23
24
25
26
27
28
29

39
40
41
42
43
44

AEGIS: An Agent-based Framework for Bug Reproduction from
Issue Descriptions

Xinchen Wangl*, Pengfei Gao?, Xiangxin Mengz, Ruida Hu'*, Chao Penng, Yun Lin®, Cuiyun Gao''
I Harbin Institute of Technology, Shenzhen, China
2 ByteDance, Beijing, China
% Shanghai Jiao Tong University, Shanghai, China
200111115@stu.hit.edu.cn,gaopengfei.se@bytedance.com,mengxiangxin.1219@bytedance.com
pengchao.x@bytedance.com,200111107@stu.hit.edu.cn,lin_yun@sjtu.edu.cn,gaocuiyun@hit.edu.cn

Abstract

Automatically reproducing bugs in issue descriptions helps devel-
opers pinpoint and fix bugs timely, greatly facilitating the software
development and maintenance. Built upon the powerful under-
standing capabilities of large language models (LLMs), agent-based
approaches have achieved the state-of-the-art performance in the
task. They generally leverage LLMs as the central controller to first
retrieve bug-related information as context and then generate bug
reproduction scripts. During the script modification process, agent-
based approaches modify the script iteratively until the execution
information reflects the bug accurately or the iterative turns are
exhausted. Nevertheless, the agent-based approaches still face the
following challenges: (1) Lengthy retrieved bug-related infor-
mation: The retrieved bug-related information is usually long in
length and contains irrelevant snippets, which is hard to be well
comprehended by LLMs. (2) Lack of guidance in bug reproduc-
tion script generation: They generally modify bug reproduction
scripts randomly and tend to generate repeated or spurious modifi-
cations, leading to bug reproduction failure.

To address the above challenges, in this paper, we propose an
automated bug reproduction script generation framework named
AEGIS. AEGIS consists of two main modules: (1) Bug-related con-
text summarization module, aiming at condensing the retrieved
information into structural context through further reranking and
summarization. (2) Finite state machine (FSM)-guided script
generation module, which aims at guiding the script modification
process with proposed FSM which contains predefined modification
rules. Extensive experiments on SWE-Bench, one public benchmark
dataset, and six baseline methods show that AEGIS achieves the
best performance in the task, exceeding the best baseline by 19.0%
with respect to the bug reproduction rate. Besides, we deploy AEGIS
in five internal repositories of ByteDance. During the three-month
deployment period, it successfully reproduces 12 bugs and assists
developers in implementing fixes.

* Work done during an internship at ByteDance.
T Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

FSE 2025, June 23-27, 2025, Trondheim, Norway

© 2024 ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

CCS Concepts

« Software and its engineering — Software testing and debug-
ging.

ACM Reference Format:

Xinchen Wang'*, Pengfei Gao?, Xiangxin Meng?, Ruida Hu'*, Chao Peng?,
Yun Lin®, Cuiyun Gao''. 2024. AEGIS: An Agent-based Framework for Bug
Reproduction from Issue Descriptions. In Companion Proceedings of the
33rd ACM Symposium on the Foundations of Software Engineering (FSE °25),
June 23-27, 2025, Trondheim, Norway. ACM, New York, NY, USA, 12 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Reproducing bugs in issue descriptions is essential to localize bugs
and implement corresponding fixes. Existing surveys [9, 22] in-
dicate that writing bug reproduction scripts closely aligns with
developers’ needs, as these scripts assist developers in compre-
hending the bugs and preventing their recurrence. Kang et al.[21]
conduct a study on 300 popular Java projects and find that up to
28% of the test cases are related to bug reproduction. Besides, the
execution information [23] obtained from running these scripts
aids in more precise bug localization, thereby improving automated
debugging tools’ [25, 46] performance. These findings imply that
writing bug reproduction scripts to verify bug fixes has become a
standard workflow for developers and can greatly enhance software
development and maintenance efficiency.

Manually writing bug reproduction scripts is time-consuming
and automated bug reproduction approaches have garnered increas-
ing attention. Previous bug reproduction approaches [6, 11, 13, 32,
38, 47] focus primarily on reproducing crashes, which represent
only a subset of bugs, and these approaches struggle to compre-
hend the semantic information in issue descriptions. Given the
powerful text understanding and generation capabilities of large
language models (LLMs), LLM-based approaches achieve promis-
ing results in the bug reproduction task [21]. However, they can
only generate scripts in a single attempt and cannot interactively
modify them based on execution information, leading to limited per-
formance [21]. In contrast, agent-based approaches [5, 28, 40, 48],
which can interact with the environment by invoking external tools,
have shown great potential in bug fixing. The initial and critical
step in these approaches is bug reproduction. They leverage LLMs
as the central controller to first retrieve bug-related information
as context and then generate bug reproduction scripts. During the
script modification process, agent-based approaches make iterative
modifications until the execution information accurately reflects
the bug or the iterative turns are exhausted. These agent-based

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

FSE 2025, June 23-27, 2025, Trondheim, Norway

Xinchen Wang!*, Pengfei Gao?, Xiangxin Meng?, Ruida Hu'*, Chao Pengﬁ, Yun Lin®, Cuiyun Gao!?

Title:
Mutti-level FilteredRelation with select_related() may set wrong related object. :

[def test_wrong_select_related(self): emmmmmmmmmmmm T T T T | *
with self.assertNumQueries(3):... s|mply copy

Result:

##T hought: Now | will create the bug reproduction script.
##Action: diff django/test_bug_reproduce.py
Recommended test case: |__,| + def test wrong select related(self):

=" with self.assertNumQueries(3):

+ 060
##Observation: Modified successfully. Turn 11

FAIL: test_wrong_select_related

(known_related_objects.tests.ExistingRelatedInstancesTests.test_wrong_select_related)
Traceback (most recent call last):

File "D:\Work\django _related_obj
test_wrong_select_related...

py", line 171, in
Issue Description

##Thought: | will modify the script ...

##Action: diff django/test_bug_reproduce.py

+ tournament_pool=FilteredRelation('pool_tournament__pool’),

- tournament_pool=FilteredRelation('pool_tournament’),

##Observation: Modified successfully. Turn13

##Thought: | will retrieve the identifier 'pool' mentioned in the issue.
##Action: grep -rn 'pool’
##Observation:
[1] tests/gis_tests/test_geoforms.py:18: class Pool(models.Model):
[2] tests/known_related_objects/tests.py:98: pool = style.pool

##Thought: Before editing the test, | will first modify this file ...

##Action: diff django/db/models/sql/compiler.py

+ "local_setter": partial(local_setter, final_field) if len(joins) <= 2

- "local_setter": partial(local_setter, final_field),

##Observation: Modified successfully. Turn 15

generated by ®

[327] o&fa/cache/backends/redis. py:84: self._client... Turn1

##Thought: Then, | wantto view the tests.py in the repository.
##Action: find -name "tests.py"

##Thought: | will modify the script ...

##Action: diff django/test_bug_reproduce.py

+ tournament_pool=FilteredRelation('pool__tournament’),

- tournament_pool=FilteredRelation('pool_tournament_ pool’),

SWE-AGENT E
—

incorrect script

##Observation:
bash_completion/tests.py sites_framewort py model_r Py
m2o_recursi' py model_inher 'tests.py humanize_f py - - N N
files/tests.py schemaltests.py contrib/admin/tests.py Turn3 ##Thought: | will modify the script to raise an error ...
##tAction: diff django/test_bug_reproduce.py
. N + tournament_pool=FilteredRelation('pool__tournament__pool’),
##Thought Let me review the repository structure ... + raise Asse;:ionEr‘ror‘("Test Faileé sm to set wrmg*oﬁject-?)
##Action: Is django - tournament_pool=FilteredRelation(’pool_tournament_pool’),
##Observation: ##Observation: Modified successfully. Turn 19
AUTHORS django eslint.config.mjs Gruntfile.js js_tests
LICENSE.python package.json README.rst tests docs ... Turn 6
##Thought:| will execute the script ...
##Thought: | will review the query_tils.py ##Action: python3 djangoltest_bug_reproduce.py
##Action: open django/db/models/query_utils.py ##Observation: AssertionError: "Test failed" Turn 20
##Observation:
[1] from django.db.models import FilteredRelation
[2] from django.test import TestCase ##Thought:l have reproduced the bug since it failed.
(494 lines total) Turn10 ##Action: Submit the bug reproduction script Turn 21

lengthy retrieved information

|
|
|
I
|
|
I
|
|
|
|
|
I ##Observation: Modified successfully. Turn17
|
|
I
|
|
|
|
I
|
|
I
|

script modification with lack of guidance

(a) Multi-turn interactions of SWE-AGENT during the bug reproduction process.

Zeu retrieved information %

“FilteredRelation": The class may misconfigure or incorrectly implement the select related :

mechanism, failing at multi-level filtering, causing related instances to be attributed incorrectly.

##Thought: | should modify the file to reproduce the bug.
##Action: diff django/db/models/query_utils.py
##Observation: Your modification involve other files, which is not permitted, you

def build_filtered_relation_gq(
self, g_object, reuse, branch_negated=False, ... Turn 10

is outputted by the raise AssertionError("Test failed due to set wrong object")’, and itis
not permitted...

django/db/models/query_utils.py should ...
class FilteredRelation: UENME,
def __init_ (self, relation_name, *, condition=Q()):... | —— - — - generated by D
_filtered_relation_q': Constructs SQL where clauses for FilteredRelation objects. ig:ﬁ;gh;;‘m! |r:l\;|:ie'yog!::1e\$‘|:2:orsuto v’:n?olgsf:ecunon (ETEL 00 oo AEGIS
Mismanagement of subordinate relations in multi-level contexts can set wrong related objects, ﬂ#obser;/aﬁm' The execljniog inforrrTaho?_don st re';g reflect the bug, because the it EEEE——
causing test failures. -)

Tarn17 correct script

condensed retrieved information

|
|
django/db/models/sql/query.py I
|
|
1

script modification with guidance

(b) Multi-turn interactions of AEGIS during the bug reproduction process.

