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Abstract

Automatically reproducing bugs in issue descriptions helps devel-
opers pinpoint and fix bugs timely, greatly facilitating the software
development and maintenance. Built upon the powerful under-
standing capabilities of large language models (LLMs), agent-based
approaches have achieved the state-of-the-art performance in the
task. They generally leverage LLMs as the central controller to first
retrieve bug-related information as context and then generate bug
reproduction scripts. During the script modification process, agent-
based approaches modify the script iteratively until the execution
information reflects the bug accurately or the iterative turns are
exhausted. Nevertheless, the agent-based approaches still face the
following challenges: (1) Lengthy retrieved bug-related infor-
mation: The retrieved bug-related information is usually long in
length and contains irrelevant snippets, which is hard to be well
comprehended by LLMs. (2) Lack of guidance in bug reproduc-
tion script generation: They generally modify bug reproduction
scripts randomly and tend to generate repeated or spurious modifi-
cations, leading to bug reproduction failure.

To address the above challenges, in this paper, we propose an
automated bug reproduction script generation framework named
AEGIS. AEGIS consists of two main modules: (1) Bug-related con-
text summarization module, aiming at condensing the retrieved
information into structural context through further reranking and
summarization. (2) Finite state machine (FSM)-guided script
generation module, which aims at guiding the script modification
process with proposed FSM which contains predefined modification
rules. Extensive experiments on SWE-Bench, one public benchmark
dataset, and six baseline methods show that AEGIS achieves the
best performance in the task, exceeding the best baseline by 19.0%
with respect to the bug reproduction rate. Besides, we deploy AEGIS
in five internal repositories of ByteDance. During the three-month
deployment period, it successfully reproduces 12 bugs and assists
developers in implementing fixes.

* Work done during an internship at ByteDance.
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1 INTRODUCTION

Reproducing bugs in issue descriptions is essential to localize bugs
and implement corresponding fixes. Existing surveys [9, 22] in-
dicate that writing bug reproduction scripts closely aligns with
developers’ needs, as these scripts assist developers in compre-
hending the bugs and preventing their recurrence. Kang et al.[21]
conduct a study on 300 popular Java projects and find that up to
28% of the test cases are related to bug reproduction. Besides, the
execution information [23] obtained from running these scripts
aids in more precise bug localization, thereby improving automated
debugging tools’ [25, 46] performance. These findings imply that
writing bug reproduction scripts to verify bug fixes has become a
standard workflow for developers and can greatly enhance software
development and maintenance efficiency.

Manually writing bug reproduction scripts is time-consuming
and automated bug reproduction approaches have garnered increas-
ing attention. Previous bug reproduction approaches [6, 11, 13, 32,
38, 47] focus primarily on reproducing crashes, which represent
only a subset of bugs, and these approaches struggle to compre-
hend the semantic information in issue descriptions. Given the
powerful text understanding and generation capabilities of large
language models (LLMs), LLM-based approaches achieve promis-
ing results in the bug reproduction task [21]. However, they can
only generate scripts in a single attempt and cannot interactively
modify them based on execution information, leading to limited per-
formance [21]. In contrast, agent-based approaches [5, 28, 40, 48],
which can interact with the environment by invoking external tools,
have shown great potential in bug fixing. The initial and critical
step in these approaches is bug reproduction. They leverage LLMs
as the central controller to first retrieve bug-related information
as context and then generate bug reproduction scripts. During the
script modification process, agent-based approaches make iterative
modifications until the execution information accurately reflects
the bug or the iterative turns are exhausted. These agent-based
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Title:
Mutti-level FilteredRelation with select_related() may set wrong related object. :

[def test_wrong_select_related(self): emmmmmmmmmmmm T T T T | *
with self.assertNumQueries(3):... s|mply copy

Result:

##T hought: Now | will create the bug reproduction script.
##Action: diff django/test_bug_reproduce.py
Recommended test case: |__,| + def test wrong select related(self):

=" with self.assertNumQueries(3):

+ 060
##Observation: Modified successfully. Turn 11

FAIL: test_wrong_select_related

(known_related_objects.tests.ExistingRelatedInstancesTests.test_wrong_select_related)
Traceback (most recent call last):

File "D:\Work\django _related_obj
test_wrong_select_related...

py", line 171, in
Issue Description

##Thought: | will modify the script ...

##Action: diff django/test_bug_reproduce.py

+ tournament_pool=FilteredRelation('pool_tournament__pool’),

- tournament_pool=FilteredRelation('pool_tournament’),

##Observation: Modified successfully. Turn13

##Thought: | will retrieve the identifier 'pool' mentioned in the issue.
##Action: grep -rn 'pool’
##Observation:
[1] tests/gis_tests/test_geoforms.py:18: class Pool(models.Model):
[2] tests/known_related_objects/tests.py:98: pool = style.pool

##Thought: Before editing the test, | will first modify this file ...

