits where the test case can pass, the red
points represent the commits where the test case can fail, and the
grey points represent the commits which cannot be compiled. The
search process starts with the regression-fixing commit, and ends
with the working commit. Users can replay the search process by
clicking the “Next” and “Previous” buttons.

2.2 Regression Details
Moreover, the user can further investigate the code and its diff in-
formation. In addition, we can also run the commits (i.e., regression-
fixing commit, regression-introducing commit, and the working
commit), and show the runtime results in the console, as shown
in Figure 2. More details can be investigated in our website https:
//regminer.github.io/.

3 TOOL DESIGN
Figure 3 shows an overview of the RegMiner design. RegMiner takes
input as a set of code repositories (a.k.a., Git repositories), and gen-
erates regressions formalized as a 4-tuple 𝑟𝑒𝑔 = ⟨𝑡𝑒𝑠𝑡, 𝑟 𝑓 𝑐, 𝑟𝑖𝑐,𝑤𝑐⟩
where 𝑟 𝑓 𝑐 represents a regression-fixing commit, 𝑟𝑖𝑐 represents
a regression-introducing commit,𝑤𝑐 represents working commit,
and 𝑡𝑒𝑠𝑡 represents a test case passing 𝑟 𝑓 𝑐 , failing 𝑟𝑖𝑐 , and passing
𝑤𝑐 . The RegMiner framework consists of three high-level modules:

• Repository Parsing Module: The module parses the Git repos-
itories into a pool of bugs (i.e., candidate regression) for further
mining. With a set of Git repositories, a Repository Parsing Mod-
ule first scans the bug-fixing commits with regression poten-
tial. Specially, the Repository Parsing Module reports a set of
3-tuple 𝑏𝑢𝑔 = ⟨𝑡𝑒𝑠𝑡, 𝑏 𝑓 𝑐, 𝑝⟩ where (1) the test case 𝑡𝑒𝑠𝑡 can pass
a bug-fixing commit 𝑏𝑓 𝑐 and fail the commit before 𝑏𝑓 𝑐 (noted
as 𝑏𝑓 𝑐 − 1) and (2) the likelihood of 𝑏𝑢𝑔 turns out to be a regres-
sion. Note that the bug-fixing commits with very low regression
potential score 𝑝 are discarded. More details of the probability
calculation can be referred in [29].

• Commit Validation Module: The module verifies each bug in
the candidate bug pool by whether it can find a commit before
𝑏𝑓 𝑐 − 1 where 𝑡𝑒𝑠𝑡 can pass. During the search, the module
automatically compiles the project1, migrates the test case 𝑡 a
previous commit, and heuristically locates the target commit
with a balance of efficiency and completeness. As a result, we
construct a regression bug as a 4-tuple 𝑟𝑒𝑔 = ⟨𝑡𝑒𝑠𝑡, 𝑟 𝑓 𝑐, 𝑟𝑖𝑐,𝑤𝑐⟩
where 𝑡𝑒𝑠𝑡 can pass 𝑟 𝑓 𝑐 , fail 𝑟𝑖𝑐 , and pass𝑤𝑐 .

• User Interaction Module: The module provides an intuitive
user interface based on the minded regression bug dataset.

1We now support Maven and Gradle project.

https://github.com/SongXueZhi/RegMiner
https://regminer.github.io/
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Figure 1: User interface of RegMiner: We show progressive information to mine regression bugs from predefined Git projects.

Figure 2: User interface of details of an individual regression bug. User can run the test case against the commits/versions to
check their runtime output in the console.

(1) Critical Change Recommendation: Given a regression-
fixing commit or regression-introducing commit, we adopt
state-of-the-art delta-debugging technique to recommend
their critical changes.

(2) Change Annotation: We further support users to confirm
the recommended critical changes and annotate the mis-
reported changes.

(3) Bug Search: In addition, we integrate a keyword-based search
engine for users to look for their interested regression bugs,
e.g., regarding concurrency, socket, IO, etc.

4 EXPERIMENT
We build RegMiner to mine Java regressions, supporting Maven
and Gradle projects in its current implementation. We evaluate
RegMiner with the following research questions, more details of
our experiment are available at our website (https://regminer.github.
io/).

• RQ1 (Close-world Experiment): Whether RegMiner can mine
regressions from Git repositories accurately and completely?

• RQ2 (Open-world Experiment): Whether RegMiner can con-
tinuously mine authentic regressions from real-world Git reposi-
tories? How diverse is our constructed regression dataset?

https://regminer.github.io/
https://regminer.github.io/
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Figure 3: Design of RegMiner: A producer-consumer architecture to progressively search for the regression bugs. Follow-up
analysis is built upon the collected regression bugs such as critical change recommendation, change annotation, and bug search.