Figure 1: Comparison of bug reproduction between using SWE-AGENT and AEGIS: the issue description in (a) includes the
bug that needs to be reproduced and the recommended test case. The number of each turn represents the relative order of
interaction turns. The actions marked in cyan are the LLM agent’s interaction with the environment. Blue boxes represent the
modifications of the reproduction script, while yellow boxes indicate the modifications of other functional files. The dashed
arrow indicates that SWE-AGENT simply copies the code snippet in the issue description.

approaches demonstrate the state-of-the-art performance in the
bug reproduction task [31].

However, existing agent-based approaches [5, 40, 48] still face
the following challenges: (1) Lengthy retrieved bug-related in-
formation: Agents retrieve bug-related information to localize
and comprehend bugs. However, the retrieved information is usu-
ally lengthy and contains numerous irrelevant snippets, increasing
agents’ contextual understanding burden [24]. (2) Lack of guid-
ance in bug reproduction script generation: During the script
modification process, agents generally modify bug reproduction
scripts randomly and tend to make repeated or spurious modifi-
cations. These modifications may deviate the script reproduction
process [26], leading to bug reproduction failure.

To address the above challenges, we propose an Agent-based
framEwork for Generating bug reproductIon Scripts from issue
descriptions, named AEGIS. AEGIS consists of two main mod-
ules: (1) Bug-related context summarization module: We first

retrieve bug-related information from the code repository. Then
we condense the retrieved information into the structural context
through further reranking and summarization. (2) Finite state
machine (FSM)-guided script generation module: We propose
an FSM that contains predefined modification rules, aiming at well
guiding the script modification process. Extensive experiments on
the SWE-Bench benchmark [19], one public benchmark, and six
baseline methods demonstrate the superior performance of AEGIS
in the task, exceeding the best baseline by 19.0% with respect to
the bug reproduction rate. In addition, AEGIS has been deployed in
five internal repositories of ByteDance for three months. During
this period, AEGIS generates bug reproduction scripts for emerg-
ing bugs to assist developers in debugging, further illustrating its
effectiveness in practice.

In summary, the major contributions of this paper are summa-
rized as follows:

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

199

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240

242
243
244
245
246
247
248
249
250

251

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289

290

AEGIS: An Agent-based Framework for Bug Reproduction from Issue Descriptions

(1) We propose AEGIS, a novel agent-based bug reproduction
framework, which involves a bug-related context summa-
rization module for constructing a condensed and structural
bug-related context and an FSM-guided script generation
module for guiding the script modification process under
predefined modification rules utilizing the proposed FSM.

(2) We conduct extensive experiments on AEGIS and the results
demonstrate the effectiveness of AEGIS in bug reproduc-
tion.

(3) We deploy AEGIS in internal repositories of ByteDance
to assist developers in localizing and fixing bugs timely,
demonstrating its effectiveness in practice.

The remaining sections of this paper are organized as follows.
Section 2 reveals agent-based approaches’ challenges in the bug
reproduction task. Section 3 presents the architecture of AEGIS.
Section 4 describes the experimental setup, including datasets, base-
lines, and experimental settings. Section 5 presents the experimental
results and analysis. Section 6 further discusses AEGIS’s effective-
ness in bug reproduction and bug fixing, as well as the threats
to validity. Section 7 introduces the background of automatic bug
reproduction and LLM-based agent. Section 8 concludes the paper.

2 MOTIVATION

In this section, we explore the challenges of agent-based approaches
by analyzing the failure case of SWE-AGENT [48], one advanced
agent-based approach for the bug reproduction task. Agent-based
approaches utilize LLMs to conduct the multi-turn interactions
with the environment. During each interaction, the LLM agent re-
sponds with “thought” and “action”, respectively, where “thought”
represents its reasoning analysis of the environment feedback and
“action” represents the command to be executed. The actions are
executed within the environment, and the corresponding environ-
ment feedback is collected as input (i.e., “observation”) to the LLM
agent in the next interaction.

Figure 1 (a) illustrates the bug reproduction process by SWE-
AGENT for the issue “django-16408"1. The issue description includes
the title, the recommended test case, and the result. SWE-AGENT
needs to leverage this information to generate the bug reproduction
script. In turns 1, 3, 6, and 10, SWE-AGENT invokes the “grep -r”
command (returning 327 lines), calls “find” to search test files, uses
“1s” to observe the repository structure, and browses bug-related
files (494 lines), respectively. SWE-AGENT examines the repository
structure first, looking for files related to bug localization before
attempting to reproduce the bug. However, the retrieved informa-
tion is often lengthy and contains irrelevant snippets, increasing
the agent’s contextual burden.

Although SWE-AGENT observes the repository and retrieves a
great amount of information between turn 1 and turn 10, it fails to
utilize this information for bug reproduction. It merely copies the
recommended test case from the issue description in turn 11 and
ignores the initialization of the involved classes. This indicates that
the lengthy retrieved information is difficult for LLMs to compre-
hend and utilize effectively, leading to the previous searches being
unproductive.

https://code.djangoproject.com/ticket/34227

FSE 2025, June 23-27, 2025, Trondheim, Norway

Input (a) Bug-related context summarization module
N
? Issue description Code repositol

__\I | p pository
Issue description Bug description Buggy code

) (1) Retrieve

g Recommended test case Bug-related test -

(2) Rerank

Code repository

(3) Summarize | Cyrrent and expected result Relevance explanation

l Create }~—
i
H Execute l
[f)
Report Ext |-Veri Self-Veri
Generate\ epol)‘—{ xternal enfy)'—{ elf-Verify l

&
Restart
D 3]
[Modiy

Generated bug
reproduction script

Output (b) FSM-guided script generation module

Figure 2: The architecture of AEGIS. It consists of two mod-
ules: (a) a bug-related context summarization module for
condensing the retrieved bug-related information into struc-
tural context and (b) an FSM-guided script generation module
for guiding the script modification process based on prede-
fined modification rules.

From turn 13 to turn 21, SWE-AGENT randomly modifies the
bug reproduction script. In turn 13 and turn 17, SWE-AGENT makes
repeated modifications, resulting in unproductive iteration turns.
In turn 15, SWE-AGENT modifies the functional file, which is not
allowed as it violates the original functionality. In turn 19, SWE-
AGENT adds the “raise AssertionError (‘Test failed due
to set wrong object’)” statement in the reproduction script
to spuriously “reproduce” the same bug. This indicates that SWE-
AGENT struggles to modify the bug reproduction script effectively
and tends to make repeated and spurious modifications, leading to
bug reproduction failure.

From the above case, we demonstrate that agent-based approaches
often retrieve lengthy bug-related information, which makes it dif-
ficult to comprehend and utilize the relevant details. Besides, they
tend to generate repeated or spurious modifications due to the lack
of guidance in bug reproduction script generation. Therefore, in this
paper, we propose a novel agent-based framework to mitigate these
challenges and improve the performance in the bug reproduction
task.

Figure 1 (b) illustrates the bug reproduction process by AEGIS.
Based on the retrieved bug-related information, the LLM agent
reranks the code snippets and summarizes information according
to their relevance with the bug in turn 10, producing condensed
information. This condensed information displays methods, classes,
and files, allowing AEGIS to avoid interference from lengthy and ir-
relevant information. In turn 14, the LLM agent attempts to modify
functional files but is constrained by our predefined modification
rules. In turn 17, we introduce external verification to offer guid-
ance and avoid spurious modifications. Eventually, the LLM agent
successfully reproduces the bug.

3 PROPOSED FRAMEWORK

In this section, we introduce the general framework of AEGIS.
As shown in Figure 2, AEGIS consists of two main modules: (1)
Bug-related context summarization module, which condenses the
retrieved bug-related information into structural context through
reranking and summarization, (2) Finite state machine (FSM)-guided

291
292
293
294
295
296
297
298
299

300

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

https://code.djangoproject.com/ticket/34227

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

FSE 2025, June 23-27, 2025, Trondheim, Norway

script generation module, which guides the script modification
process utilizing proposed FSM and predefined modification rules.
Given the issue description and code repository as inputs, the output
of AEGIS is the bug reproduction script.

3.1 Bug-related Context Summarization Module

In this module, AEGIS employs an LLM agent to retrieve, rerank,
and summarize bug-related context based on the issue description
and code repository.

Retrieve: We employ the Abstract Syntax Tree (AST) to parse the

files in the code repository and extract their code structures, includ-
ing methods, classes, and identifiers. To facilitate fine-grained code
retrieval, we design a set of search tools including “search_method”,
“search_class”, and “search_identifier”.
When the LLM agent invokes these search tools, search requests
are processed locally based on the parsed files, and the results are
then fed back to the LLM agent as the retrieved context. Besides
these search tools, the LLM agent can also utilize bash commands
like “1s”, “grep”, and “find”.

Rerank: The retrieved context Cretrieve cOnsists of numerous
code snippets. Let Cretrieve = {€1, €2, - - -, cn} be the set of retrieved
code snippets. The LLM agent reranks these snippets according to
their relevance to the issue description and repeats this process m
times independently. This results in rankings Ry, Ry, . . ., Ry, Each
R; is a vector representing the rank positions of code snippets:

Ri=(rit,riz,....,rin) fori=1,2,....m (1)

Here, r;; denotes the rank position of the j-th code snippet in the i-
th ranking, where r;; is an integer from 1 to n. The average ranking
Rayg is computed using the equation:

1 1 1
Ravg= Ezribgzri%nwazrin ()
i=1 i=1 i=1

Then, we obtain the reranked context Cyepank by sorting the code
snippets according to Rayg:

Crerank = Sort(cretrieve’Ravg) (3)

Summarize: Based on the reranked context Ciepank, the LLM
agent filters out lengthy and irrelevant code snippets and condenses
the remaining snippets along with the issue description to obtain
the following summarized bug-related context:

(1) From the issue description: (D) Bug description: A clear
and detailed description of the bug, which helps the LLM agent
comprehend the issue. 2) Recommended test case: If the issue de-
scription already contains the recommended test case, the LLM
agent can leverage this information to help generate the reproduc-
tion script. 3) Current result and expected result: Analysis of the
current result caused by the bug and the expected result after fixing
the bug, which helps verify whether the execution information
reflects the bug accurately.