##Action: diff django/db/models/sql/compiler.py

+ "local_setter": partial(local_setter, final_field) if len(joins) <= 2

- "local_setter": partial(local_setter, final_field),

##Observation: Modified successfully. Turn 15

generated by ®

[327] o&fa/cache/backends/redis. py:84: self._client... Turn1

##Thought: Then, | wantto view the tests.py in the repository.
##Action: find -name "tests.py"

##Thought: | will modify the script ...

##Action: diff django/test_bug_reproduce.py

+ tournament_pool=FilteredRelation('pool__tournament’),

- tournament_pool=FilteredRelation( 'pool_tournament_ pool’),

SWE-AGENT E
—

incorrect script

##Observation:
bash_completion/tests.py sites_framewort py model_r Py
m2o_recursi' py model_inher 'tests.py humanize_f py - - N N
files/tests.py schemaltests.py contrib/admin/tests.py Turn3 ##Thought: | will modify the script to raise an error ...
##tAction: diff django/test_bug_reproduce.py
. N + tournament_pool=FilteredRelation('pool__tournament__pool’),
##Thought Let me review the repository structure ... + raise Asse;:ionEr‘ror‘( "Test Faileé sm to set wrmg*oﬁject-?)
##Action: Is django - tournament_pool=FilteredRelation(’pool_tournament_pool’),
##Observation: ##Observation: Modified successfully. Turn 19
AUTHORS django eslint.config.mjs Gruntfile.js js_tests
LICENSE.python package.json README.rst tests docs ... Turn 6
##Thought:| will execute the script ...
##Thought: | will review the query_tils.py ##Action: python3 djangoltest_bug_reproduce.py
##Action: open django/db/models/query_utils.py ##Observation: AssertionError: "Test failed" Turn 20
##Observation:
[1] from django.db.models import FilteredRelation
[2] from django.test import TestCase ##Thought:l have reproduced the bug since it failed.
(494 lines total) Turn10 ##Action: Submit the bug reproduction script Turn 21

lengthy retrieved information

|
|
|
I
|
|
I
|
|
|
|
|
I ##Observation: Modified successfully. Turn17
|
|
I
|
|
|
|
I
|
|
I
|

script modification with lack of guidance

(a) Multi-turn interactions of SWE-AGENT during the bug reproduction process.

Zeu retrieved information %

“FilteredRelation": The class may misconfigure or incorrectly implement the select related :

mechanism, failing at multi-level filtering, causing related instances to be attributed incorrectly.

##Thought: | should modify the file to reproduce the bug.
##Action: diff django/db/models/query_utils.py
##Observation: Your modification involve other files, which is not permitted, you

def build_filtered_relation_gq(
self, g_object, reuse, branch_negated=False, ... Turn 10

is outputted by the raise AssertionError("Test failed due to set wrong object")’, and itis
not permitted...

django/db/models/query_utils.py should ...
class FilteredRelation: UENME,
def __init_ (self, relation_name, *, condition=Q()):... | —— - — - generated by D
_filtered_relation_q': Constructs SQL where clauses for FilteredRelation objects. ig:ﬁ;gh;;‘m! |r:l\;|:ie'yog!::1e\$‘|:2:orsuto v’:n?olgsf:ecunon (ETEL 00 oo AEGIS
Mismanagement of subordinate relations in multi-level contexts can set wrong related objects, ﬂ#obser;/aﬁm' The execljniog inforrrTaho?\_don st re';g reflect the bug, because the it EEEE——
causing test failures. - )

Tarn17 correct script

condensed retrieved information

|
|
django/db/models/sql/query.py I
|
|
1

script modification with guidance

(b) Multi-turn interactions of AEGIS during the bug reproduction process.

Figure 1: Comparison of bug reproduction between using SWE-AGENT and AEGIS: the issue description in (a) includes the
bug that needs to be reproduced and the recommended test case. The number of each turn represents the relative order of
interaction turns. The actions marked in cyan are the LLM agent’s interaction with the environment. Blue boxes represent the
modifications of the reproduction script, while yellow boxes indicate the modifications of other functional files. The dashed
arrow indicates that SWE-AGENT simply copies the code snippet in the issue description.

approaches demonstrate the state-of-the-art performance in the
bug reproduction task [31].

