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ABSTRACT
A deep classifier is usually trained to (i) learn the numeric repre-
sentation vector of samples and (ii) classify sample representations
with learned classification boundaries. Time-travelling visualiza-
tion, as an explainable AI technique, is designed to transform the
model training dynamics into an animation of canvas with colorful
dots and territories. Despite that the training dynamics of the high-
level concepts such as sample representations and classification
boundaries are now observable, the model developers can still be
overwhelmed by tens of thousands of moving dots across hundreds
of training epochs (i.e., frames in the animation), which makes them
miss important training events.

In this work, we make the first attempt to develop the model
time-travelling visualizers to the model time-travelling debuggers,
for its practical use in model debugging tasks. Specifically, given
an animation of model training dynamics of sample representation
and classification landscape, we propose DeepDebugger solution
to recommend the samples of user interest in a human-in-the-loop
manner. On one hand, DeepDebugger monitors the training dynam-
ics of samples and recommends suspicious samples based on their
abnormality. On the other hand, our recommendation is interactive
and fault-resilient for the model developers to explore the train-
ing process. By learning users’ feedback, DeepDebugger refines
its recommendation to fit their intention. Our extensive experi-
ments on applying DeepDebugger on the known time-travelling
visualizers show that DeepDebugger can (1) detect the majority
of the abnormal movement of the training samples on canvas; (2)
significantly boost the recommendation performance of samples
of interest (5-10X more accurate than the baselines) with the run-
time overhead of 0.015s per feedback; (3) be resilient under the 3%,
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5%, 10% mistaken user feedback. Our user study of the tool shows
that the interactive recommendation of DeepDebugger can help
the participants accomplish the debugging tasks by saving 18.1%
completion time and boosting the performance by 20.3%.
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1 INTRODUCTION
Deep Learning based classifiers (or, deep classifiers) are learnable
functions mapping a sample to a predefined class, which have
been widely used in software systems in areas such as computer
vision [15, 31, 34, 39], finance [33, 44, 52], education [6, 24], and
transportation [36, 43, 47]. As showed in Figure 1, typical deep
classifiers consist of two components:

• Representation Learning: A sample (e.g., an image, a sentence,
a voice clip) is transformed into a representation vector in a high-
dimensional space. The transformation can be implemented as
convolutional layers [25], LSTM layers [16], or transformers [41].

• Representation Fitting: The learned representation is further
fed into layers for fitting its label as prediction, which is typically
implemented as fully connected layers.

A well-functioning deep classifier can learn the classification
landscape consisting of (1) representations of the samples distributed
in the space and (2) classification boundaries to distinguish them
well. Mathematically, the sample representations are in the form of
high-dimensional vectors, and the classification boundaries are in
the form of composite formulas on the high-dimensional vectors.
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Figure 1: General architecture of deep classifiers, consisting
of representation learning and representation fitting

Figure 2: A visualized classification landscape of one training
epoch by a time-travelling visualizer TimeVis [48]. A pink
dot located in the red region indicates a correct prediction. A pink
dot located in the blue region indicates a mis-prediction. The white
region indicates classification boundaries.

Recently, time-travelling visualization techniques [48, 49] are
emerging to help observe the training dynamics of the high-dimen-
sional representations and classification boundaries in a low-dimen-
sional canvas. Figure 2 shows one example of such visualization.
The canvas stands for the universal high-dimensional space, where
each dot stands for a training/testing sample, and each colored
region stands for a classification region, and the white boundaries
stand for the classification boundaries. By this means, the process of
learning a deep classifier is transformed into a visualized animation
of an evolving canvas. The visualization is useful for the model
developers to generally observe how the model predictions are
formed. However, the techniques still suffer from the following
challenges to serve as a practical model debugging solution:
• Overwhelming Training Samples and Events: When visual-
izing the dynamics of tens of thousands of training samples as
dots on the canvas, it is challenging for the model developers to
locate which samples and what patterns of sample movements
need more attention. Even worse, some movements are hard to
be explicitly expressed, as shown in Figure 5.

• Lack of Intention Inference: In the model debugging tasks,
the developers can raise different hypotheses (e.g., “whether the
unexpectedly low accuracy is due to noisy training samples?” or
“whether the model is trained with sufficient training samples?”) as
they have different intentions for different tasks. Unfortunately,
the presentation of animation still lacks the support to detect dif-
ferent task-relevant intentions and validate the aforementioned
hypotheses in a debugging task.
In this work, we propose DeepDebugger to further develop the

model time-travelling visualizers to the model time-travelling de-
buggers, with the support of validating diverse hypotheses from
the model developers. To this end, we design DeepDebugger as an

interactive solution for developers to explore samples of interest
in the training animation. Specifically, we design DeepDebugger
to (1) recommend abnormal and suspicious samples (i.e., samples
with potential issues such as data corruption, and mislabeling), (2)
detect task-relevant samples by taking the developers’ feedback
on the recommendation, and (3) tolerate mistaken feedback for re-
silient recommendation results. Technically, we design an anomaly
detection algorithm based on the location, velocity, and accelera-
tion of the training samples on the canvas. After the developers
give feedback (i.e., accept or reject) on the recommendation, we
formulate the feedback adaption problem as a 0-1 regression model
learning problem. By this means, our data-driven feedback learning
model can (1) perform well even with a small set of feedback and (2)
resilient to mistaken feedback (by ignoring inconsistent samples).
The tool-supported debugging process is iterative and interactive.
The recommendation keeps being refined until the developers have
validated their hypotheses or located the root cause.

We implement DeepDebugger as a TensorBoard [3] plugin. We
extensively evaluate our approach by integrating DeepDebugger
with two known time-travelling visualizers. Our experiment on
anomaly detection shows that DeepDebugger can detect the sam-
ples with abnormal movement with the precision of 82.4% and the
recall of 71.9%. Our feedback simulation experiment shows that our
recommendation can identify 5-10X more samples of interest than
the random baseline, with strong resilience to mistaken feedback.
Our user study consists of 16 participants in two model debugging
tasks, showing that our feedback-based design in DeepDebugger
can help the participants to be more efficient to accomplish the
debugging tasks by either saving 18.1% accomplishment time or
boosting 20.3% performance, compared to the DeepDebugger ver-
sion without feedback-based recommendation.

In summary, we make the following contributions:

• Interaction over Observation:We enhance the time-travelling
visualizer into time-travelling debugger, by introducing the capa-
bilities of detecting abnormal movement, user interaction, and
learning feedback. The human-in-the-loop recommendation can
be task-adaptive and resilient to mistaken feedback. Through
interactive exploration, the users can have a more intuitive un-
derstanding of the model behaviors.

• Tool Support:We build a TensorBoard plugin, DeepDebugger,
based on our approach, supporting various functionalities such
as visualization, recommendation, sample query, and interaction.
Screenshots, demos, and source code are available at [2].

• Extensive Experiments: We design systematic experiments
and user studies to evaluate (1) the effectiveness of the designed
recommendation and interaction, and (2) the practicability and
usability of our tool. The results show that DeepDebugger can
significantly improve the model debugging efficiencies in tasks
such as identifying suspicious samples and selecting informative
unlabelled samples to retrain the model.