(2) From the code repository: (D Buggy code: Code snippets
that are likely to cause the bug. @) Bug-related test: Test cases
that can be reused directly or are relevant for reproducing the
bug. @ Relevance explanation: The detailed explanation of the
relevance between the buggy code, bug-related test, and the bug.
Such explanations help LLM agents better leverage these code
snippets for bug reproduction.

Xinchen Wang!*, Pengfei Gao?, Xiangxin Meng?, Ruida Hu'*, Chao Pengﬁ, Yun Lin®, Cuiyun Gao!?

Example of the Summarized Bug-related Context

Bug Description
Error message prints extra code line when using assert in python3.9.

The test "test_right_statement" fails at the first assertion,but print extra code (the "t" decorator)
in error details...
Recommended test case:
***python
def test_right_statement(foo):

assert foo == (3 + 2) * (6 + 9)

et

def inner():

return 2
assert 2 == inner

Current Result

The current result includes extra inline code lines due to the issue in line number calculations
within the "getstatementrange_ast" function.

Expected Result

The expected result is the error message should not print the decorator line when the assertion
fails, ensuring accurate line number calculations in error messages.

From Code Repository

Buggy Code
pytest-dev__pytest/src/_pytest/_code/source.py

[96] |def getstatementrange(self, lineno: int) -> Tuple[int, int]:

[97] ""“Return (start, end) tuple which spans the minimal statement region
[98] which containing the given lineno."""

Bug-related Test

pytest-dev__pytest/testing/code/test_source.py

[179] | def test_getstatementrange_bug2(self) -> None:

[180] source = Source("""assert (33==[X(3,b=1, c=2),])""")
[181] assert len(source) == 9

[182] assert source.getstatementrange(5) == (8, 9)

#H#

1. Buggy Code : The ™ trange_ast’, ‘get_: t_startend2’, and
“getstatement’ functions are related to the issue, because they handle the calculation of source
code ranges and statement boundaries.

2. Bug-related Tests The “test_ _bug2' test is related to the
issue, because it includes tests for assertions spanning multiple lines, which mirrors the
described error scenario for Python 3.9.

Figure 3: The example of the summarized bug-related con-
text, including the bug-related information from the issue
description and the code repository.

Figure 3 shows an example of the summarized bug-related con-
text after retrieving, reranking, and summarizing. This structural
context serves as the input for the next module.

3.2 FSM-guided Script Generation Module

In this module, we propose a finite state machine (FSM) to guide
LLM agents in generating bug reproduction scripts. We first intro-
duce the complete formulation of our proposed FSM, then describe
the process of FSM-guided script modification.

3.2.1 Formulation of the proposed FSM. FSM [3] is a computational
model representing a process with a finite number of states and
the transitions between these states. It can guide and constrain the
actions of the LLM agent, helping to prevent the LLM agent from
generating repeated or spurious modifications. As illustrated in
Figure 4, our proposed FSM is defined as a 5-tuple (Q, %, 6, qo, q4),
comprising the following components:

(1) State Set O = {q0, 91, 92, 93, 94, g5, ¢ } denotes the different
states of the LLM agent during the script modification process,
which are Create, Execute, Self-Verify, External-Verify, Report, Modify,
and Restart, respectively.

(2) Input Condition 3 = {a,b,c,d, e, f,g, h, i, j, k, I} represents
the conditions that the LLM agent satisfies. Specifically, once the
LLM agent takes an action, one certain condition will be satisfied.

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

449

461
462
463

464

465

466

467

468

469

470

471

472

473

474

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

AEGIS: An Agent-based Framework for Bug Reproduction from Issue Descriptions

##Thought: | have tried many modifications but it does not work.

l: Restart Finished

FSE 2025, June 23-27, 2025, Trondheim, Norway

##Action: restart

##State: Restart ... é‘ 96
##Observation: Your modification attempts
is exceeded, you should transition to: k: Exceeded Check Fail
##State: Restart @

##Thought: | will modify the bug reproduction script.

##Observation: You need to start from scratch

and transition to:
##State: Create

j: All Checks Pass

##Thought: | will create the bug reproduction script.
##Action: diff django/reproduce.py
\\qo ##State: Create... <k

@ .. ##Observation: You have created the initial script,
a: Create Finished now you should transition to: @
##State: Execute

##Action: diff django/reproduce.py && check qs
#State: Modify ... [/

##Observation: Your modification has syntax

hould remain; -
ot Moy & g: Syntax Check Fail

##Observation: You have modified the script, now \

you should transition to:
##State: Execute

e: Self Verify Fail

f ##Thought: | will execute the bug reproduction script.
##Action: python django/reproduce.py
0 ##State: Execute. .. |F_'T||

##Observation: You have executed the

b: Execute Finished script, now you should transition to:
#State: Self-Verify @

##Observation: Your modification is h: Repeated Check Fail
repeated, you should remain: @
#isState: Modify

i: Authorized Check Fail

##Observation: You modification is unauthorized, you

##Observation: Reproduction failed, now you

should transition to:
##State: Modify

f: External Verify Fail

K) ##Thought: | will verify whether the execution messages reflect the bug ...
2

##Action: self_verified
\q v =l

#i#State: Self-Verify...
@ . ##Observation: You have verified that the bug has been
c:Self Verify Pass reproduced successfully, now you should transition to:
##State: External-Verify E

should remain:

##State: Modify @
##Observation:
##State: @ Environment feedback @ @ State

##Thought:

g‘s*fa“'zf_‘: Ilii Agentresponse —— Condition

##Observation: Reproduction failed, now you

should transition to:
#H#State: Modify

Generated bug
reproduction script

f ##Thought: | will invite external referee to verify the bug reproduction script.

q3 ##Action: double_verified E

##State: External-Verify. .. {0

@ ##Observation: You reproduce the bug

d: External Verify Pass successfully, now you should transition to:
##State: Report @

##Thought: | have reproduced the bug successfully and | will report this result.
##Action: submit
94 ##State: Report... |é||

Figure 4: The proposed finite state machine (FSM). Each circle represents a state, with the blue circle gy indicating the initial
state, g4 indicating the final state, and g¢ indicating the restart state. Each green box and blue box represents environment
feedback and agent response, respectively, with The dark background text indicating the current state. Specifically, in the state
g5, when any of the conditions g, h, or i is satisfied, the LLM agent will stay in the current state.

The conditions we define include Create Finished, Execute Finished,

Self Verify Pass, etc.

(3) Initial State g (Create) represents the starting point where
the LLM agent begins to create the reproduction script based on

the summarized bug-related context.

(4) Accepting State g4 (Report) indicates the point at which the
LLM agent successfully reproduces the bug and reports success. It

is the final state of the FSM.

(5) Transition function 6 = Q X ¥ — Q describes how the
LLM agent transitions between different states when certain condi-
tions are satisfied. The detailed transition function of the FSM is as

follows:
At state g (Create)

8(qo, a) = q1: Instate qo, the LLM agent creates the initial
script. Once the script is created, the condition a (Create
Finished) is satisfied, and the LLM agent transitions its state

to q1 (Execute).
At state q; (Execute)

8(q1,b) = q2: Instate g1, the LLM agent executes the script
and obtains the execution information. After that, the con-
dition b (Execute Finished) is satisfied and the LLM agent
transitions its state to gz (Self-Verify).

At state g (Self-Verify)

In state g2, the LLM agent verifies the execution informa-
tion from g3 to determine whether it accurately reflects the
bug.

8(q2,c) = gq3: If the bug is accurately reflected, the con-
dition c (Self Verify Pass) is satisfied, and the LLM agent
transitions its state to q3 (External-Verify).

6(q2,e) = ¢q5: Otherwise, the LLM agent should explain
the reasons for bug reproduction failure. In this case, the
condition e (Self Verify Fail) is satisfied and the LLM agent
transitions its state to gs (Modify).

At state g3 (External-Verify)

In state g3, we leverage another independent LLM agent
to act as an external judger. Given the current bug repro-
duction script from gy, the corresponding execution infor-
mation from gj, and the summarized bug-related context
from 3.1, this external judger determines whether the exe-
cution information reflects the bug accurately.

8(q3,d) = qa: If the external judger believes that the re-
production script accurately reflects the bug, the condition
d (External Verify Pass) is satisfied, and the LLM agent tran-
sitions its state to the accepting state q4 (Report).

6(q3, f) = g5: Otherwise, the external judger should ex-
plain the reasons for bug reproduction failure. In this case,
the condition g (External Verify Fail) is satisfied, and the
LLM agent transitions its state to g5 (Modify).

At state g4 (Report)

In state g4, the LLM agent submits the generated bug re-
production script and reports success to indicate that it
successfully reproduces the bug.

At state g5 (Modify)

In state g5, the LLM agent analyses the explanations for bug
reproduction failure from g3 or g3, or the checking reports
from gs itself, and provides the proposed modification. Be-
fore applying the modification, we perform the exceeded,

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

556
557
558
559
560
561
562

592

595

596

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

FSE 2025, June 23-27, 2025, Trondheim, Norway

syntax, repeated, and authorized checks. If all of them pass,
the modification is applied.

8(qs, k) = q¢: For the exceeded check, we count the num-
ber of applied modifications in the modification history. If
the number reaches the predefined limit, the condition k
(Exceed Check Fail) is satisfied and the LLM agent transi-
tions its state to g (Restart).

8(gs, g) = qs: For the syntax check, we leverage syntax-
checking tools to verify the correctness of the proposed
modification’s syntax. If it contains syntax errors, the con-
dition i (Syntax Check Fail) is satisfied. Thus, the LLM agent
remains in its state at gs. The tools also provide a detailed
checking report, including the error code and the types of
errors.

8(qs, h) = gq5: For the repeated check, we evaluate whether
the proposed modification results in the same script as
any previous version in the modification history. If so, the
condition h (Repeated Check Fail) is satisfied and the LLM
agent remains in its state at g5. We further provide the LLM
agent with a checking report, which clarifies the reasons
for considering the modification as repeated. The report
also includes a consolidated context of the modification
history.