However, existing agent-based approaches [5, 40, 48] still face
the following challenges: (1) Lengthy retrieved bug-related in-
formation: Agents retrieve bug-related information to localize
and comprehend bugs. However, the retrieved information is usu-
ally lengthy and contains numerous irrelevant snippets, increasing
agents’ contextual understanding burden [24]. (2) Lack of guid-
ance in bug reproduction script generation: During the script
modification process, agents generally modify bug reproduction
scripts randomly and tend to make repeated or spurious modifi-
cations. These modifications may deviate the script reproduction
process [26], leading to bug reproduction failure.

To address the above challenges, we propose an Agent-based
framEwork for Generating bug reproductIon Scripts from issue
descriptions, named AEGIS. AEGIS consists of two main mod-
ules: (1) Bug-related context summarization module: We first

retrieve bug-related information from the code repository. Then
we condense the retrieved information into the structural context
through further reranking and summarization. (2) Finite state
machine (FSM)-guided script generation module: We propose
an FSM that contains predefined modification rules, aiming at well
guiding the script modification process. Extensive experiments on
the SWE-Bench benchmark [19], one public benchmark, and six
baseline methods demonstrate the superior performance of AEGIS
in the task, exceeding the best baseline by 19.0% with respect to
the bug reproduction rate. In addition, AEGIS has been deployed in
five internal repositories of ByteDance for three months. During
this period, AEGIS generates bug reproduction scripts for emerg-
ing bugs to assist developers in debugging, further illustrating its
effectiveness in practice.

In summary, the major contributions of this paper are summa-
rized as follows:
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AEGIS: An Agent-based Framework for Bug Reproduction from Issue Descriptions

(1) We propose AEGIS, a novel agent-based bug reproduction
framework, which involves a bug-related context summa-
rization module for constructing a condensed and structural
bug-related context and an FSM-guided script generation
module for guiding the script modification process under
predefined modification rules utilizing the proposed FSM.

(2) We conduct extensive experiments on AEGIS and the results
demonstrate the effectiveness of AEGIS in bug reproduc-
tion.

(3) We deploy AEGIS in internal repositories of ByteDance
to assist developers in localizing and fixing bugs timely,
demonstrating its effectiveness in practice.

The remaining sections of this paper are organized as follows.
Section 2 reveals agent-based approaches’ challenges in the bug
reproduction task. Section 3 presents the architecture of AEGIS.
Section 4 describes the experimental setup, including datasets, base-
lines, and experimental settings. Section 5 presents the experimental
results and analysis. Section 6 further discusses AEGIS’s effective-
ness in bug reproduction and bug fixing, as well as the threats
to validity. Section 7 introduces the background of automatic bug
reproduction and LLM-based agent. Section 8 concludes the paper.

2 MOTIVATION

In this section, we explore the challenges of agent-based approaches
by analyzing the failure case of SWE-AGENT [48], one advanced
agent-based approach for the bug reproduction task. Agent-based
approaches utilize LLMs to conduct the multi-turn interactions
with the environment. During each interaction, the LLM agent re-
sponds with “thought” and “action”, respectively, where “thought”
represents its reasoning analysis of the environment feedback and
“action” represents the command to be executed. The actions are
executed within the environment, and the corresponding environ-
ment feedback is collected as input (i.e., “observation”) to the LLM
agent in the next interaction.

Figure 1 (a) illustrates the bug reproduction process by SWE-
AGENT for the issue “django-16408"1. The issue description includes
the title, the recommended test case, and the result. SWE-AGENT
needs to leverage this information to generate the bug reproduction
script. In turns 1, 3, 6, and 10, SWE-AGENT invokes the “grep -r”
command (returning 327 lines), calls “find” to search test files, uses
“1s” to observe the repository structure, and browses bug-related
files (494 lines), respectively. SWE-AGENT examines the repository
structure first, looking for files related to bug localization before
attempting to reproduce the bug. However, the retrieved informa-
tion is often lengthy and contains irrelevant snippets, increasing
the agent’s contextual burden.

Although SWE-AGENT observes the repository and retrieves a
great amount of information between turn 1 and turn 10, it fails to
utilize this information for bug reproduction. It merely copies the
recommended test case from the issue description in turn 11 and
ignores the initialization of the involved classes. This indicates that
the lengthy retrieved information is difficult for LLMs to compre-
hend and utilize effectively, leading to the previous searches being
unproductive.

https://code.djangoproject.com/ticket/34227
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Input (a) Bug-related context summarization module
N
? Issue description Code repositol

__\I | p pository
Issue description Bug description Buggy code

) (1) Retrieve

g Recommended test case Bug-related test -

(2) Rerank

Code repository

(3) Summarize | Cyrrent and expected result Relevance explanation

l Create }~—
i
H Execute l
[ f )
Report Ext |-Veri Self-Veri
Generate\ epol )‘—{ xternal enfy)'—{ elf-Verify l

&
Restart
D 3 ]
[ Modiy

Generated bug
reproduction script

Output (b) FSM-guided script generation module

Figure 2: The architecture of AEGIS. It consists of two mod-
ules: (a) a bug-related context summarization module for
condensing the retrieved bug-related information into struc-
tural context and (b) an FSM-guided script generation module
for guiding the script modification process based on prede-
fined modification rules.