2 BACKGROUND
2.1 Deep Classifier
Consider a classification problem with input samples 𝑆 = {𝑠1, 𝑠2, ...,
𝑠𝑛} and a predefined set of classes 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑝 }, a learned
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Figure 3: An illustration of how a time-travelling visualizer
visualizes an individual snapshot of a classifier, i.e., the clas-
sifier trained at the 𝑖-th epoch.

classifier𝑚 : 𝑆 → 𝐶 is a function which maps 𝑠 to one of the pre-
defined classes 𝑐𝑖 ∈ 𝐶 , denoted as𝑚(𝑠) = 𝑐𝑖 ∈ 𝐶 . Typically, a deep
learning based classifier𝑚 can be decomposed into a representation
learning function 𝑓 (·) and a representation fitting function 𝑔(·),
i.e.,𝑚 = 𝑓 ◦ 𝑔, as showed in Figure 1. Therefore, given a dataset
S = {𝑠1, 𝑠2, ..., 𝑠𝑛}, we can have the set of representation vectors
R = {𝑟1, 𝑟2, ..., 𝑟𝑛} where each 𝑟𝑖 = 𝑓 (𝑠𝑖 ) is a high-dimensional
vector. Moreover, we also have𝑚(𝑠𝑖 ) = 𝑔(𝑟𝑖 ) = 𝑔(𝑓 (𝑠𝑖 )).

2.2 Time-Travelling Visualization
2.2.1 Definition of Time-Travelling Visualization. A time-travelling
visualizer takes as input a dataset S = {𝑠1, 𝑠2, ..., 𝑠𝑛} and a sequence
of partially trained classifiersM = ⟨𝑚1,𝑚2, ...,𝑚𝑘 ⟩ where𝑚𝑖 is the
classifier learned in 𝑖-th epoch in the training process. Then, it gen-
erates as output a sequence of frames F = ⟨𝑓 𝑟𝑚1, 𝑓 𝑟𝑚2, ..., 𝑓 𝑟𝑚𝑘 ⟩
where 𝑓 𝑟𝑚𝑖 is a two-dimensional canvas, for reflecting the classi-
fication landscape of 𝑖-th representation space R. Intuitively, the
classification landscape describes (1) which region in R belongs to
what class and (2) how the prediction confidence distributes over
each region. Thus, for each pixel in a frame 𝑓 𝑟𝑚𝑖 , the visualizer can
describe its predicted class and confidence by the corresponding
color and its depth. Specifically, the visualizer has a coloring func-
tion R2 → {0, 1, . . . , 255}3 where the input is a pixel and the output
is a depth-aware color in the form of the RGB value. The colors
represent classes, and the color depth represents the confidence.
The smaller the confidence, the lighter the color. As a result, each
frame is visualized as the canvas showed in Figure 2.

2.2.2 Visualizing One Frame. A time-travelling visualizer is im-
plemented as a visualization model 𝑣 = {𝜙,𝜓 } with auto-encoder
architecture [30] where 𝜙 is the encoder and𝜓 is the decoder. Fig-
ure 3 shows how a general time-travelling visualizer works, which
consists of two branches, i.e., the encoder branch (the solid lines in
Figure 3) and the decoder branch (the dashed lines in Figure 3).

The encoder 𝜙 : R → R2 is for positioning the sample rep-
resentation. A sample representation 𝑟 ∈ R will be projected to
low-dimensional space at 𝑙𝑜𝑐 = 𝜙 (𝑟 ) ∈ R2 where 𝑙𝑜𝑐 is a two-
dimensional location on the frame. By this means, any samples,
training or testing, can find its position on the canvas.

The decoder𝜓 : R2 → R is for painting classification landscapes.
Given an arbitrary location 𝑙𝑜𝑐 on the canvas, the decoder inverse-
projects it to the representation space to have 𝑟 ′ = 𝜓 (𝑙𝑜𝑐) so that
we can paint 𝑙𝑜𝑐 with the color of 𝑐 = 𝑔(𝑟 ′). Note that, many
representation fitting layers in deep learning model provides a
measurement of confidence, e.g., by sigmoid or softmax function.
Hence, the color of depth can be calculated with confidence.

Generally, different time-travelling visualizers learn the encoder
𝜙 and decoder𝜓 for different visualization properties [48, 49].

2.2.3 Visualizing Training Process. Given a training process as a
sequence of classifiersM = ⟨𝑚1,𝑚2, ...,𝑚𝑘 ⟩, we can generate one
frame 𝑓 𝑟𝑚𝑖 from each𝑚𝑖 ∈ M. Generally, different time-travelling
visualizers have different strategies to make sure that two adjacent
frames 𝑓 𝑟𝑚𝑖 and 𝑓 𝑟𝑚𝑖+1 are continuous [48, 49].

2.2.4 State-of-the-art Visualizers. The time-traveling visualizers, to
the best of our knowledge, are DVI [49] and TimeVis [48]. Both can
transform the model training progress (i.e., a sequence of recorded
models) into an animation in the two-dimensional canvas. DVI
has its advantage over TimeVis in preserving the spatial topology
between the low and the high dimensional space. On the other
hand, TimeVis prioritizes efficient learning of the visualization
model, albeit at the cost of some visualization effectiveness. Given
the space limit, the interested audience can refer to [49] and [48] for
more details. In the following, we call the model being visualized
as subject model and the autoencoder model implementing the
visualization as visualizer.

3 PROBLEM DEFINITION
Despite time-travelling visualizers providing a useful abstraction
for intuitive inspection, there are enormous training events such as
representation movement and boundary evolution in the training
dynamics. In this work, we aim to address the following research
problems to equip the visualization with debugging functionalities:
• Problem 1 (Training Anomaly Detection):Given a large num-
ber of training events such as representation movement, how
could we recommend the events (significantly) different from the
majority to be inspected first?

• Problem 2 (Intention Detection):Assuming a model developer
has an implicit intention for certain tasks, how could the time-
travelling debugger capture its intention and recommend samples
of interest accordingly?

It is important to note that Problem 2 does not define a specific
task, such as detecting noisy training data or addressing vanishing
gradients. Instead, we require a solution that can infer the user’s
intention in an open-ended setting. Analogous to a traditional de-
bugger for software developers, a model debugger should facilitate
open-ended exploration of changes in classification boundaries
and representation embeddings during model training, adapting to
various scenarios and intentions.

4 APPROACH OVERVIEW
Figure 4 shows an overall design of the DeepDebugger framework,
as a time-travelling debugger for model behavior investigation.
DeepDebugger is built upon time-travelling visualizers which trans-
form the training process into an animation. DeepDebugger takes
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Figure 4: Overview of the designed DeepDebugger framework

Figure 5: Three trajectories of three learned representation
vectors. 𝐴 and 𝐵 are similar in terms of the locations; 𝐴 and 𝐵 can
be distinguishable in terms of velocity; and 𝐵 and 𝐶 are similar in
terms of acceleration.

the training animation as input and (1) reports the samples with ab-
normal training samples and (2) interactively learns and refines the
samples of user interest from the feedback of the model developers.