8(qs, i) = qs5: Forthe authorized check, we evaluate whether
the LLM agent attempts to modify files in the original code
repository instead of the generated script. If so, the con-
dition i (Authorized Check Fail) is satisfied and the LLM
agent remains in its state at gs. We further provide the LLM
agent with a checking report, which clarifies the reasons
for considering the modification as unauthorized.

8(qgs, j) = q1: If the proposed modification passes all four
checks above, we apply it to the current script. Hence, the
condition j (All Checks Pass) is satisfied and the LLM agent
transitions its state to q1 (Execute).

At state g (Restart)

8(qe,1) = qo: In state g¢, the LLM agent summarizes the
explanation for the bug reproduction failure from states g2
and g3. Besides, we clear the current script and its modifica-
tion history, preparing the LLM agent to restart and create
a new script. In this case, the condition [(Restart Finished)
is satisfied. Therefore, the LLM agent transitions its state
to qo (Create).

3.22 FSM-guided script modification process. Figure 4 illustrates
the script modification process guided and constrained by our pro-
posed FSM. In each interaction with the environment, the LLM
agent’s response includes thoughts, actions, and the current state.
We extract actions and the current state from LLM agent’s response
and then execute actions in the environment. Based on the current
state and conditions satisfied by executing the actions, we guide
the LLM agent using environment feedback.

This feedback includes the “observation” to explain satisfied con-
ditions and provide additional information, such as script execution
details, explanations for bug reproduction failure, and checking
reports on failed modification checks. It also includes the “state”,
which details the next state and required actions in the next state.

Xinchen Wang!*, Pengfei Gao?, Xiangxin Meng?, Ruida Hu'*, Chao Pengﬁ, Yun Lin®, Cuiyun Gao!?

Based on environment feedback, the LLM agent transitions be-
tween different states and iteratively modifies the script. To prevent
the script modification process from becoming an endless loop, we
limit the maximum number of restarts. If the number of restarts
reaches this limit, the LLM agent stops and outputs the current bug
reproduction script.

4 EXPERIMENTAL SETUP

In this section, we evaluate AEGIS and aim to answer the following
research questions (RQs):

RQ1: How does AEGIS perform in the bug reproduction task
compared with different methods?

RQ2: What is the impact of different modules on the perfor-
mance of AEGIS?

RQ3: How do the different hyper-parameters impact the per-
formance of AEGIS?

4.1 Dataset

To answer the questions above, we utilize the popular SWE-Bench [19]
dataset, which is designed to assess the capability of addressing
software engineering bugs. For faster and more cost-effective eval-
uation, we focus on a refined subset called SWE-Bench Lite. This
subset comprises 300 instances from SWE-Bench that have been
sampled to be more self-contained, ensuring a comparable range
and distribution of projects as the full dataset. Each instance in
SWE-Bench Lite includes an issue description of a bug, the corre-
sponding code repository containing the bug, and the patch to fix
the bug. Our goal is to generate bug reproduction scripts for each
instance in SWE-Bench Lite.

4.2 Comparative Methods

To evaluate the performance of our framework, we compare two
types of bug reproduction methods: LLM-based and agent-based.

4.2.1 LLM-based methods.

e ZEROSHOT [31] prompts the LLM with the issue descrip-
tion, bug-related context retrieved using BM25 [37], and
instructions to generate scripts in unified diff format.

e ZEROSHOTPLUS [31] is similar to ZEROSHOT but lever-
ages adjusted diff format, which allows entire functions or
classes to be inserted, replaced, or deleted.

e LIBRO [21] generates multiple candidate scripts based on
the issue description. It then executes all the generated
scripts and selects the one whose execution information
most accurately reflects the bug.

4.2.2 Agent-based methods.

o SWE-AGENT [48] comprises several principal components,
including search, file viewer, file editor, and context man-
agement. It is employed to fix bugs, and bug reproduction
is one of its stages.

o AUTOCODEROVER [51] consists of two distinct stages.
In the first stage, it is tasked with retrieving bug-related
code snippets. Then AUTOCODEROVER generates patches
based on the issue description and the retrieved context,
retrying until the patch is successfully applied.

639
640
641
642
643
644
645
646
647
648
649

650

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753

754

AEGIS: An Agent-based Framework for Bug Reproduction from Issue Descriptions

Table 1: Comparison results between AEGIS, the LLM-based
methods, and the agent-based methods.

Method F—>XxP—>PF—>P
ZEROSHOT 38.8 3.6 5.8
LLM-based ZEROSHOTPLUS 55.4 7.2 10.1
LIBRO 60.1 7.2 15.2
AUTOCODEROVER| 438 7.6 9.1
Agent-based AIDER 576 87 | 17.0
SWE-AGENT 48.2 9.8 16.7
AEGIS 90.0 9.0 36.0

e AIDER [1] includes a repository indexing step to guide file
selection and proposes modifications in an edit block format.
Before a modification is applied, it undergoes validation via
syntax-checking tools.

4.3 Implementation Details

AEGIS is provided access to GPT40-2024-0513 [33] with the sam-
pling temperature set to 0.7. We limit the maximum number of
applied modifications per restart to 5 and allow up to 5 restarts
during the bug reproduction script generation process. Besides, we
construct environment-completed Docker images for each instance
in the SWE-bench Lite. For the comparison methods, we use their
default settings [31].

4.4 Evaluation Metrics

We leverage the bug reproduction rate to measure AEGIS’s perfor-
mance.

Bug Reproduction Rate (F — P): Following the prior study [31],
we consider a script to successfully reproduce the bug described in
the issue if it fails on the original code repository (i.e., before the
patch is applied) but passes on the patched repository (i.e., after the
patch is applied). We call this a fail-to-pass script. Hence, the bug
reproduction rate (F — P) measures the portion of instances where
the generated script is a fail-to-pass script. Besides, we consider a
script as a fail-to-any script if it fails on the original repository, and
as a pass-to-pass script if it passes on both the original and patched
repositories. We further measure the fail-to-any rate (F — X) and
the pass-to-pass rate (P — P) for a more comprehensive analysis.

5 EXPERIMENTAL RESULTS

5.1 RQ1: Effectiveness of AEGIS in Bug
Reproduction

To answer RQ1, we conduct a comprehensive comparative analysis
against three LLM-based methods and three agent-based methods.
The experimental results are shown in Table 1.

AEGIS exhibits superior performance compared with the
baseline methods. As shown in Table 1, AEGIS outperforms all
the baseline methods in terms of bug reproduction rate (F — P).
Specifically, AEGIS achieves an absolute improvement of 19.0% over
the best baseline method. Compared to the average performance of

FSE 2025, June 23-27, 2025, Trondheim, Norway

Table 2: Impact of the bug-related context summarization
module (i.e. BCS) and the FSM-guided script generation mod-
ule (i.e. FSG) on the performance of AEGIS.

Module |[F>x P—>P| F>P
w/o BCS | 907 8.0 |317]43
w/o FSG | 567 270 |123]237
w/o Modify-in-FSG | 847 140 |26.0 | 100
w/o Restart-in-FSG | 920 7.7 | 33327
w/o External-Verify-in-FSG ‘ 92.7 6.7 ‘ 35.0 | 1.0
AEGIS | 900 9.0 | 360

compared methods, AEGIS demonstrates an absolute improvement
of 23.7%. This is due to the ability of AEGIS to better leverage
bug-related information and guide the script modification process.
Overall, AEGIS can reproduce more bugs successfully, showcasing
its effectiveness.

Fail-to-any scripts matter for reproducing more bugs. When
considering the best-performing methods in the LLM-based and
agent-based baselines, LIBRO and AIDER, we find that these two
methods achieve the highest F — X metrics, 60.1% and 57.6% re-
spectively. Additionally, we observe that AEGIS achieves a much
higher rate in the F — X metric, reaching 90.0%, whereas the
best baseline method only reaches 57.6%. Under the constraints of
our proposed FSM and modification rules, the LLM agent aims to
make the bug reproduction script fail in the original code reposi-
tory. Although fail-to-any scripts are not always desirable, they are
essential for generating fail-to-pass scripts, as pass-to-any scripts
can never reproduce the bug. When considering the P — P metric,
AEGIS and agent-based methods show little difference, indicating
that some bugs are difficult to reproduce solely based on the issue
description, resulting in unhelpful scripts (i.e., pass-to-pass scripts).

Answer to RQ1: AEGIS achieves the best performance in
the bug reproduction task, exceeding the best baseline by
19.0% on the bug reproduction rate.

5.2 RQ2: Effectiveness of Different Modules in
AEGIS

To answer RQ2, we explore the effectiveness of different modules on
the performance of AEGIS. Specifically, we study the two involved
modules: the bug-related context summarization module (BCS) and
the FSM-guided script generation module (FSG).

5.2.1 Bug-related Context Summarization Module. To understand
the impact of this module, we deploy a variant of AEGIS without
the bug-related context summarization module (i.e., w/o BCS). This
variant generates the bug reproduction script based on the issue
description and the retrieved context without reranking and sum-
marizing. Table 2 shows the performance of this variant. Adding

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812

813
814
815
816

817

820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869

870

FSE 2025, June 23-27, 2025, Trondheim, Norway

the bug-related context summarization module yields a 4.3% en-
hancement in the bug reproduction rate (F — P). Overall, the
results indicate that the bug-related context summarization module
enables the LLM agent to focus on a condensed context, thereby
improving its comprehension of the bug and better leveraging the
retrieved information.

5.2.2 FSM-guided Script Generation Module. To explore the contri-
bution of this module, we also construct a variant of AEGIS without
the FSM-guided script generation module (i.e., w/o FSG). This vari-
ant modifies the bug reproduction script without the guidance of
the proposed FSM. As illustrated in Table 2, adding the FSM-guided
script generation module yields a 23.7% enhancement in the bug
reproduction rate (F — P). This enhancement can be attributed to
the module’s capability to guide the LLM agent in avoiding repeated
and spurious modifications, thus leading to a constrained script
modification process. We also observe that this variant shows a
great decrease in the F — X metric to 56.7% and a notable increase
in the P — P metric to 27.0%. This indicates that without guidance,
the LLM agent is more likely to generate unhelpful scripts.