From turn 13 to turn 21, SWE-AGENT randomly modifies the
bug reproduction script. In turn 13 and turn 17, SWE-AGENT makes
repeated modifications, resulting in unproductive iteration turns.
In turn 15, SWE-AGENT modifies the functional file, which is not
allowed as it violates the original functionality. In turn 19, SWE-
AGENT adds the “raise AssertionError (‘Test failed due
to set wrong object’)” statement in the reproduction script
to spuriously “reproduce” the same bug. This indicates that SWE-
AGENT struggles to modify the bug reproduction script effectively
and tends to make repeated and spurious modifications, leading to
bug reproduction failure.

From the above case, we demonstrate that agent-based approaches
often retrieve lengthy bug-related information, which makes it dif-
ficult to comprehend and utilize the relevant details. Besides, they
tend to generate repeated or spurious modifications due to the lack
of guidance in bug reproduction script generation. Therefore, in this
paper, we propose a novel agent-based framework to mitigate these
challenges and improve the performance in the bug reproduction
task.

Figure 1 (b) illustrates the bug reproduction process by AEGIS.
Based on the retrieved bug-related information, the LLM agent
reranks the code snippets and summarizes information according
to their relevance with the bug in turn 10, producing condensed
information. This condensed information displays methods, classes,
and files, allowing AEGIS to avoid interference from lengthy and ir-
relevant information. In turn 14, the LLM agent attempts to modify
functional files but is constrained by our predefined modification
rules. In turn 17, we introduce external verification to offer guid-
ance and avoid spurious modifications. Eventually, the LLM agent
successfully reproduces the bug.

3 PROPOSED FRAMEWORK

In this section, we introduce the general framework of AEGIS.
As shown in Figure 2, AEGIS consists of two main modules: (1)
Bug-related context summarization module, which condenses the
retrieved bug-related information into structural context through
reranking and summarization, (2) Finite state machine (FSM)-guided
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script generation module, which guides the script modification
process utilizing proposed FSM and predefined modification rules.
Given the issue description and code repository as inputs, the output
of AEGIS is the bug reproduction script.

3.1 Bug-related Context Summarization Module

In this module, AEGIS employs an LLM agent to retrieve, rerank,
and summarize bug-related context based on the issue description
and code repository.

Retrieve: We employ the Abstract Syntax Tree (AST) to parse the

files in the code repository and extract their code structures, includ-
ing methods, classes, and identifiers. To facilitate fine-grained code
retrieval, we design a set of search tools including “search_method”,
“search_class”, and “search_identifier”.
When the LLM agent invokes these search tools, search requests
are processed locally based on the parsed files, and the results are
then fed back to the LLM agent as the retrieved context. Besides
these search tools, the LLM agent can also utilize bash commands
like “1s”, “grep”, and “find”.

Rerank: The retrieved context Cretrieve cOnsists of numerous
code snippets. Let Cretrieve = {€1, €2, - - -, cn} be the set of retrieved
code snippets. The LLM agent reranks these snippets according to
their relevance to the issue description and repeats this process m
times independently. This results in rankings Ry, Ry, . . ., Ry, Each
R; is a vector representing the rank positions of code snippets:

Ri=(rit,riz,....,rin) fori=1,2,....m (1)

Here, r;; denotes the rank position of the j-th code snippet in the i-
th ranking, where r;; is an integer from 1 to n. The average ranking
Rayg is computed using the equation:

1 1 1
Ravg= Ezribgzri%nwazrin ()
i=1 i=1 i=1

Then, we obtain the reranked context Cyepank by sorting the code
snippets according to Rayg:

Crerank = Sort(cretrieve’Ravg) (3)

Summarize: Based on the reranked context Ciepank, the LLM
agent filters out lengthy and irrelevant code snippets and condenses
the remaining snippets along with the issue description to obtain
the following summarized bug-related context:

(1) From the issue description: (D) Bug description: A clear
and detailed description of the bug, which helps the LLM agent
comprehend the issue. 2) Recommended test case: If the issue de-
scription already contains the recommended test case, the LLM
agent can leverage this information to help generate the reproduc-
tion script. 3) Current result and expected result: Analysis of the
current result caused by the bug and the expected result after fixing
the bug, which helps verify whether the execution information
reflects the bug accurately.