To this end, we will first extract the features of each sample’s
training dynamics (Dynamic Feature Extractor in Figure 4). Then,
we design an anomaly detector to report the abnormal movement,
as the initial recommendation of samples of interest (Anomaly
Detector in Figure 4). The model developers can investigate rec-
ommended samples and provide feedback on their relevance, with
options to accept, reject, or ignore based on their current tasks. We
implement an intention-learning solution to (1) efficiently learn
the feedback on-the-fly and (2) generalize the small-scale feedback
to more samples without feedback. This interactive, iterative pro-
cess continues until users can identify root causes (e.g., mislabeled
training samples) or validate their debugging hypotheses. validate
their debugging hypothesis (Intention Learner in Figure 4).

4.1 Dynamic Feature Extraction
Given a sample, its dynamic features consist of both its trajectory
on the canvas and the change of its prediction during the training
process, namely trajectory features and prediction features. They
track the training dynamics of the representation learning layer and
representation fitting layer respectively, offering valuable insights
into the underlying patterns of movement (see Figure 1).

4.1.1 Trajectory Features. For the visual trajectory features, we
capture the movement by location, velocity, and acceleration.

Location. The location of a sample represents regional information
on the classification landscape, which can capture regional patterns
such as samples sharing similar predictions. Specifically, given a
sample 𝑠 , we can have all its historical locations on the canvas,
𝐿 = ⟨𝑙1, 𝑙2, ..., 𝑙𝑛⟩, where 𝑙𝑖 indicates its location on 𝑖-th frame (or
epoch). Each location 𝑙 is a two-dimensional vector (𝑥,𝑦) repre-
senting a coordinate on the canvas. Thus, we encode the location
feature 𝑟𝑙𝑜𝑐 = (𝑥1, 𝑦1, 𝑥2, 𝑦2, ..., 𝑥𝑛, 𝑦𝑛). Note that the location fea-
tures allow us to detect anomalies based on the embedding of the
inputs. Figure 5 shows an example with three trajectories 𝐴, 𝐵, and
𝐶 . The location features make 𝐴 and 𝐵 share more similarity than
that of 𝐴 and 𝐶 and that of 𝐵 and 𝐶 .
Velocity. The velocity is the first-order derivative of the location
feature, which quantifies the rate of change in position from its
source to its destination. Specifically, given a location sequence
𝐿, we can have its velocity sequence 𝑉 = ⟨𝑣1, 𝑣2, ..., 𝑣𝑛−1⟩ where
𝑣𝑖 = 𝑙𝑖+1 − 𝑙𝑖 = (𝑥 ′

𝑖
, 𝑦′

𝑖
). Thus, we encode the velocity feature 𝑟𝑣 =

(𝑥 ′1, 𝑦
′
1, 𝑥

′
2, 𝑦

′
2, ..., 𝑥

′
𝑛−1, 𝑦

′
𝑛−1). As in Figure 5, the velocity features

enable differentiation between trajectories 𝐴 and 𝐵, as 𝐴 exhibits
a more complex, zigzag movement pattern, indicative of greater
struggle compared to the relatively smoother path of trajectory 𝐵.
Acceleration. The acceleration is the first-order derivative of the
velocity, and the second-order derivative of the location, which
quantifies the rate of change in velocity as a sample representation
transitions from its origin to its destination. Specifically, given the
velocity sequence 𝑉 of a sample, we have its acceleration sequence
𝐴 = ⟨𝑎𝑐1, 𝑎𝑐2, ..., 𝑎𝑐𝑛−1⟩ where 𝑎𝑐𝑖 = 𝑣𝑖+1 − 𝑣𝑖 = (𝑥 ′′

𝑖
, 𝑦′′

𝑖
). Thus, we

encode the acceleration feature 𝑟𝑎𝑐 = (𝑥 ′′1 , 𝑦
′′
1 , 𝑥

′′
2 , 𝑦

′′
2 , ..., 𝑥

′′
𝑛−2, 𝑦

′′
𝑛−2).

As in Figure 5, the acceleration feature identifies similarities be-
tween the trajectories 𝐵 and 𝐶 . Both trajectories exhibit smooth
progression towards their respective destinations.

We concatenate three dynamic features as 𝑟𝑡 = (𝑟𝑙𝑜𝑐 |𝑟𝑣 |𝑟𝑎𝑐 ).

4.1.2 Prediction Feature. In this work, we assume that the target
classifier can provide us with a continuous value to indicate its
confidence. For example, the softmax function [8] predicts a prob-
ability 𝑝 for each class, the higher the 𝑝 , the more confident the
prediction is. Similarly, the sigmoid function [13] predicts a value
𝑝 between 0 and 1 for binary classification, the closer 𝑝 is to 0 or 1,
the more confident the prediction. Therefore, given a sample 𝑠 , its
confidence 𝑐𝑜𝑛𝑓 is the score of the classifier on 𝑠 at an epoch 𝑒:
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𝑐𝑜𝑛𝑓 (𝑠)𝑒 =

{
𝑝 softmax function
2 × |𝑝 − 0.5| sigmoid function

(1)

Thus, we have prediction feature 𝑟𝑐𝑜𝑛𝑓 = ⟨ 𝑐𝑜𝑛𝑓1, 𝑐𝑜𝑛𝑓2, ..., 𝑐𝑜𝑛𝑓𝑛⟩.
Finally, the overall concatenated dynamic feature is 𝑟𝑚𝑣 = (𝑟𝑡 |𝑟𝑐𝑜𝑛𝑓 ).

4.2 Anomaly Detector
In this work, we detect the anomalies by learning the concept of
normality and the abnormality from the training dataset. We de-
note a training sample for learning the (ab)normality as a “seen”
sample and generalize it to “unseen” samples. To this end, we adopt
a clustering algorithm for anomaly detection. We assess sample
similarity using the cosine similarity of the dynamic features ex-
tracted in Section 4.1. Subsequently, we assign an anomaly score to
each sample based on its cluster size. Ultimately, we identify and
report samples belonging to smaller clusters as anomalies.

4.2.1 Learning Normality and Abnormality. Let any dynamic fea-
ture (e.g., location, velocity) be 𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝑛}, we use Birch
hierarchical clustering algorithm [53] to split 𝑅 into 𝑘 clusters. We
choose the Birch [54] clustering algorithm as its leading perfor-
mance in time and space complexity among other alternatives such
as K-means [32]. Then, for any sample in cluster 𝑐𝑙𝑠 , we quantify its
movement abnormality as 1 − |𝑐𝑙𝑠 |

𝑛 . The smaller the size of cluster
𝑐𝑙𝑠 , the more abnormal the trajectory in the cluster. For example,
assume that we have 3 clusters 𝑐𝑙𝑠1, 𝑐𝑙𝑠2, 𝑐𝑙𝑠3 where |𝑐𝑙𝑠1 | = 45, 000,
|𝑐𝑙𝑠2 | = 4, 500, and |𝑐𝑙𝑠3 | = 500. Therefore, the abnormality of 𝑐𝑙𝑠1 is
1− 45000

50000 = 0.1. In contrast, that of 𝑐𝑙𝑠3 is 1− 500
50000 = 0.99, which is

much higher than that of 𝑐𝑙𝑠1. We let the samples within the same
cluster share the same abnormality score.