5.2.3 Different States in the Proposed FSM. To further investigate
the influence of different states within the proposed FSM, we design
three variants: one without Modify-in-FSG, one without Restart-in-
FSG, and one without External-Verify-in-FSG. These variants rep-
resent generating scripts in a single attempt without modification,
continuously modifying scripts until reporting success or exceeding
the maximum iterations, and verifying scripts’ execution informa-
tion without external verification, respectively. Table 2 shows the
performances of three variants. The states of Modify, Restart, and
External-Verify contribute to enhancements in the bug reproduction
rate (F — P) by 10.0%, 2.7%, and 1.0%, respectively. The Modify
state shows a notable improvement, suggesting that AEGIS can
iteratively optimize the reproduction scripts based on execution
information. The Restart state improves AEGIS’s performance by al-
lowing the exploration of diverse reproduction paths and avoiding
endless modifications. The External-Verify state enhances AEGIS’s
performance by providing external oversight, which helps prevent
the LLM agent from being misled by spurious modifications.

Answer to RQ2: Both BSG and FSG modules can improve
the performance of AEGIS. The BSG module boosts the
bug reproduction rate of 4.3% and the FSG module en-
hances AEGIS by 23.7%. Besides, different states within the
proposed FSM are essential to the bug reproduction.

5.3 RQ3: Influence of Hyper-parameters on the
Performance of AEGIS

To answer RQ3, we explore the impact of different hyper-parameters,
including the maximum number of restarts and the maximum num-
ber of applied modifications per restart during the script modifica-
tion process.

5.3.1 Maximum number of restarts. Figure 5 shows the perfor-
mance of AEGIS with different maximum numbers of restarts. As
the maximum number of restarts increases from 1 to 5, the bug

Xinchen Wang!*, Pengfei Gao?, Xiangxin Meng?, Ruida Hu'*, Chao Pengﬁ, Yun Lin®, Cuiyun Gao!?

34

Q

e

2

5]

g 33

=

2

=]

<@

£ 32

£

S

]

&

& 31

=

Maximum number of applied modifications per restart

30 Maximum number of restarts

1 3 5 7 9

Figure 5: The influence of the maximum number of applied
modifications per restart and maximum number of restarts
for AEGIS. The horizontal axis represents the number of
modifications per restart or the number of restarts.

reproduction rate (F — P) improves from 30.7% to 33.7%. This
suggests that more restarts allow LLM agents to explore diverse
bug reproduction paths and accumulate more failure experiences.
However, as the maximum number of restarts increases from 7
to 9, the bug reproduction rate stabilizes, indicating that further
increases have a limited impact on performance. This is likely be-
cause the LLM agents have already tried all possible reproduction
paths and cannot derive additional insights from the failure experi-
ences. Considering the balance between resource consumption and
performance, we choose 5 as the optimal number of restarts.

5.3.2 Maximum number of applied modifications per restart. Simi-
larly, as the maximum number of applied modifications per restart
increases from 1 to 5, the bug reproduction rate (F — P) rises
from 30.0% to 32.0%. This demonstrates that LLM agents can ef-
fectively leverage guidance from the proposed FSM to refine the
reproduction script. However, as the maximum number of modifica-
tions further increases from 5 to 9, the bug reproduction rate tends
to stabilize, indicating that further modifications become increas-
ingly challenging. This may be due to the involvement of multiple
methods and classes in reproducing bugs. To balance resource con-
sumption and performance, we select 5 as the optimal number of
applied modifications per restart.

Answer to RQ3: The performance of AEGIS is influenced
by the maximum number of restarts and the maximum
number of applied modifications per restart. Our default
settings yield optimal results.

6 DISCUSSION

6.1 Case Study

To further demonstrate the effectiveness of AEGIS in the bug repro-
duction task, we analyse three cases from SWE-Bench. The results
are shown in Figure 6.

Figure 6 (a) shows the bug reproduction process for the issue
“django-11964” . The LLM agent encounters difficulties in the script

Zhttps://code.djangoproject.com/ticket/30902

871

873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

https://code.djangoproject.com/ticket/30902

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

AEGIS: An Agent-based Framework for Bug Reproduction from Issue Descriptions

FSE 2025, June 23-27, 2025, Trondheim, Norway

Part of the script modification procss

##Action: diff django/test_bug_reproduce.py [1] import flask
+ # 'testing.pkg', # Commented out the non-existent app [2] from flask import Flask
‘testing.pkg', # Replace with your actual app name [3]1 app = Flask(__name__)
" : - [4] def test_blueprint_name_wi
##Action: diff django/test_bug_reproduce.py ts]

+ apps = [MyAppConfig] t6]
+ django.setup()
django. setup()

##Action: diff django/test_bug_reproduce.py
+ call_command('migrate’, 'reproduce_app')
call_command('migrate’, ‘reproduce_app',run_syncdb=True)

##Action: diff django/test_bug_reproduce.py
+ 'myapp', # Adding a temporary app

- # 'testing.pkg', # Commented out the non-existent app
[1] import flask
##Action: diff django/test_bug_reproduce.py [2] from flask import Flask
+ call_command('makemigrations', '__main__") [3] app = Flask(__name__)
call_command('migrate’, '_main__', run_syncdb=True)
- call_command('migrate’, 'reproduce_app', run_syncdb=True) [4] def test_blueprint_name_wit

Correct Bug Reproduction Script

#4# Bug reproduction script only through self-verification

blueprint = Blueprint('test.blueprint', __name__)
raise AssertionError(“Blueprint name containing a dot
should have raised an error.")

Guidance from external verification

The scripts raise a AssertionError because of the statement in
line 6 instead of triggering the bug correctly.

Bug reproduction script through external verification

[s] blueprint = Blueprint('test.blueprint’, _ name_)

(@) = 4 assert i te
Give up the current n 2 (6] app. register_blueprint (blueprint) el "Result should be a list or ndarray”
script and restart

[7] test_blueprint_name_with_dot()

Issue Description

Issue when passing empty lists/arrays to WCS transformations

The following should not fail but instead should return empty
lists/arrays:

In [1]: from astropy.wcs import WCS

In [2]: wes = WCS('2MASS_h.fits') Execute the reproduction method
In [3]: wes.wes_pix2world([1, [1, @) after applying the patch

Execution information of the existing reproduction method

Execution Information:
[array([], dtype=float64), array([], dtype=float64)]

—

#4# Part of the bug-related summarized context
##Expected result:

The expected result is that passing empty lists or arrays
to “wcs_pix2world® should return empty lists/arrays
without any errors.

Generated bug reproduction script

[1] def test_wcs_pix2world_empty_lists(
(2] wes = WCS('2MASS_h. fits’)
3] result = wcs.wes_pix2world([], [1, @)

e(result, (list, np.ndarray)),

[s] assert len(result) == @,
"Result should be empty for empty input lists"

(a) An example from django-11964, illustrating
avoiding endless modifications through restart.

(b) An example from flask-4045, illustrating correcting
spurious modifications through external verification.

(c) An example from astropy-7746, illustrating generating
script based on the bug-related summarized context.

Figure 6: Examples for illustrating the effectiveness of AEGIS.

configuration and becomes stuck in endless modifications. Our pro-
posed FSM limits the number of modifications per restart, allowing
the LLM agent to restart and recreate the reproduction script. Af-
ter restarting, the LLM agent adopts an alternative configuration
method and successfully generates the correct bug reproduction
script. This example demonstrates that the restart helps avoid end-
less modifications and enables the LLM agent to explore diverse
bug reproduction paths.

Figure 6 (b) shows the bug reproduction process for the issue
“flask-4045” 3. The script verified only by the LLM agent fails to re-
produce the bug because it directly uses the “raise AssertionError”
statement to output the bug described in the issue. In our designed
FSM, the bug reproduction script and its execution information
undergo additional external verification. This external verifica-
tion provides guidance, indicating that “the scripts raise an As-
sertionError because of the statement in line 6 instead of trig-
gering the bug correctly”. Based on the guidance from external
verification, the LLM agent modifies the script by employing the
“app.register_blueprint(blueprint)” statement to trigger the
bug. This example shows that the external verification in our pro-
posed FSM can prevent the LLM agent from being misled by spuri-
ous modifications.

Figure 6 (c) shows the bug reproduction process for the issue
“astropy-7746” *. The issue description provides a bug reproduction
method. Based on the constructed bug-related summarized context,
the LLM agent expects the “wcs.wcs_pix2world” method to return
empty lists or arrays when given empty inputs. It uses “assert
isinstance()” and “assert len()” to validate the type and length
of the method’s return values. However, this bug reproduction script
triggers assert errors in both the original and patched code reposi-
tories. When we execute the bug reproduction method provided by
the issue description in the patched code repository, we find that the
execution information consists of “[array([1, dtype=float64),
array([], dtype=float64)]” instead of empty lists or arrays.
This indicates that the issue creator does not accurately describe the

3https://github.com/pallets/flask/issues/4041
4https://github.com/astropy/astropy/issues/7389

expected behaviour of the reproduction method. Although AEGIS
can meticulously generate bug reproduction script, such inappro-
priate issue descriptions are beyond its understanding capabilities.

Table 3: Effectiveness of AEGIS on bug fixing, including the
fix rates and the number of fixed bugs.

Method Fix Rate (%) # of Fixed Bugs
Agentless 273 82

+ w/ LLM Voting 23301 4.0 70 | 12
+w/ AEGIS 30.7 734 92710

6.2 AEGIS’s Effect on Bug Fixing

We explore the impact of AEGIS in the entire bug fixing pipeline.
Specifically, we apply AEGIS to the advanced bug fixing approach,
Agentless [44], and compare the performance before and after ap-
plying AEGIS. Besides, we deploy AEGIS in internal repositories of
ByteDance and help developers in localizing and fixing bugs.