(2) From the code repository: (D Buggy code: Code snippets
that are likely to cause the bug. @) Bug-related test: Test cases
that can be reused directly or are relevant for reproducing the
bug. @ Relevance explanation: The detailed explanation of the
relevance between the buggy code, bug-related test, and the bug.
Such explanations help LLM agents better leverage these code
snippets for bug reproduction.

Xinchen Wang!*, Pengfei Gao?, Xiangxin Meng?, Ruida Hu'*, Chao Pengﬁ, Yun Lin®, Cuiyun Gao!?

Example of the Summarized Bug-related Context

## Bug Description
Error message prints extra code line when using assert in python3.9.

The test "test_right_statement" fails at the first assertion,but print extra code (the "t" decorator)
in error details...
## Recommended test case:
***python
def test_right_statement(foo):

assert foo == (3 + 2) * (6 + 9)

et

def inner():

return 2
assert 2 == inner

## Current Result

The current result includes extra inline code lines due to the issue in line number calculations
within the "getstatementrange_ast" function.

## Expected Result

The expected result is the error message should not print the decorator line when the assertion
fails, ensuring accurate line number calculations in error messages.

From Code Repository

## Buggy Code
pytest-dev__pytest/src/_pytest/_code/source.py

[96] |def getstatementrange(self, lineno: int) -> Tuple[int, int]:

[97] ""“Return (start, end) tuple which spans the minimal statement region
[98] which containing the given lineno."""

## Bug-related Test

pytest-dev__pytest/testing/code/test_source.py

[179] | def test_getstatementrange_bug2(self) -> None:

[180] source = Source("""assert (33==[X(3,b=1, c=2),])""")
[181] assert len(source) == 9

[182] assert source.getstatementrange(5) == (8, 9)

#H#

1. Buggy Code : The ™ trange_ast’, ‘get_: t_startend2’, and
“getstatement’ functions are related to the issue, because they handle the calculation of source
code ranges and statement boundaries.

2. Bug-related Tests The “test_ _bug2' test is related to the
issue, because it includes tests for assertions spanning multiple lines, which mirrors the
described error scenario for Python 3.9.

Figure 3: The example of the summarized bug-related con-
text, including the bug-related information from the issue
description and the code repository.

Figure 3 shows an example of the summarized bug-related con-
text after retrieving, reranking, and summarizing. This structural
context serves as the input for the next module.

3.2 FSM-guided Script Generation Module

In this module, we propose a finite state machine (FSM) to guide
LLM agents in generating bug reproduction scripts. We first intro-
duce the complete formulation of our proposed FSM, then describe
the process of FSM-guided script modification.

3.2.1  Formulation of the proposed FSM. FSM [3] is a computational
model representing a process with a finite number of states and
the transitions between these states. It can guide and constrain the
actions of the LLM agent, helping to prevent the LLM agent from
generating repeated or spurious modifications. As illustrated in
Figure 4, our proposed FSM is defined as a 5-tuple (Q, %, 6, qo, q4),
comprising the following components:

(1) State Set O = {q0, 91, 92, 93, 94, g5, ¢ } denotes the different
states of the LLM agent during the script modification process,
which are Create, Execute, Self-Verify, External-Verify, Report, Modify,
and Restart, respectively.

(2) Input Condition 3 = {a,b,c,d, e, f,g, h, i, j, k, I} represents
the conditions that the LLM agent satisfies. Specifically, once the
LLM agent takes an action, one certain condition will be satisfied.

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

449

461
462
463

464



465

466

467

468

469

470

471

472

473

474

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

AEGIS: An Agent-based Framework for Bug Reproduction from Issue Descriptions

##Thought: | have tried many modifications but it does not work.

l: Restart Finished

FSE 2025, June 23-27, 2025, Trondheim, Norway

##Action: restart

##State: Restart ... é‘ 96
##Observation: Your modification attempts
is exceeded, you should transition to: k: Exceeded Check Fail
##State: Restart @

##Thought: | will modify the bug reproduction script.