4.2.2 Generalizing Normality and Abnormality. As for an unseen
sample 𝑠𝑢𝑛𝑘 , we can have its dynamic feature 𝑟𝑢𝑛𝑘 as introduced
in Section 4.1. First, we denote the centroid of a cluster 𝑐𝑙𝑠 as

𝑐𝑒𝑛𝑡𝑒𝑟 (𝑐𝑙𝑠) = 1
|𝑐𝑙𝑠 | ×

|𝑐𝑙𝑠 |∑︁
𝑖=1

𝑟𝑖 (2)

Also, we denote the radius of a cluster 𝐶 as

𝑟𝑎𝑑𝑖𝑢𝑠 (𝑐𝑙𝑠) = argmax
𝑟𝑖 ∈𝑐𝑙𝑠

𝑑𝑖𝑠𝑡 (𝑐𝑒𝑛𝑡𝑒𝑟 (𝑐𝑙𝑠), 𝑟𝑖 ) (3)

Then we determine if an unseen sample 𝑠𝑢𝑛𝑘 belongs to a cluster
𝑐𝑙𝑠𝑖 by comparing the Euclidean distance between 𝑟𝑢𝑛𝑘 and the
cluster center 𝑐𝑒𝑛𝑡𝑒𝑟 (𝑐𝑙𝑠𝑖 ) to the cluster’s radius 𝑟𝑎𝑑𝑖𝑢𝑠 (𝑐𝑙𝑠𝑖 ). If the
distance is smaller than the radius, we consider the sample to be part
of the cluster. The sample 𝑠𝑢𝑛𝑘 is considered normal if it falls into
a normal cluster, and abnormal if it falls into an abnormal cluster.
If 𝑟𝑢𝑛𝑘 does not belong to any of the existing clusters, we create a
new cluster 𝑐𝑙𝑠𝑘+1. In this case, the sample’s abnormality score is
close to 1, indicating a high likelihood of it being an anomaly.

We consider sampleswith scores exceeding a user-defined thresh-
old 𝑡ℎ𝑎𝑏 as anomalies. For instance, we report all samples in 𝑐𝑙𝑠3
(the last cluster) and 𝑟𝑢𝑛𝑘 , which belong to the new cluster 𝑐𝑙𝑠𝑘+1,
as anomalies in both cases respectively.

Ultimately, for a given sample 𝑠 , if any of its features is identified
as an anomaly, we report the sample itself as an anomaly.

4.3 Intention Detector
We design the intention detection scheme with the following con-
sideration. (i) It should perform well on limited and imbalanced
feedback without overfitting, as human effort is valuable and often
scarce. (ii) it must be efficient enough for ensuring timely responses
to user input. (iii) it should be robust against noisy feedback, con-
sidering that humans can make mistakes.

To this end, we design the recommendation system as follows.
Initially, we recommend the most abnormal training samples (see
Section 4.2). Then we take as input the feedback from the users in
the form of accepting or rejecting these samples and recommend
relevant samples as output. Specifically, we regard each feedback as
a label for a sample and use an efficient, robust intention learning al-
gorithm to fit and generalize the feedback based on abnormal scores
extracted in Section 4.2. This algorithm assigns an interest potential
score to other samples without feedback. We recommend samples
with high scores and iteratively refine our recommendations based
on user feedback.

4.3.1 Interest Potential Estimation. Given a sample 𝑠 , we estimate
its interest potential by an interest estimation function 𝐼𝐸 (𝑎1, 𝑎2,
..., 𝑎𝑛) with 𝑎𝑖 being its attributes. We utilize the scalar anomaly
score to represent each dynamic feature, i.e., 𝑎𝑖 being the anomaly
score for 𝑖-th dynamic feature. This enables faster processing and
reduces noise of raw dynamic features, alleviating concerns (i)
and (ii). Then, we regard each user feedback for a sample as a
label 𝑙 ∈ {0, 1}, with acceptance being 1 and rejection being 0.
Further, we can transform the interest-estimation problem as a 0-1
regression [42] problem on the attributes 𝑎1, 𝑎2, ..., 𝑎𝑛 . Generally,
we can use different kernel functions to fit 𝐼𝐸 (·). In this work, we
opt for linear ridge regression due to its learning efficiency and
robustness, which effectively address concerns (i), (ii), and (iii). The
linear ridge regression predictor can be expressed as:

𝐼𝐸 (𝑠) = 𝐼𝐸 (𝑎1, 𝑎2, ..., 𝑎𝑛) =
𝑛∑︁
𝑖=1

𝑐𝑖 · 𝑎𝑖 + 𝑐0 (4)

In Equation 4, the coefficients (e.g., 𝑐𝑖 ) are learnable variables re-
garding users’ implicit intention.

4.3.2 The Feedback Framework. We first initialize 𝑐𝑖 by
∑𝑛
𝑖=1 𝑐𝑖 = 1

and 𝑐1 = 𝑐2 = ... = 𝑐𝑛 , reflecting an equal importance score for all
dynamic features at the start. Each time users provide feedback by
accepting or rejecting a sample, we label it as interested (positive
sample) or uninterested (negative sample). Then, we can refine
our interest estimation function with the new training data point,
continuously improving our recommendation with the evolving
user feedback. Practitioners can enhance our work by incorporating
additional attributes or employing a different kernel for special
needs and use cases. For the example in Figure 5, if the model
developer is looking for samples with similar predictions, his or her
feedback is expected to lead to a high similarity between𝐴 and 𝐵. In
contrast, if the model developer is to check the learning smoothness
of each sample, the feedback can lead to a high similarity between
𝐵 and 𝐶 .

For each intention, users can start one session of interactions
for locating the relevant samples of interest. If users change their
intentions, they can start a new session. Technically, all the learned
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coefficients of the regression model are reset and new feedback and
interactions can derive a new model capturing their new intention.

5 GUI OF DEEPDEBUGGER
We implement DeepDebugger as a TensorBoard [3] plugin as Fig-
ure 6. More screenshots and videos are available at [2]. DeepDe-
bugger is designed with four features:
A: Time-travelling Visualization (TT Vis). The model develop-
ers can investigate the evolving visualized classification landscape
frame by frame (i.e., epoch by epoch) on the timeline at the bottom.
They can either play the animation or switch between different
epochs by clicking the index on the timeline.
B: Canvas Investigation (Canvas Inv). At each frame, they can
observe the training and testing accuracy. The corresponding can-
vas of each frame can be zoomed in and zoomed out. The users can
query the samples and highlight them on the canvas, observe the
sample (e.g., image), and select a subset of samples by dragging and
dropping a bounding box on the canvas.
C: Sample of Interest Recommendation (SoI Rec). DeepDebug-
ger can recommend samples of interest based on the technique
described in Section 4.2 and Section 4.3. The recommended samples
will be listed in section D1 of Figure 6. Hovering on any sample, a
detailed description of the sample such as its appearance, prediction,
and label will be shown.
D: Interactive Feedback (Interaction). Once the users accept or
reject individual recommendations (in section D2 of Figure 6), the
runtime interest detector in DeepDebugger will be triggered to pro-
vide a new recommendation. The process is interactive, explorative,
and iterative, for the model developers to have a more informed
investigation to understand the model training behaviors.