For the Agentless approach, we leverage the bug reproduction
scripts to filter its generated patches. We prioritize patches that
cause the bug reproduction script to fail before applying the patch
and pass afterwards, as such patches are likely to fix the bug. If such
patches do not exist, we then select those that produce different
execution information before and after applying the patch, as such
patches may alter the execution path related to the bug. Besides,
we explore the effectiveness of leveraging LLM to select the most
suitable patch by providing the issue description and generated
patches. This approach is referred to as LLM Voting. As shown in
Table 3, leveraging the bug reproduction scripts generated by AEGIS
improves the performance of Agentless. Specifically, the number
of fixed bugs increases from 82 to 92, with the fix rate rising from
27.3% to 30.7%, showing a 12.5% relative improvement. This result
demonstrates the effectiveness of AEGIS in bug fixing. However,
LLM Voting results in a 4.0% decrease, as it is challenging for the
LLM to select the correct patch without execution information.

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044

https://github.com/pallets/flask/issues/4041
https://github.com/astropy/astropy/issues/7389

1045
1046
1047
1048

1049

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102

FSE 2025, June 23-27, 2025, Trondheim, Norway

Table 4: Impact of different search tools to AEGIS.

Method F—-x P—>P F—-P
AEGIS 90.0 9.0 36.0
AEGIS-BM25 93.0 6.0 347 | 1.3
AEGIS-BashCommand 91.0 8.3 34.0 | 2.0

We deploy AEGIS in five internal repositories of ByteDance,
covering multiple programming languages and involving over 200
developers. Other staff of ByteDance report issues in the issue track-
ing system when they encounter bugs in these repositories, and
ask developers for solutions. During the three-month deployment
period, AEGIS generates bug reproduction scripts for 25 bugs. Each
bug reproduction script is evaluated by three developers of its cor-
responding repository, and 12 of these scripts accurately reproduce
the bugs in the staff’s issue descriptions. The execution information
from these scripts helps developers localize the bugs and implement
fixes. Overall, AEGIS proves to be effective in facilitating bug fixing
in industrial practice.

6.3 Impact of Searching Tools on the
Performance of AEGIS

In this section, we design two variants to explore the impact of
different searching tools on AEGIS’s performance: AEGIS-BM25
and AEGIS-BashCommand. The AEGIS-BM25 variant leverages
BM25 [37] to obtain bug-related information from the code reposi-
tory based on the issue description, and the AEGIS-BashCommand
variant can only retrieve context through invoking bash commands.

As illustrated in Table 4, AEGIS achieves a slight enhancement
of 1.3% and 2.0% in the bug reproduction rate (F — P) compared to
AEGIS-BM25 and AEGIS-BugCommand, respectively. Both variants
show notable improvements over state-of-the-art bug reproduction
methods. This result indicates that AEGIS exhibits a weak depen-
dency on the capabilities of the searching tools, demonstrating
robustness and stability.

6.4 Threats and Limitations

Dataset Validity Concerns: SWE-Bench Lite’s scope is limited
because it is derived from only 12 popular repositories, and may not
cover all issue types and testing scenarios. Hence, the experimental
results based on this dataset may not be fully generalizable. In
future research, we intend to extend our investigations to more
repositories.

Result Variability: Due to AEGIS relying on LLM agents for
context retrieval and bug reproduction script generation, the exper-
imental results exhibit variability. We therefore conduct multiple
trials and average the results to obtain a more stable measure.

7 RELATED WORK
7.1 Automatic Bug Reproduction

Automatically reproducing bugs from issue descriptions helps de-
velopers localize and fix bugs in a timely manner, greatly enhanc-
ing software development efficiency. Prior bug reproduction ap-
proaches [6, 32, 38, 47] have explored reproducing specific types of

10

Xinchen Wang!*, Pengfei Gao?, Xiangxin Meng?, Ruida Hu'*, Chao Pengﬁ, Yun Lin®, Cuiyun Gao!?

bugs, such as those in Android applications [14, 17, 41], configuration-
triggered bugs [15], and program crashes [11, 13, 52]. However,
these bugs represent only a small subset of all bugs.

Given the strong understanding and generation capabilities of
LLMs, LIBRO [21] utilizes LLMs to reproduce bugs from issue de-
scriptions. It leverages LLMs to generate bug reproduction scripts
and employs post-processing to select promising scripts. However,
LIBRO cannot dynamically modify reproduction scripts based on
execution information, resulting in scripts that often lack depen-
dency statements and include incorrect assertions, thereby limiting
its performance. Recently, agent-based approaches [5, 28, 48] have
shown great potential in bug reproduction. These approaches first
retrieve bug-related information as context and then generate bug
reproduction scripts through iterative modifications until the exe-
cution information accurately reflects the bug.

7.2 LLM-based Agent

Al agents are artificial entities capable of autonomously perceiving
the environment and taking action to achieve specific goals [27,
43]. The rapid advancements in LLMs have greatly increased re-
searchers’ interest in LLM-based agents [7, 34]. These agents en-
hance LLMs by integrating external resources and tools, thereby
enabling them to address more complex real-world challenges. LLM-
based agents specifically designed for software engineering have
demonstrated substantial potential across a variety of software
development and maintenance tasks, including requirements engi-
neering [2, 20], code generation [16, 18], static bug detection [12, 30],
code review [36, 39], unit testing [8, 50], system testing [10, 49],
fault localization [35, 42], program repair [4, 45], end-to-end soft-
ware development [48], and end-to-end software maintenance [29].

Recently, LLM-based agents such as CodeR [5], MASAI [40], and
SWE-AGENT [48] have shown great potential in the bug fixing
task. These agents consider bug reproduction as part of the over-
all pipeline. However, they still face challenges such as handling
lengthy retrieved bug-related information and lacking guidance
in bug reproduction script generation. In this paper, we introduce
AEGIS, an agent-based framework for bug reproduction from issue
descriptions, aimed at addressing these challenges and improving
the bug reproduction rate.

8 CONCLUSION

This paper focuses on the bug reproduction task and proposes a
novel agent-based framework, named AEGIS. AEGIS consists of
a bug-related context summarization module for condensing the
retrieved information into structural context through reranking
and summarization and an FSM-guided script generation module
for guiding the script modification process with the proposed FSM
which contains predefined modification rules. Compared with the
state-of-the-art methods, the experimental results validate the ef-
fectiveness of AEGIS. Besides, we deploy AEGIS in five internal
repositories of ByteDance. During the three-month deployment
period, it successfully reproduces 12 bugs and helps developers
implement corresponding fixes. In the future, we intend to further
evaluate AEGIS on a broader range of datasets for bug reproduction.

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

1160

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

1218

AEGIS: An Agent-based Framework for Bug Reproduction from Issue Descriptions

References

(1]
(2]

(71

[10]

[11]

[12]

[13]

[14]

[15]

[16

[17]

[18

Aider-Al 2024. “aider”. https://github.com/Aider- Al/aider.

Chetan Arora, John Grundy, and Mohamed Abdelrazek. 2024. Advancing re-
quirements engineering through generative ai: Assessing the role of llms. In
Generative Al for Effective Software Development. Springer, 129-148.

Mordechai Ben-Ari, Francesco Mondada, Mordechai Ben-Ari, and Francesco
Mondada. 2018. Finite state machines. Elements of Robotics (2018), 55-61.
Islem Bouzenia, Premkumar T. Devanbu, and Michael Pradel. 2024. RepairAgent:
An Autonomous, LLM-Based Agent for Program Repair. CoRR abs/2403.17134
(2024). https://doi.org/10.48550/ARXIV.2403.17134 arXiv:2403.17134

Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan, Jian-Gang Wang, Anton
Cheshkov, Jun Sun, Hao Yu, Guoliang Dong, Artem Aliev, Jie Wang, Xiao Cheng,
Guangtai Liang, Yuchi Ma, Pan Bian, Tao Xie, and Qianxiang Wang. 2024. CodeR:
Issue Resolving with Multi-Agent and Task Graphs. CoRR abs/2406.01304 (2024).
https://doi.org/10.48550/ARXIV.2406.01304 arXiv:2406.01304

Ning Chen and Sunghun Kim. 2015. STAR: Stack Trace Based Automatic Crash
Reproduction via Symbolic Execution. IEEE Trans. Software Eng. 41, 2 (2015),
198-220. https://doi.org/10.1109/TSE.2014.2363469

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min
Chan, Heyang Yu, Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong,
Ruobing Xie, Zhiyuan Liu, Maosong Sun, and Jie Zhou. 2024. AgentVerse:
Facilitating Multi-Agent Collaboration and Exploring Emergent Behaviors. In
The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net. https://openreview.net/forum?
id=EHg5GDnyq1

Yinghao Chen, Zehao Hu, Chen Zhi, Junxiao Han, Shuiguang Deng, and Jianwei
Yin. 2024. ChatUniTest: A Framework for LLM-Based Test Generation. In Com-
panion Proceedings of the 32nd ACM International Conference on the Foundations of
Software Engineering, FSE 2024, Porto de Galinhas, Brazil, July 15-19, 2024, Marcelo
d’Amorim (Ed.). ACM, 572-576. https://doi.org/10.1145/3663529.3663801
Ermira Daka and Gordon Fraser. 2014. A Survey on Unit Testing Practices
and Problems. In 25th IEEE International Symposium on Software Reliability
Engineering, ISSRE 2014, Naples, Italy, November 3-6, 2014. IEEE Computer Society,
201-211. https://doi.org/10.1109/ISSRE.2014.11

Gelei Deng, Yi Liu, Victor Mayoral Vilches, Peng Liu, Yuekang Li, Yuan Xu,
Tianwei Zhang, Yang Liu, Martin Pinzger, and Stefan Rass. 2023. PentestGPT:
An LLM-empowered Automatic Penetration Testing Tool. CoRR abs/2308.06782
(2023). https://doi.org/10.48550/ARXIV.2308.06782 arXiv:2308.06782