##Observation: You need to start from scratch

and transition to:
##State: Create

j: All Checks Pass

##Thought: | will create the bug reproduction script.
##Action: diff django/reproduce.py
\\qo ##State: Create... <k

@ .. ##Observation: You have created the initial script,
a: Create Finished now you should transition to: @
##State: Execute

##Action: diff django/reproduce.py && check qs
#State: Modify ... [ /

##Observation: Your modification has syntax

hould remain; -
ot Moy & g: Syntax Check Fail

##Observation: You have modified the script, now \

you should transition to:
##State: Execute

e: Self Verify Fail

f ##Thought: | will execute the bug reproduction script.
##Action: python django/reproduce.py
0 ##State: Execute. .. |F_'T||

##Observation: You have executed the

b: Execute Finished script, now you should transition to:
#State: Self-Verify @

##Observation: Your modification is h: Repeated Check Fail
repeated, you should remain: @
#isState: Modify

i: Authorized Check Fail

##Observation: You modification is unauthorized, you

##Observation: Reproduction failed, now you

should transition to:
##State: Modify

f: External Verify Fail

K) ##Thought: | will verify whether the execution messages reflect the bug ...
2

##Action: self_verified
\q v =l

#i#State: Self-Verify...
@ . ##Observation: You have verified that the bug has been
c:Self Verify Pass reproduced successfully, now you should transition to:
##State: External-Verify E

should remain:

##State: Modify @
##Observation:
##State: @ Environment feedback @ @ State

##Thought:

g‘s*fa“'zf_‘: Ilii Agentresponse —— Condition

##Observation: Reproduction failed, now you
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#H#State: Modify

Generated bug
reproduction script

f ##Thought: | will invite external referee to verify the bug reproduction script.

q3 ##Action: double_verified E

##State: External-Verify. .. {0

@ ##Observation: You reproduce the bug

d: External Verify Pass successfully, now you should transition to:
##State: Report @

##Thought: | have reproduced the bug successfully and | will report this result.
##Action: submit
94 ##State: Report... |é||

Figure 4: The proposed finite state machine (FSM). Each circle represents a state, with the blue circle gy indicating the initial
state, g4 indicating the final state, and g¢ indicating the restart state. Each green box and blue box represents environment
feedback and agent response, respectively, with The dark background text indicating the current state. Specifically, in the state
g5, when any of the conditions g, h, or i is satisfied, the LLM agent will stay in the current state.

The conditions we define include Create Finished, Execute Finished,

Self Verify Pass, etc.

(3) Initial State g (Create) represents the starting point where
the LLM agent begins to create the reproduction script based on

the summarized bug-related context.

(4) Accepting State g4 (Report) indicates the point at which the
LLM agent successfully reproduces the bug and reports success. It

is the final state of the FSM.

(5) Transition function 6 = Q X ¥ — Q describes how the
LLM agent transitions between different states when certain condi-
tions are satisfied. The detailed transition function of the FSM is as

follows:
At state g (Create)

8(qo, a) = q1: Instate qo, the LLM agent creates the initial
script. Once the script is created, the condition a (Create
Finished) is satisfied, and the LLM agent transitions its state

to q1 (Execute).
At state q; (Execute)

8(q1,b) = q2: Instate g1, the LLM agent executes the script
and obtains the execution information. After that, the con-
dition b (Execute Finished) is satisfied and the LLM agent
transitions its state to gz (Self-Verify).

At state g (Self-Verify)

In state g2, the LLM agent verifies the execution informa-
tion from g3 to determine whether it accurately reflects the
bug.

8(q2,c) = gq3: If the bug is accurately reflected, the con-
dition c (Self Verify Pass) is satisfied, and the LLM agent
transitions its state to q3 (External-Verify).

6(q2,e) = ¢q5: Otherwise, the LLM agent should explain
the reasons for bug reproduction failure. In this case, the
condition e (Self Verify Fail) is satisfied and the LLM agent
transitions its state to gs (Modify).

At state g3 (External-Verify)

In state g3, we leverage another independent LLM agent
to act as an external judger. Given the current bug repro-
duction script from gy, the corresponding execution infor-
mation from gj, and the summarized bug-related context
from 3.1, this external judger determines whether the exe-
cution information reflects the bug accurately.

8(q3,d) = qa: If the external judger believes that the re-
production script accurately reflects the bug, the condition
d (External Verify Pass) is satisfied, and the LLM agent tran-
sitions its state to the accepting state q4 (Report).

6(q3, f) = g5: Otherwise, the external judger should ex-
plain the reasons for bug reproduction failure. In this case,
the condition g (External Verify Fail) is satisfied, and the
LLM agent transitions its state to g5 (Modify).

At state g4 (Report)

In state g4, the LLM agent submits the generated bug re-
production script and reports success to indicate that it
successfully reproduces the bug.

At state g5 (Modify)

In state g5, the LLM agent analyses the explanations for bug
reproduction failure from g3 or g3, or the checking reports
from gs itself, and provides the proposed modification. Be-
fore applying the modification, we perform the exceeded,

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

556
557
558
559
560
561
562



592

595

596

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

FSE 2025, June 23-27, 2025, Trondheim, Norway

syntax, repeated, and authorized checks. If all of them pass,
the modification is applied.