6 EVALUATION
We evaluate DeepDebugger with the following research questions
(RQ). Readers can check [2] for the replication details.

• RQ1 (Abnormality Detection): Can DeepDebugger effectively
detect abnormal training movement on the canvas?

• RQ2 (Intention Detection): Can DeepDebugger recommend
relevant samples based on user feedbackwith acceptable feedback
efforts and runtime overhead? And what is the importance scores
of different features in different scenarios?

• RQ3 (Error Resistance): What is the performance of DeepDe-
bugger if the user provides incorrect feedback?

• RQ4 (User Study): Whether the interaction design in DeepDe-
bugger is useful to address the model debugging tasks in practice?
How do they use the tool?

To answer RQ1, we generate ground-truth normal and abnor-
mal trajectories to evaluate their precision and recall to detect the
abnormal ones. To answer RQ2, we design two types of intentions
and simulate user feedback in relation to those intentions. To an-
swer RQ3, we inject noisy feedback on the tasks designed in RQ2,
evaluating how the performance of DeepDebugger is impacted. To
answer RQ4, we conduct a user study involving two model debug-
ging tasks, assessing the effectiveness of DeepDebugger when used
by human participants.

Table 1: Performance of detecting out-of-distribution Abnor-
mal Movements on 6 visualized training processes.

Dataset MNIST FMNIST CIFAR-10
Visualizer DVI TimeVis DVI TimeVis DVI TimeVis
Precision 92.6% 94.7% 80.2% 85.5% 80.1% 72.4%
Recall 67.4% 78.4% 89.0% 83.8% 56.4% 56.6%
F1 score 78.0% 85.8% 84.4% 84.6% 66.2% 63.5%

Table 2: Selection of out-of-distribution datasets

Dataset CIFAR-10 MNIST FMNIST
OOD dataset FMNIST CIFAR-10 MNIST

Experiment Settings. In the evaluation, we empirically chose 𝑘 =

30 with the following consideration: (1) to ensure all the clusters
are not excessively small, we opted for a small value of k, and (2)
to prevent a few anomalies from being merged into a single large
cluster, we selected a relatively larger value of k. Additionally, we set
𝑡ℎ𝑎𝑏 = 0.98. Such settings are used throughout all the experiments.

6.1 Anomaly Detection (RQ1)
6.1.1 Datasets, Subject models, and Time-travelling visualizers. We
first design some training processes to be visualized. In this ex-
periment, we use MNIST [10], FMNIST [45], and CIFAR-10 [23]
as the datasets. We train the model architecture of ResNet18 as
the subject model on each dataset until the training accuracy con-
verges. The subject model takes 15 epochs to converge on MNIST,
50 epochs to converge on FMNIST, and 200 epochs to converge
on CIFAR-10. We use all known time-travelling visualizers to the
best of our knowledge, i.e., DVI [49] and TimeVis [48], to visualize
the training processes of three datasets. Thus, we have 2 (visualiz-
ers) × 3 (processes) = 6 visualized processes. For convenience, we
use 𝑃 (𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑣𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑒𝑟 ) to denote the visualized process derived
by the classifier trained by 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 with 𝑣𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑒𝑟 . For example,
𝑃 (𝑐𝑖 𝑓 𝑎𝑟10,𝑑𝑣𝑖) indicates the visualized training process for the
model trained by CIFAR10 with DVI.

6.1.2 Setup. We define ground-truth of unseen normal and abnor-
mal sample movements as follows.
• Ground-truth Normal Movement: We take the trajectories
of testing samples as the ground-truth normal movements con-
sidering they are not used by the visualizers and share the same
distribution with training data.

• Synthesized Abnormal Movement: To generate abnormal
movements, we take into account both trajectory features and
prediction features. For trajectory features, we create a random
trajectory step-by-step that has the same shape as normal samples
on the canvas but with random accelerations. For prediction
features, we randomly sample a confidence sequence with each
of its elements ranging from 0 to 1.

• Natural Abnormal Movement: For a given training process,
we use the samples in another dataset as the out-of-distribution
data and record their movements as abnormal movements. We
assume that out-of-distribution samples behave differently from
the training data. Specifically, we choose the out-of-distribution
datasets for our datasets as Table 2.
For each visualization 𝑃 (𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑣𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑒𝑟 ), DeepDebugger iden-

tifies𝑚 abnormal movements. Suppose 𝑐 out of these𝑚 movements
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Figure 6: Screenshot of DeepDebugger tool. The interface includes four sections: A as Time-Travelling Visualization (TT Vis), B as
Canvas Investigation (Canvas Inv), C as Sample of Interest Recommendation (SoI Rec), and D as Interactive Feedback (Interaction).

are correct. we calculate precision as 𝑐
𝑚 and recall as 𝑐

𝑛 . We assessed
our anomaly detector using three distinct sets: 500 testing samples,
500 synthesized samples, and 500 out-of-distribution data points.

6.1.3 Results. The recall of synthesized abnormal movement is
100% showing DeepDebugger’s strong ability in detecting synthe-
sized anomalies. Table 1 shows the good performance of Deep-
Debugger on the precision and the recall of the natural abnormal
movements. Overall, the average precision is 82.4% and the av-
erage recall is 71.9%. Moreover, the performance over different
time-travelling visualizers are comparable.

Further, we qualitatively analyze the false positive and false
negative as follows. The “testing” sample in Figure 7 is an example
of a false positive in the MNIST dataset, caused by the distribution
shift of the testing samples. Compared to the majority of normal
pictures of digital “9” (as shown in “normal” 9), the sample renders
a difference in the inclining angle, which might incur unexpected
anomaly. In contrast, the “OOD” sample in Figure 7 is an example of
false negative for the FMNIST dataset. In this case, the movement
of the “OOD” sample is normal despite it being regarded as an out-
of-distribution. This observation aligns with the reported findings
in explaining out-of-distribution data [5] that out-of-distribution
could behave in an in-distribution manner.

6.2 Intention Detection (RQ2)
In this experiment, we consider two types of samples of interest.
Noise Samples Detection. The first type is noisy samples (i.e.,
mislabeled samples). Model developers can assess if poor training
results are due to noisy training samples by examining the data.
Mispredicted SamplesDetection.The second type ismis-predicted
samples in the wild (i.e., mis-predicted samples that are neither part
of the training nor testing datasets). Given the high cost of labeling
samples, some developers might intend to have a partially trained
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Figure 7: Examples of true negative, false negative, and false
positive. The first and third figures are two true negatives from
MNIST and FMNIST respectively. The second figure is a testing
sample from MNIST which is reported as false positive. The fourth
figure is an OOD sample for FMNIST, reported as a false negative.

model and then look for unlabelled samples with more potential
to improve the model. Thus, they would be interested in finding
unlabelled samples on which the preliminary model mis-predict.