Pouria Derakhshanfar, Xavier Devroey, Annibale Panichella, Andy Zaidman, and
Arie van Deursen. 2020. Botsing, a Search-based Crash Reproduction Framework
for Java. In 35th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2020, Melbourne, Australia, September 21-25, 2020. IEEE, 1278~
1282. https://doi.org/10.1145/3324884.3415299

Gang Fan, Xiaoheng Xie, Xunjin Zheng, Yinan Liang, and Peng Di. 2023. Static
Code Analysis in the Al Era: An In-depth Exploration of the Concept, Function,
and Potential of Intelligent Code Analysis Agents. CoRR abs/2310.08837 (2023).
https://doi.org/10.48550/ARXIV.2310.08837 arXiv:2310.08837

Mattia Fazzini, Martin Prammer, Marcelo d’Amorim, and Alessandro Orso. 2018.
Automatically translating bug reports into test cases for mobile apps. In Proceed-
ings of the 27th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21, 2018, Frank Tip
and Eric Bodden (Eds.). ACM, 141-152. https://doi.org/10.1145/3213846.3213869
Sidong Feng and Chunyang Chen. 2024. Prompting Is All You Need: Automated
Android Bug Replay with Large Language Models. In Proceedings of the 46th
IEEE/ACM International Conference on Software Engineering, ICSE 2024, Lisbon,
Portugal, April 14-20, 2024. ACM, 67:1-67:13. https://doi.org/10.1145/3597503.
3608137

Ying Fu, Teng Wang, Shanshan Li, Jinyan Ding, Shulin Zhou, Zhouyang Jia, Wang
Li, Yu Jiang, and Xiangke Liao. 2024. MissConf: LLM-Enhanced Reproduction
of Configuration-Triggered Bugs. In Proceedings of the 2024 IEEE/ACM 46th
International Conference on Software Engineering: Companion Proceedings, ICSE
Companion 2024, Lisbon, Portugal, April 14-20, 2024. ACM, 484-495. https:
//doi.org/10.1145/3639478.3647635

Dong Huang, Qingwen Bu, Jie M. Zhang, Michael Luck, and Heming Cui. 2023.
AgentCoder: Multi-Agent-based Code Generation with Iterative Testing and
Optimisation. CoRR abs/2312.13010 (2023). https://doi.org/10.48550/ARXIV.2312.
13010 arXiv:2312.13010

Yuchao Huang, Junjie Wang, Zhe Liu, Yawen Wang, Song Wang, Chunyang Chen,
Yuanzhe Hu, and Qing Wang. 2024. CrashTranslator: Automatically Reproducing
Mobile Application Crashes Directly from Stack Trace. In Proceedings of the 46th
IEEE/ACM International Conference on Software Engineering, ICSE 2024, Lisbon,
Portugal, April 14-20, 2024. ACM, 18:1-18:13. https://doi.org/10.1145/3597503.
3623298

Yoichi Ishibashi and Yoshimasa Nishimura. 2024. Self-Organized Agents: A
LLM Multi-Agent Framework toward Ultra Large-Scale Code Generation and
Optimization. CoRR abs/2404.02183 (2024). https://doi.org/10.48550/ ARXIV.2404.
02183 arXiv:2404.02183

11

[19

[20]

[21]

[22

(23]

[26

[27]

[29

[30

[31

@
&,

[35

[36

[37

FSE 2025, June 23-27, 2025, Trondheim, Norway

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir
Press, and Karthik R. Narasimhan. 2024. SWE-bench: Can Language Models
Resolve Real-world Github Issues?. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenRe-
view.net. https://openreview.net/forum?id=VTF8yNQM66

Dongming Jin, Zhi Jin, Xiaohong Chen, and Chunhui Wang. 2024.
MARE: Multi-Agents Collaboration Framework for Requirements Engineer-
ing. CoRR abs/2405.03256 (2024). https://doi.org/10.48550/ARXIV.2405.03256
arXiv:2405.03256

Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Large Language Models are Few-
shot Testers: Exploring LLM-based General Bug Reproduction. In 45th IEEE/ACM
International Conference on Software Engineering, ICSE 2023, Melbourne, Australia,
May 14-20, 2023. IEEE, 2312-2323. https://doi.org/10.1109/ICSE48619.2023.00194
Pavneet Singh Kochhar, Xin Xia, and David Lo. 2019. Practitioners’ views on good
software testing practices. In Proceedings of the 41st International Conference on
Software Engineering: Software Engineering in Practice, ICSE (SEIP) 2019, Montreal,
QC, Canada, May 25-31, 2019, Helen Sharp and Mike Whalen (Eds.). IEEE / ACM,
61-70. https://doi.org/10.1109/ICSE-SEIP.2019.00015

Tien-Duy B. Le, Richard Jayadi Oentaryo, and David Lo. 2015. Information
retrieval and spectrum based bug localization: better together. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, Bergamo, Italy, August 30 - September 4, 2015, Elisabetta Di Nitto, Mark
Harman, and Patrick Heymans (Eds.). ACM, 579-590. https://doi.org/10.1145/
2786805.2786880

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. 2024. Long-
context LLMs Struggle with Long In-context Learning. arXiv:2404.02060 [cs.CL]
https://arxiv.org/abs/2404.02060

Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. DeepFL: integrating
multiple fault diagnosis dimensions for deep fault localization. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019, Beijing, China, July 15-19, 2019, Dongmei Zhang and Anders Meller
(Eds.). ACM, 169-180. https://doi.org/10.1145/3293882.3330574

Zelong Li, Wenyue Hua, Hao Wang, He Zhu, and Yongfeng Zhang. 2024. Formal-
LLM: Integrating Formal Language and Natural Language for Controllable LLM-
based Agents. arXiv:2402.00798 [cs.LG] https://arxiv.org/abs/2402.00798
Junwei Liu, Kaixin Wang, Yixuan Chen, Xin Peng, Zhenpeng Chen, Lingming
Zhang, and Yiling Lou. 2024. Large Language Model-Based Agents for Software
Engineering: A Survey. CoRR abs/2409.02977 (2024). https://doi.org/10.48550/
ARXIV.2409.02977 arXiv:2409.02977

Yizhou Liu, Pengfei Gao, Xinchen Wang, Chao Peng, and Zhao Zhang. 2024.
MarsCode Agent: Al-native Automated Bug Fixing. arXiv:2409.00899 [cs.SE]
https://arxiv.org/abs/2409.00899

Yingwei Ma, Qingping Yang, Rongyu Cao, Binhua Li, Fei Huang, and Yongbin Li.
2024. How to Understand Whole Software Repository? CoRR abs/2406.01422
(2024). https://doi.org/10.48550/ARXIV.2406.01422 arXiv:2406.01422

Zhenyu Mao, Jialong Li, Dongming Jin, Munan Li, and Kenji Tei. 2024. Multi-
Role Consensus Through LLMs Discussions for Vulnerability Detection. In 24th
IEEE International Conference on Software Quality, Reliability, and Security, QRS -
Companion, Cambridge, United Kingdom, July 1-5, 2024. IEEE, 1318-1319. https:
//doi.org/10.1109/QRS-C63300.2024.00173

Niels Miindler, Mark Niklas Mueller, Jingxuan He, and Martin Vechev. 2024.
SWT-Bench: Testing and Validating Real-World Bug-Fixes with Code Agents. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems.
https://openreview.net/forum?id=9Y8zUO11EQ

Mathieu Nayrolles, Abdelwahab Hamou-Lhadj, Sofiéne Tahar, and Alf Larsson.
2015. JCHARMING: A bug reproduction approach using crash traces and directed
model checking. In 22nd IEEE International Conference on Software Analysis,
Evolution, and Reengineering, SANER 2015, Montreal, QC, Canada, March 2-6,
2015, Yann-Gaél Guéhéneuc, Bram Adams, and Alexander Serebrenik (Eds.).
IEEE Computer Society, 101-110. https://doi.org/10.1109/SANER.2015.7081820
OpenAlL 2024. Hello gpt-4o0. https://openai.com/index/hello-gpt-40/.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo, Wangchunshu Zhou,
Yuchen Eleanor Jiang, Chengfei Lv, and Huajun Chen. 2024. AutoAct: Automatic
Agent Learning from Scratch for QA via Self-Planning. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (Eds.). Association for Computational Linguistics,
3003-3021. https://aclanthology.org/2024.acl-long.165

Yihao Qin, Shangwen Wang, Yiling Lou, Jinhao Dong, Kaixin Wang, Xiaoling Li,
and Xiaoguang Mao. 2024. AgentFL: Scaling LLM-based Fault Localization to
Project-Level Context. CoRR abs/2403.16362 (2024). https://doi.org/10.48550/
ARXIV.2403.16362 arXiv:2403.16362

Zeeshan Rasheed, Malik Abdul Sami, Muhammad Waseem, Kai-Kristian Kemell,
Xiaofeng Wang, Anh Nguyen, Kari Systd, and Pekka Abrahamsson. 2024. Al-
powered Code Review with LLMs: Early Results. CoRR abs/2404.18496 (2024).
https://doi.org/10.48550/ARXIV.2404.18496 arXiv:2404.18496

Stephen Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance Frame-
work: BM25 and Beyond. Found. Trends Inf. Retr. 3, 4 (April 2009), 333-389.