8(qs, k) = q¢: For the exceeded check, we count the num-
ber of applied modifications in the modification history. If
the number reaches the predefined limit, the condition k
(Exceed Check Fail) is satisfied and the LLM agent transi-
tions its state to g (Restart).

8(gs, g) = qs: For the syntax check, we leverage syntax-
checking tools to verify the correctness of the proposed
modification’s syntax. If it contains syntax errors, the con-
dition i (Syntax Check Fail) is satisfied. Thus, the LLM agent
remains in its state at gs. The tools also provide a detailed
checking report, including the error code and the types of
errors.

8(qs, h) = gq5: For the repeated check, we evaluate whether
the proposed modification results in the same script as
any previous version in the modification history. If so, the
condition h (Repeated Check Fail) is satisfied and the LLM
agent remains in its state at g5. We further provide the LLM
agent with a checking report, which clarifies the reasons
for considering the modification as repeated. The report
also includes a consolidated context of the modification
history.

8(qs, i) = qs5: Forthe authorized check, we evaluate whether
the LLM agent attempts to modify files in the original code
repository instead of the generated script. If so, the con-
dition i (Authorized Check Fail) is satisfied and the LLM
agent remains in its state at gs. We further provide the LLM
agent with a checking report, which clarifies the reasons
for considering the modification as unauthorized.

8(qgs, j) = q1: If the proposed modification passes all four
checks above, we apply it to the current script. Hence, the
condition j (All Checks Pass) is satisfied and the LLM agent
transitions its state to q1 (Execute).

At state g (Restart)

8(qe,1) = qo: In state g¢, the LLM agent summarizes the
explanation for the bug reproduction failure from states g2
and g3. Besides, we clear the current script and its modifica-
tion history, preparing the LLM agent to restart and create
a new script. In this case, the condition [ (Restart Finished)
is satisfied. Therefore, the LLM agent transitions its state
to qo (Create).

3.22 FSM-guided script modification process. Figure 4 illustrates
the script modification process guided and constrained by our pro-
posed FSM. In each interaction with the environment, the LLM
agent’s response includes thoughts, actions, and the current state.
We extract actions and the current state from LLM agent’s response
and then execute actions in the environment. Based on the current
state and conditions satisfied by executing the actions, we guide
the LLM agent using environment feedback.

This feedback includes the “observation” to explain satisfied con-
ditions and provide additional information, such as script execution
details, explanations for bug reproduction failure, and checking
reports on failed modification checks. It also includes the “state”,
which details the next state and required actions in the next state.
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Based on environment feedback, the LLM agent transitions be-
tween different states and iteratively modifies the script. To prevent
the script modification process from becoming an endless loop, we
limit the maximum number of restarts. If the number of restarts
reaches this limit, the LLM agent stops and outputs the current bug
reproduction script.

4 EXPERIMENTAL SETUP

In this section, we evaluate AEGIS and aim to answer the following
research questions (RQs):

RQ1: How does AEGIS perform in the bug reproduction task
compared with different methods?

RQ2: What is the impact of different modules on the perfor-
mance of AEGIS?

RQ3: How do the different hyper-parameters impact the per-
formance of AEGIS?

4.1 Dataset

To answer the questions above, we utilize the popular SWE-Bench [19]
dataset, which is designed to assess the capability of addressing
software engineering bugs. For faster and more cost-effective eval-
uation, we focus on a refined subset called SWE-Bench Lite. This
subset comprises 300 instances from SWE-Bench that have been
sampled to be more self-contained, ensuring a comparable range
and distribution of projects as the full dataset. Each instance in
SWE-Bench Lite includes an issue description of a bug, the corre-
sponding code repository containing the bug, and the patch to fix
the bug. Our goal is to generate bug reproduction scripts for each
instance in SWE-Bench Lite.

4.2 Comparative Methods

To evaluate the performance of our framework, we compare two
types of bug reproduction methods: LLM-based and agent-based.

4.2.1 LLM-based methods.

e ZEROSHOT [31] prompts the LLM with the issue descrip-
tion, bug-related context retrieved using BM25 [37], and
instructions to generate scripts in unified diff format.

e ZEROSHOTPLUS [31] is similar to ZEROSHOT but lever-
ages adjusted diff format, which allows entire functions or
classes to be inserted, replaced, or deleted.

e LIBRO [21] generates multiple candidate scripts based on
the issue description. It then executes all the generated
scripts and selects the one whose execution information
most accurately reflects the bug.