6.2.1 Setup. We use the configurations and hyperparameter set-
tings (i.e., datasets, model architecture, and the use of visualizers)
as described in Section 6.1.1, except that the training dataset is
changed for the designated intention:
• Noisy Samples: Before training, we randomly change 5%, 10%,
and 20% labels to other classes in the training dataset.

• Mis-predicted Samples in the wild: We only train the model
using 10%, 20%, and 30% of samples in the training datasets. The
remaining samples are viewed as unlabeled data from the wild.
Note that, those samples are not used for training and we don’t
have their label information.
Following the notion defined in Section 6.1, we define 𝑃 (𝑑𝑎𝑡𝑎𝑠𝑒𝑡,

𝑣𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑒𝑟, 𝑡𝑦𝑝𝑒, 𝑟𝑎𝑡𝑖𝑜) as the visualization process for the model
trained on𝑑𝑎𝑡𝑎𝑠𝑒𝑡 , with an intention type of 𝑡𝑦𝑝𝑒 , an intention ratio
of 𝑟𝑎𝑡𝑖𝑜 , and the 𝑣𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑒𝑟 element. We then perform a feedback-
simulation experiment for each configuration (e.g., 𝑃 (𝑐𝑖 𝑓 𝑎𝑟10, 𝑑𝑣𝑖, 𝑛,
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Figure 8: Results on the accuracy of recommendation. (a):
The accuracy of recommending noise samples on MNIST, FMNIST,
and CIFAR-10 in 50 rounds of feedback when noise rate is 5% (left),
10% (mid), and 20% (right). (b): The accuracy of recommending mis-
predicted samples in the wild on MNIST, FMNIST, and CIFAR-10 in
50 rounds of feedback when training data is 10% (left), 20% (mid),
and 30% (right).

5%)) 50 times, documenting the time taken in each feedback round
under two scenarios. In our analysis, we benchmark DeepDebugger
against a random selection baseline. In addition, the feedback is
automatically generated based on the target intention, providing
an acceptance (i.e., 1) if the sample is of interest and a rejection (i.e.,
0) otherwise. This feedback emulates user input within the context
of the tested intention.

Finally, we evaluate DeepDebugger’s feedback performance by
the number of accurate recommendations within 𝑘 (𝑘 = 50) feed-
back iterations. 50 samples are recommended in each iteration.

6.2.2 Results. Figure 8 shows how feedback can help recommend
noise samples and mis-predicted samples in the wild. Line col-
ors and styles denote different datasets and visualization methods,
while the shaded area indicates the standard deviation. Overall,
DeepDebugger is effective when paired with both DVI and TimeVis
visualization methods. There is a significant improvement in ac-
curacy in aligning with user intention within just 2 to 3 rounds
of feedback, which substantially outperforms the random baseline.
Furthermore, the marginal benefits of feedback increase as there
are fewer samples of interest available in the pool. In Figure 8a, the
gap between DeepDebugger with DVI and DeepDebugger with
TimeVis on CIFAR-10 dataset demonstrates that DVI produces
higher-quality visualization when the target training process is
much longer (i.e., 200 epochs for CIFAR-10, 20 epochs for MNIST),
resulting in improved feedback accuracy.

Table 3 shows the importance scores extracted from Equation 4
of various dynamic features in situations with a noise sample rate
of 20% and a labeled ratio of 10% for mis-predicted samples. More
results in other settings are in [2]. The results highlight the im-
portance of different features in varied scenarios, emphasizing the

Table 3: The important scores of four dynamic features. FT
stands for the feature type.

Scenarios FT MNIST FMNIST CIFAR10
DVI TimeVis DVI TimeVis DVI TimeVis

Noise
samples

conf 0.402 0.467 0.063 0.067 0.051 0.811
pos 0.203 0.180 0.341 0.185 0.407 0.003
vel 0.145 0.182 0.121 0.212 0.153 0.078
acc 0.251 0.171 0.474 0.536 0.389 0.108

mispredicted
samples

in the wild

conf 0.795 0.830 0.399 0.265 0.344 0.299
pos 0.107 0.037 0.469 0.247 0.348 0.144
vel 0.051 0.071 0.051 0.251 0.181 0.204
acc 0.048 0.063 0.081 0.237 0.127 0.354
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Figure 9: Runtime Efficiency. Box plot of runtime efficiency of
our feedback algorithm on two visualization methods: DVI and
TimeVis, and two scenarios tested.

robustness of our method across diverse situations. For CIFAR-10
dataset’s noise sample scenario, DeepDebugger’s importance scores
differ noticeably between DVI and TimeVis. DeepDebugger with
DVI favours trajectory features as dominant features, while that
with TimeVis depends on the confidence features. This aligns with
the discrepancy in feedback accuracy for the CIFAR-10 dataset
observed in Figure 8 between DVI and TimeVis, given TimeVis’s
predominant reliance on the confidence feature.

Figure 9 shows the runtime overhead for generating feedback
in the 10-th, 25-th, and 50-th rounds in scenarios where the noise
sample ratio is 10% and the labeled sample ratio is 20%. Full results
are available in [2]. The time overhead to generate feedback is less
than 0.015s, which makes DeepDebugger very practical. In addition,
the cost is almost constant regarding different configurations.

6.3 Error Resistance (RQ3)
6.3.1 Setup. We use the same configuration as described in Sec-
tion 6.2. Nevertheless, we inject 3%, 5%, and 10% errors in the simu-
lated feedback and observe the accuracy of recommending samples
of interest to simulate human error.
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Figure 10: Feedback Tolerance. Line plot of feedback tolerance
on two methods: DVI and TimeVis, and two scenarios tested.

6.3.2 Results. Figure 10 shows the accuracy of recommending sam-
ples of interest under the noise feedback of 3%, 5%, and 10%. The
colors of the line represent the dataset, and the styles of the line
represent the noise rate of feedback. We only show mispredicted
samples in the wild with the labeled ratio of 30% and noise sam-
ples with a noise rate being 20%. Please refer to [2] for results in
other settings. As shown in Figure 10, minimal performance degra-
dation is observed when noise is added to feedback. Therefore,
DeepDebugger is robust against noise in diverse settings and the
performance is still 5 − 10𝑋 better than the random baseline. In
detecting mis-predicted samples in the wild scenario, we observe a
decreasing performance in the MNIST dataset when the noise rate
of feedback increases. This is due to there being fewer and fewer
remaining available mis-predicted samples in the pool.

6.4 User Study (RQ4)
To answer RQ4, we design a user study on two practical model
debugging tasks to observe the effectiveness of DeepDebugger and
user’s behavior in practice.

6.4.1 Participants. We recruit 16 participants having computer
science backgrounds from XXX in YYY (anonymous university and
country). The participants have on average 2.4 years of experience
in model training. 12 out of 16 participants have experience using
TensorBoard. None of them have used DeepDebugger before. A
more detailed demographical analysis can be found in [2]. We pro-
vide each participant with a tutorial on DeepDebugger using a toy
example a day prior to the study, followed by a quiz consisting of five
questions. Participants were then paired and split into two equiv-
alent groups based on their quiz performance: the experimental
group (EG) which used DeepDebugger with all functionalities, and
the control group (CG) which used DeepDebugger with feedback-
based recommendations replaced by default recommendations (i.e.,
user feedback was not utilized for refining recommendations). Both
groups interacted with the same user interface and were unaware
of their group assignment.