• RQ3 (Ablation Study): How each component in RegMiner, i.e.,
regression potential estimation, test dependency migration, and
validation effort minimization, contribute to the mining effective-
ness and efficiency?

3.1 Results (RQ1): Close-world Experiment. We evaluate RegMiner
in the close-world experiment regarding precision and recall. In
this study, we manually collect 50 regression-fixing commits and
50 non-regression fixing commits from Github repositories for the
measurement of precision and recall. To avoid bias, we construct
the regression benchmark without any help of RegMiner. Specifi-
cally, we search for closed Github issues each of which uniquely
mentions a commit as its solution. Then, we filter those issues based
on its labels and description. We prioritize the issues with labels
as “regression” or “bug”, or with description with the keyword of
“regression”. Then, we confirm the real regressions by manually
checking the evolution history for regression-inducing commits,
and migrating the test cases. As a result, we confirmed 50 regres-
sions from 23 Java projects by this means. By similar means, we
identified 50 non-regression bugs.

We apply RegMiner on all the regression and non-regression
fixing commits to measure the precision and recall. Let the number
of true regressions to be 𝑁 (𝑁 = 50), the number of reported
regressions to be𝑀 , and the number of reported true regressions to
be 𝐾 , the precision is 𝐾

𝑀
, the recall is 𝐾

𝑁
. Overall, we achieve 100%

precision and 56% recall in the experiment.

3.2 Results (RQ2): Open-world Experiment. RegMiner is designed to
mine regressions from Git repositories with zero human interven-
tion. In this experiment, we collect Git repositories from Github
and run RegMiner to mine regressions for 8 weeks. We evaluate
RegMiner regarding the authenticity and the diversity of the mined
regressions in both quantitative and qualitative manner.

Overall, RegMiner constructs a regression dataset consisting of
1035 regressions over the 147 projects within 8 weeks.

3.3 Results (RQ3): Ablation Study. In the study, we disable and enable
the function of test case migration and validation effort minimiza-
tion respectively to evaluate their effectiveness. Table 1 shows that
the overall regression retrieval performance. Overall, comparing to
the baselines, our solutions show their effectiveness.

Table 1: The overall performance of regression retrieval

Approach
Close-world
Experiment

Open-world
Experiment

Prec Rec Time (h) #Reg Time (h)
RegMiner 1.0 0.56 4.29 1035 135.38
RegMiner¬𝑇𝐷𝑀 1.0 0.32 2.21 604 64.29
RegMiner¬𝑉𝐸𝑀+𝑏𝑖𝑠𝑒𝑡 1.0 0.47 2.74 629 73.84

5 RELATEDWORK
Researchers have constructed many bug datasets in the community.
Many datasets are constructed from (1) programming assignments
and competitions such as Marmoset [30], QuixBugs [20], IntroClass
[18], Codeflaws [32], etc., (2) open source projects (e.g., SIR [8],
DbgBench [4], Defects4j [14], BugsJS [11], Bugs.jar [28], etc.), and
(3) runtime continuous integration scenarios (e.g., BEARS [24] and
BugSwarm [33]). The most relevant dataset CoREBench [3], which
is a regression dataset of 70 C/C++ regressions.

Those manually constructed bug datasets limit the scalability
and representativeness of the bugs. Dallmeier and Zimmermann [7]
make the first attempt to construct bug dataset in a semi-automatic
way. They construct the dataset by linking the bug issues and com-
mits. Zhao et. al [41] replicate bugs based on Android bug reports.
Recently, CI (Continuous Integration)-based techniques are emerg-
ing. BEARS [24] and BugSwarm [33] construct the bug dataset by
collecting the buggy and the patched versions on Continuous Inte-
gration systems. In comparison, RegMiner is the first tool to mine
regression bugs, with fewer assumptions (i.e., we only require Git
repositories supported by Maven or Gradle).

6 CONCLUSION
In this work, we introduce RegMiner which can automatically con-
struct a regression dataset. In the future, we will further improve the
regression retrieval efficiency such as synthesizing regression tests
for enlarging the pool of regression-fixing commits, and designing
more accurate migration techniques. Moreover, we will enhance
RegMiner by supporting manual correction of recommended criti-
cal changes and providing relevant APIs from RegMiner to facilitate
a variety of research experiments on software testing, debugging,
and repair [9, 19, 21–23, 31, 34, 39].
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