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276

https://github.com/Aider-AI/aider
https://doi.org/10.48550/ARXIV.2403.17134
https://arxiv.org/abs/2403.17134
https://doi.org/10.48550/ARXIV.2406.01304
https://arxiv.org/abs/2406.01304
https://doi.org/10.1109/TSE.2014.2363469
https://openreview.net/forum?id=EHg5GDnyq1
https://openreview.net/forum?id=EHg5GDnyq1
https://doi.org/10.1145/3663529.3663801
https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.48550/ARXIV.2308.06782
https://arxiv.org/abs/2308.06782
https://doi.org/10.1145/3324884.3415299
https://doi.org/10.48550/ARXIV.2310.08837
https://arxiv.org/abs/2310.08837
https://doi.org/10.1145/3213846.3213869
https://doi.org/10.1145/3597503.3608137
https://doi.org/10.1145/3597503.3608137
https://doi.org/10.1145/3639478.3647635
https://doi.org/10.1145/3639478.3647635
https://doi.org/10.48550/ARXIV.2312.13010
https://doi.org/10.48550/ARXIV.2312.13010
https://arxiv.org/abs/2312.13010
https://doi.org/10.1145/3597503.3623298
https://doi.org/10.1145/3597503.3623298
https://doi.org/10.48550/ARXIV.2404.02183
https://doi.org/10.48550/ARXIV.2404.02183
https://arxiv.org/abs/2404.02183
https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.48550/ARXIV.2405.03256
https://arxiv.org/abs/2405.03256
https://doi.org/10.1109/ICSE48619.2023.00194
https://doi.org/10.1109/ICSE-SEIP.2019.00015
https://doi.org/10.1145/2786805.2786880
https://doi.org/10.1145/2786805.2786880
https://arxiv.org/abs/2404.02060
https://arxiv.org/abs/2404.02060
https://doi.org/10.1145/3293882.3330574
https://arxiv.org/abs/2402.00798
https://arxiv.org/abs/2402.00798
https://doi.org/10.48550/ARXIV.2409.02977
https://doi.org/10.48550/ARXIV.2409.02977
https://arxiv.org/abs/2409.02977
https://arxiv.org/abs/2409.00899
https://arxiv.org/abs/2409.00899
https://doi.org/10.48550/ARXIV.2406.01422
https://arxiv.org/abs/2406.01422
https://doi.org/10.1109/QRS-C63300.2024.00173
https://doi.org/10.1109/QRS-C63300.2024.00173
https://openreview.net/forum?id=9Y8zUO11EQ
https://doi.org/10.1109/SANER.2015.7081820
https://openai.com/index/hello-gpt-4o/
https://aclanthology.org/2024.acl-long.165
https://doi.org/10.48550/ARXIV.2403.16362
https://doi.org/10.48550/ARXIV.2403.16362
https://arxiv.org/abs/2403.16362
https://doi.org/10.48550/ARXIV.2404.18496
https://arxiv.org/abs/2404.18496

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

FSE 2025, June 23-27, 2025, Trondheim, Norway

[38]

[39

N
)

[41]

[42]

[43]

[44]

https://doi.org/10.1561/1500000019

Mozhan Soltani, Pouria Derakhshanfar, Annibale Panichella, Xavier Devroey,
Andy Zaidman, and Arie van Deursen. 2018. Single-objective Versus Multi-
objectivized Optimization for Evolutionary Crash Reproduction. In Search-Based
Software Engineering - 10th International Symposium, SSBSE 2018, Montpellier,
France, September 8-9, 2018, Proceedings (Lecture Notes in Computer Science,
Vol. 11036), Thelma Elita Colanzi and Phil McMinn (Eds.). Springer, 325-340.
https://doi.org/10.1007/978-3-319-99241-9_18

Daniel Tang, Zhenghan Chen, Kisub Kim, Yewei Song, Haoye Tian, Saad Ezzini,
Yongfeng Huang, Jacques Klein, and Tegawendé F. Bissyandé. 2024. CodeAgent:
Collaborative Agents for Software Engineering. CoRR abs/2402.02172 (2024).
https://doi.org/10.48550/ARXIV.2402.02172 arXiv:2402.02172

Nalin Wadhwa, Atharv Sonwane, Daman Arora, Abhav Mehrotra, Saiteja Utpala,
Ramakrishna B Bairi, Aditya Kanade, and Nagarajan Natarajan. [n. d.]. MASAL:
Modular Architecture for Software-engineering Al Agents. In NeurIPS 2024
Workshop on Open-World Agents.

Dingbang Wang, Yu Zhao, Sidong Feng, Zhaoxu Zhang, William G. J. Halfond,
Chunyang Chen, Xiaoxia Sun, Jiangfan Shi, and Tingting Yu. 2024. Feedback-
Driven Automated Whole Bug Report Reproduction for Android Apps. In Proceed-
ings of the 33rd ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2024, Vienna, Austria, September 16-20, 2024, Maria Christakis and
Michael Pradel (Eds.). ACM, 1048-1060. https://doi.org/10.1145/3650212.3680341
Zefan Wang, Zichuan Liu, Yingying Zhang, Aoxiao Zhong, Jihong Wang, Fengbin
Yin, Lunting Fan, Lingfei Wu, and Qingsong Wen. 2024. RCAgent: Cloud Root
Cause Analysis by Autonomous Agents with Tool-Augmented Large Language
Models. In Proceedings of the 33rd ACM International Conference on Information
and Knowledge Management, CIKM 2024, Boise, ID, USA, October 21-25, 2024,
Edoardo Serra and Francesca Spezzano (Eds.). ACM, 4966-4974. https://doi.org/
10.1145/3627673.3680016

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong,
Ming Zhang, Junzhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao
Wang, Limao Xiong, Yuhao Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou,
Xiangyang Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng, Wensen Cheng,
Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuanjing Huang, and Tao
Gui. 2023. The Rise and Potential of Large Language Model Based Agents: A
Survey. CoRR abs/2309.07864 (2023). https://doi.org/10.48550/ARXIV.2309.07864
arXiv:2309.07864

Chungiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang.
2024. Agentless: Demystifying LLM-based Software Engineering Agents.

12

[45]

[46

(48]

[49]

[51

[52

Xinchen Wang!*, Pengfei Gao?, Xiangxin Meng?, Ruida Hu'*, Chao Pengﬁ, Yun Lin®, Cuiyun Gao!?

CoRR abs/2407.01489 (2024).
arXiv:2407.01489

Chungqiu Steven Xia and Lingming Zhang. 2024. Automated Program Repair
via Conversation: Fixing 162 out of 337 Bugs for $0.42 Each using ChatGPT.
In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software
Testing and Analysis (Vienna, Austria) (ISSTA 2024). ACM, New York, NY, USA,
819-831. https://doi.org/10.1145/3650212.3680323

Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and
Lu Zhang. 2017. Precise condition synthesis for program repair. In Proceedings of
the 39th International Conference on Software Engineering, ICSE 2017, Buenos Aires,
Argentina, May 20-28, 2017, Sebastian Uchitel, Alessandro Orso, and Martin P.
Robillard (Eds.). IEEE / ACM, 416-426. https://doi.org/10.1109/ICSE.2017.45
Jifeng Xuan, Xiaoyuan Xie, and Martin Monperrus. 2015. Crash reproduction via
test case mutation: let existing test cases help. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy,
August 30 - September 4, 2015, Elisabetta Di Nitto, Mark Harman, and Patrick
Heymans (Eds.). ACM, 910-913. https://doi.org/10.1145/2786805.2803206

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao,
Karthik Narasimhan, and Ofir Press. 2024. SWE-agent: Agent-Computer In-
terfaces Enable Automated Software Engineering. CoRR abs/2405.15793 (2024).
https://doi.org/10.48550/ARXIV.2405.15793 arXiv:2405.15793

Juyeon Yoon, Robert Feldt, and Shin Yoo. 2023. Autonomous Large Language
Model Agents Enabling Intent-Driven Mobile GUI Testing. CoRR abs/2311.08649
(2023). https://doi.org/10.48550/ARXIV.2311.08649 arXiv:2311.08649

Zhigiang Yuan, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, Xin
Peng, and Yiling Lou. 2024. Evaluating and Improving ChatGPT for Unit
Test Generation. Proc. ACM Softw. Eng. 1, FSE (2024), 1703-1726. https:
//doi.org/10.1145/3660783

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. 2024.
AutoCodeRover: Autonomous Program Improvement. In Proceedings of the 33rd
ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2024, Vienna, Austria, September 16-20, 2024, Maria Christakis and Michael Pradel
(Eds.). ACM, 1592-1604. https://doi.org/10.1145/3650212.3680384

Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang, and William
G. J. Halfond. 2019. ReCDroid: automatically reproducing Android application
crashes from bug reports. In Proceedings of the 41st International Conference
on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019,
Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 128-139.
https://doi.org/10.1109/ICSE.2019.00030

https://doi.org/10.48550/ ARXIV.2407.01489

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

1392

https://doi.org/10.1561/1500000019
https://doi.org/10.1007/978-3-319-99241-9_18
https://doi.org/10.48550/ARXIV.2402.02172
https://arxiv.org/abs/2402.02172
https://doi.org/10.1145/3650212.3680341
https://doi.org/10.1145/3627673.3680016
https://doi.org/10.1145/3627673.3680016
https://doi.org/10.48550/ARXIV.2309.07864
https://arxiv.org/abs/2309.07864
https://doi.org/10.48550/ARXIV.2407.01489
https://arxiv.org/abs/2407.01489
https://doi.org/10.1145/3650212.3680323
https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.1145/2786805.2803206
https://doi.org/10.48550/ARXIV.2405.15793
https://arxiv.org/abs/2405.15793
https://doi.org/10.48550/ARXIV.2311.08649
https://arxiv.org/abs/2311.08649
https://doi.org/10.1145/3660783
https://doi.org/10.1145/3660783
https://doi.org/10.1145/3650212.3680384
https://doi.org/10.1109/ICSE.2019.00030

	Abstract
	1 INTRODUCTION
	2 MOTIVATION
	3 PROPOSED FRAMEWORK
	3.1 Bug-related Context Summarization Module
	3.2 FSM-guided Script Generation Module

	4 EXPERIMENTAL SETUP
	4.1 Dataset
	4.2 Comparative Methods
	4.3 Implementation Details
	4.4 Evaluation Metrics

	5 EXPERIMENTAL RESULTS
	5.1 RQ1: Effectiveness of AEGIS in Bug Reproduction
	5.2 RQ2: Effectiveness of Different Modules in AEGIS
	5.3 RQ3: Influence of Hyper-parameters on the Performance of AEGIS

	6 DISCUSSION
	6.1 Case Study
	6.2 AEGIS's Effect on Bug Fixing
	6.3 Impact of Searching Tools on the Performance of AEGIS
	6.4 Threats and Limitations

	7 RELATED WORK
	7.1 Automatic Bug Reproduction
	7.2 LLM-based Agent

	8 CONCLUSION
	References