6.4.2 Tasks. We design two model debugging tasks:
• Fault Localization (Task 1): In the one-shot model training
setting, given that the training and testing accuracies do not meet
the expectation, how do we infer the root cause?

• Informative Sample Selection (Task 2): In the continuous
model training setting, given that we have (1) a model𝑚 trained
based on a limited set of training dataset and (2) a set of unlabelled
samples D𝑢 , how can we know what samples selected from D𝑢

can be more useful to boost the performance of𝑚?
Task 1 Setup. We inject 20% mislabeled samples on CIFAR-10

dataset and train a model with limited training and testing accu-
racy. We present the participants with the training/testing accuracy
and 7 choices of the root causes, then ask them to choose the root
cause with justification. The choices include (1) noisy training sam-
ples, (2) noisy testing samples, (3) inexpressive model architecture,
(4) inappropriate learning rate, (5) insufficient training epochs, (6)
gradient disappear, and (7) unbalanced training dataset. Note that,
participants selecting the noisy samples option must identify at
least 20 such samples. All of the root causes can be pinpointed by
our tool via direct canvas examination, feedback recommendations,
observing accuracy and dynamics in alternate settings using pro-
vided visualization tabs, or checking training metadata. Detailed
elaborations of these aspects can be found in [2].

Task 2 Setup.We start by training a model on 4% of the CIFAR-10
dataset. The participants are shown the visualization of the model’s
landscape and the distribution of training, testing, and unlabelled
samples on this landscape Participants are then asked to answer the
following question, “Given this model, if we aim to label an additional
500 unlabelled samples for retraining, would using mispredicted un-
labelled samples prove more beneficial for boosting performance than
using uncertain samples?”. In this task, the uncertainty-based selec-
tion is no less effective than the misprediction-based solution. After
selecting and labeling the relevant samples, the participants can use
DeepDebugger to retrain the model to validate their hypotheses.

Both tasks require participants to identify relevant samples to
affirm their hypothesis, a process akin to programmers debugging
a program. Each task has a one-hour time budget, but early sub-
missions are acceptable. Participants are instructed to record their
sessions using a video recorder (i.e., Zoom) for post-analysis. More-
over, we have instrumented all of DeepDebugger’s functionalities
to record user behaviors quantitatively. After the study, participants
are invited to provide feedback on the tool through a survey.

Performance Evaluation. We evaluate the performance of Task
1 based on (1) whether the participants make the correct choice,
(2) if so, whether they can find enough noisy samples to support
their claim, and (3) task completion efficiency. Task 2 performance
is assessed based on (1) whether participants reach the correct
conclusion and (2) the efficiency of drawing the conclusion.

6.4.3 Results. Table 4 and Table 5 display the performance of the
EG and CG in Tasks 1 and 2, based on their decisions, the quantity
of correct selected samples of interest (SoI), and time spent. Both
groupsmade the correct decisions for both tasks, yet the EG selected
more correct SoI (17.5 vs. 17.4 in Task 1 and 432.9 vs. 359.9 in
Task 2), and took less time (25’8” vs 31’52” in Task 1 and 30’15”
vs. 33.53” in Task 2). Table 6 shows a Wilcoxon signed rank test
on four variables, i.e., 𝑆𝑜𝐼 and 𝑇𝑖𝑚𝑒 in both tasks. The p-values of
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Table 4: Comparison of groups based on correct sample se-
lection and time spent on Task 1.

EG Decision SoI Time CG Decision SoI Time
P1 Correct 20 0:13:00 P9 Correct 20 0:17:00
P2 Correct 20 0:16:00 P10 Correct 20 0:19:00
P3 Correct 20 0:36:00 P11 Correct 19 0:40:00
P4 Correct 19 0:19:00 P12 Correct 19 0:40:00
P5 Correct 17 0:20:00 P13 Correct 18 0:21:00
P6 Correct 18 0:32:00 P14 Correct 18 0:47:00
P7 Correct 16 0:28:00 P15 Correct 15 0:30:00
P8 Correct 10 0:37:00 P16 Correct 10 0:41:00
Avg / 17.5 0:25:08 / 17.4 0:31:53

Table 5: Comparison of groups based on correct sample se-
lection and time spent on Task 2.

EG Decision SoI Time CG Decision SoI Time
P1 Correct 406 0:27:00 P9 Correct 388 0:34:00
P2 Correct 469 0:40:00 P10 Correct 466 0:39:00
P3 Correct 432 0:23:00 P11 Correct 321 0:39:00
P4 Correct 479 0:35:00 P12 Correct 388 0:26:00
P5 Correct 469 0:37:00 P13 Correct 344 0:46:00
P6 Correct 449 0:36:00 P14 Correct 329 0:25:00
P7 Correct 322 0:15:00 P15 Correct 351 0:36:00
P8 Correct 437 0:29:00 P16 Correct 292 0:26:00
Avg / 432.9 0:30:15 / 359.9 0:33:53

Table 6: Wilcoxon signed rank test of correct 𝑆𝑜𝐼 and 𝑇𝑖𝑚𝑒

both in Task 1 and Task 2. The subscript denotes different tasks.
Var 𝑆𝑜𝐼𝑇 1 𝑇𝑖𝑚𝑒𝑇 1 𝑆𝑜𝐼𝑇 2 𝑇𝑖𝑚𝑒𝑇 2
Group EG CG EG CG EG CG EG CG
Avg 17.5 17.4 0:25:08 0:31:53 432.9 359.9 0:30:15 0:33:53
p-value 0.95 0.02 0.04 0.55

𝑇𝑖𝑚𝑒𝑇 1 and 𝑆𝑜𝐼𝑇 2 fall below 0.05, suggesting statistically significant
differences. Specifically, in Task 1, EG spent less time than CG
with statistical differences, while their SoI selection performance
was comparable. In Task 2, EG selected more SoI with statistical
significance, while time usage was comparable. In summary, these
findings substantiate the efficacy of DeepDebugger in improving
feedback quality across both debugging tasks.

We gathered data on the frequency of each function’s usage (see
Section 5) by individual users in Task 1 and Task 2 as Table 7, with
the following observation: How do the participants find the
noisy samples as the root cause in Task 1? Given the seven
options provided, participants from both groups interacted with
the visual canvas and employed the animation feature to identify
the correct one. As in Table 7, the function of TT Vis and Canvas
Inv are used frequently. For example, P3, P7, P9, and P10 root out
gradient disappear by observing whether the visualized canvas
starts being “frozen” at certain checkpoints. Some participants (e.g.,
P3 and P13) query the number of samples by labels to investigate
training sample imbalance. Considering the dataset contains 20%
noisy samples, it’s unavoidable for every participant to come across
some of these noisy instances. However, when it pertains to locating
sufficient noisy samples to validate their hypothesis, two groups
exhibit divergent strategies.

Experimental Group. Typically, the EG employs the SoI Rec function
to locate potential samples of interest. Upon encountering several
noisy samples, most participants express their interest by offering
positive feedback on these samples. With an average of 5 rounds of
interaction, nearly all the participants in the EG gather sufficient
samples and observe that these samples are evenly dispersed across
the canvas. Consequently, they verify the hypothesis concerning
the noisy dataset and proceed to make their decision.
Control Group. Similar to the EG, the CG initially utilizes the SoI
Rec function. However, participants quickly discern that while the
tools are able to recommend a few noisy samples, their feedback
does not prompt DeepDebugger to recommend more. The quan-
tity recommended is insufficient to draw conclusive results. After
engaging with approximately 11.6 rounds of recommendations on
average, many of them decide to take matters into their own hands
by exploring the visualized canvas directly. This exploration in-
volves a detailed investigation of various regions using the Sample
Selection with bounding box (SS) function. Once they discover that
certain regions contain a higher proportion of noisy samples, they
strategically focus their efforts on these areas to uncover more noisy
samples. These behaviors align with Table 7, which indicates that
the Interaction function was utilized more than twice as frequently
by the CG compared to the EG (11.6 vs. 5). Similarly, the SS function
was employed four times as often by the CG (2 vs. 0.5).

Consequently, both groups exhibit comparable proficiency in
identifying the root cause, although the EG achieves this in less
time. This indicates the potential time-saving benefits of the tool’s
feedback mechanisms.
Howdo the participants find themis-predicted samples in the
wild in Task 2? Compared to Task 1, Task 2 requires participants to
collect and label a larger number of samples (i.e., 500). In Task 1, the
EG had developed trust in the Interaction function, leading them to
primarily rely on this function. In contrast, more participants in the
CG abandoned the Interaction function and adopted the SS function
with a bounding box to support their exploration-and-exploitation
strategy. As evidenced in Table 7, there is a fivefold difference in
the use of the SS function, and a threefold difference in the use
of both Interaction and SoI Rec functions between the two groups.
Although CG’s strategy is effective, it lacks the precision offered by
the Interaction function. As a result, despite spending roughly the
same amount of time on identifying samples, the EG excels over
the CG in terms of selecting a greater number of correct samples.

Generally, the SS function enables participants to devise an
“explore-and-exploit” strategy as a mitigative measure once the
recommendations lose effectiveness. As per the post-study survey
and interviews, the majority of participants from both groups agree
that the Interaction function is both intuitive and beneficial. Par-
ticipants from the EG in particular found the Interaction function
useful in selecting samples of interest and validating their debug-
ging hypotheses.

6.4.4 Threats to Validity. Our study has two main threats. Inter-
nally, participants’ varied expertise could affect comparison fair-
ness. To mitigate this, we conduct a pre-study survey and a quiz
to evaluate their expertise. Externally, we limit ourselves to two
model debugging tasks. To mitigate this, we select the most popu-
lar datasets and common debugging practices. Nevertheless, more
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Table 7: The frequency of each function’s usage by individual users in Task 1 and Task 2. SI represents Sample Investigation, SS
represents Sample Selection with bounding box, SQ represents Sample Query. Section 5 describes the function of TT Vis/Canvas Inv/SoI
Rec/Interaction. For instance, row 1 column 12 indicates that participant P1 used the "Interaction" function 11 times under Task 2.

Group Participants
Task 1 Task 2

TT Vis Canvas Inv SoI Rec Interaction TT Vis Canvas Inv SoI Rec InteractionSI SS SQ SI SS SQ

EG

P1 3 224 0 0 0 0 1 2094 0 0 2 11
P2 0 673 0 0 4 6 1 4282 2 0 2 13
P3 43 2054 0 20 4 4 0 2971 0 0 2 30
P4 2 581 1 0 2 5 0 2732 10 0 0 33
P5 5 862 1 1 1 11 0 2831 1 0 1 46
P6 11 1943 1 3 1 7 0 3865 6 7 3 48
P7 13 408 0 5 4 5 0 497 0 2 2 10
P8 59 1721 0 25 7 2 0 2750 0 4 1 24

Avg 17 1058.2 0.3 6.7 2.8 5 0.2 2752.7 2.3 1.6 1.6 26.8
Std 21.8 731.6 0.5 9.9 2.2 3.2 0.4 1143.4 3.7 2.6 0.9 15.1

CG

P9 43 1061 1 1 5 12 2 1160 2 1 0 12
P10 33 1341 1 4 5 12 0 2428 7 4 0 1
P11 16 929 0 1 1 13 2 2942 5 1 3 17
P12 2 283 0 2 1 7 0 1409 22 2 0 0
P13 1 2220 2 10 4 9 0 4084 3 10 0 22
P14 8 2243 5 0 12 12 1 2820 21 0 0 1
P15 0 996 0 1 1 14 3 1755 15 1 1 0
P16 24 1192 7 0 1 14 0 4718 11 0 0 11

Avg 15.8 1283.1 2 2.3 3.7 11.6 1 2664.5 10.7 2.3 0.5 8
Std 16.1 662 2.6 3.3 3.8 2.4 1.1 1256.7 7.8 3.3 1 8.6

configurations such as more architectures are still needed to be
investigated in future work.

7 RELATEDWORK
Visual Explanation ofDeep LearningModels.Many researchers
have proposed visualization techniques to understand AI models
[9, 11, 37, 38, 40, 48, 49]. GradCAM [38] and its variants [9, 11]
are designed to highlight a region of an image to explain the pre-
diction. Seq2seq-Vis is designed to visualize the most influential
words in an input sentence to its translation [40]. Our approach fo-
cuses on improving the debugging capability of the time-travelling
visualization techniques such as DVI [49] and TimeVis [48].
Interactive Debugging and Fault Localization. Comparing to
the one-shot fault localization techniques such as spectrum-based
fault localization [4, 51] and delta-debugging [7, 17, 50], many de-
bugging approaches are designed in an interactive way, on program
execution trace [19–22, 28, 29, 46] and source code [12, 14, 18, 26,
27, 35]. Trace-based interaction can enhance the time-travelling
debugging techniques [19–22, 28, 29, 46]. Ko et al. [19–22] propose
Whyline, to generate why and why-not questions about the pro-
gram behaviors to the users. Their follow-up works are further pro-
posed to recommend suspicious steps on the trace to expedite the
recommendation and trace exploration, by pattern summarization
[29], probability inference [46], and machine learning model [28].
Source code based interaction is also designed to enhance existing
approaches such as spectrum-based fault localization [12, 18, 26, 27]
and breakpoint recommendation [14, 35]. Different from those ap-
proaches, DeepDebugger focus on the model debugging function-
alities, by leveraging the time-travelling visualizers [48, 49] for
debugging deep classifiers.

8 CONCLUSION
We introduce DeepDebugger, the first interactive debugging tool
that can cooperate with any time-travelling visualization solution
for debugging deep classifiers. DeepDebugger recommends poten-
tial samples of interest, and iteratively and interactively refine the
recommendation with the user feedback. Through extensive quanti-
tative experiments and a case study, we also show the effectiveness,
efficiency, and robustness of DeepDebugger.

9 DATA AVAILABILITY
Our code and full results can be downloaded on an anonymous
website [1, 2]. A tutorial on DeepDebugger is also available.
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