4.2.2 Agent-based methods.

o SWE-AGENT [48] comprises several principal components,
including search, file viewer, file editor, and context man-
agement. It is employed to fix bugs, and bug reproduction
is one of its stages.

o AUTOCODEROVER [51] consists of two distinct stages.
In the first stage, it is tasked with retrieving bug-related
code snippets. Then AUTOCODEROVER generates patches
based on the issue description and the retrieved context,
retrying until the patch is successfully applied.

639
640
641
642
643
644
645
646
647
648
649

650

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

696



697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753

754

AEGIS: An Agent-based Framework for Bug Reproduction from Issue Descriptions

Table 1: Comparison results between AEGIS, the LLM-based
methods, and the agent-based methods.

Method F—>XxP—>PF—>P
ZEROSHOT 38.8 3.6 5.8
LLM-based ZEROSHOTPLUS 55.4 7.2 10.1
LIBRO 60.1 7.2 15.2
AUTOCODEROVER| 438 7.6 9.1
Agent-based AIDER 576 87 | 17.0
SWE-AGENT 48.2 9.8 16.7
AEGIS 90.0 9.0 36.0

e AIDER [1] includes a repository indexing step to guide file
selection and proposes modifications in an edit block format.
Before a modification is applied, it undergoes validation via
syntax-checking tools.

4.3 Implementation Details

AEGIS is provided access to GPT40-2024-0513 [33] with the sam-
pling temperature set to 0.7. We limit the maximum number of
applied modifications per restart to 5 and allow up to 5 restarts
during the bug reproduction script generation process. Besides, we
construct environment-completed Docker images for each instance
in the SWE-bench Lite. For the comparison methods, we use their
default settings [31].

4.4 Evaluation Metrics

We leverage the bug reproduction rate to measure AEGIS’s perfor-
mance.

Bug Reproduction Rate (F — P): Following the prior study [31],
we consider a script to successfully reproduce the bug described in
the issue if it fails on the original code repository (i.e., before the
patch is applied) but passes on the patched repository (i.e., after the
patch is applied). We call this a fail-to-pass script. Hence, the bug
reproduction rate (F — P) measures the portion of instances where
the generated script is a fail-to-pass script. Besides, we consider a
script as a fail-to-any script if it fails on the original repository, and
as a pass-to-pass script if it passes on both the original and patched
repositories. We further measure the fail-to-any rate (F — X) and
the pass-to-pass rate (P — P) for a more comprehensive analysis.

5 EXPERIMENTAL RESULTS

5.1 RQ1: Effectiveness of AEGIS in Bug
Reproduction

To answer RQ1, we conduct a comprehensive comparative analysis
against three LLM-based methods and three agent-based methods.
The experimental results are shown in Table 1.

AEGIS exhibits superior performance compared with the
baseline methods. As shown in Table 1, AEGIS outperforms all
the baseline methods in terms of bug reproduction rate (F — P).
Specifically, AEGIS achieves an absolute improvement of 19.0% over
the best baseline method. Compared to the average performance of
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Table 2: Impact of the bug-related context summarization
module (i.e. BCS) and the FSM-guided script generation mod-
ule (i.e. FSG) on the performance of AEGIS.

Module |[F>x P—>P| F>P
w/o BCS | 907 8.0 |317]43
w/o FSG | 567 270 |123]237
w/o Modify-in-FSG | 847 140 |26.0 | 100
w/o Restart-in-FSG | 920 7.7 | 33327
w/o External-Verify-in-FSG ‘ 92.7 6.7 ‘ 35.0 | 1.0
AEGIS | 900 9.0 | 360

compared methods, AEGIS demonstrates an absolute improvement
of 23.7%. This is due to the ability of AEGIS to better leverage
bug-related information and guide the script modification process.
Overall, AEGIS can reproduce more bugs successfully, showcasing
its effectiveness.

Fail-to-any scripts matter for reproducing more bugs. When
considering the best-performing methods in the LLM-based and
agent-based baselines, LIBRO and AIDER, we find that these two
methods achieve the highest F — X metrics, 60.1% and 57.6% re-
spectively. Additionally, we observe that AEGIS achieves a much
higher rate in the F — X metric, reaching 90.0%, whereas the
best baseline method only reaches 57.6%. Under the constraints of
our proposed FSM and modification rules, the LLM agent aims to
make the bug reproduction script fail in the original code reposi-
tory. Although fail-to-any scripts are not always desirable, they are
essential for generating fail-to-pass scripts, as pass-to-any scripts
can never reproduce the bug. When considering the P — P metric,
AEGIS and agent-based methods show little difference, indicating
that some bugs are difficult to reproduce solely based on the issue
description, resulting in unhelpful scripts (i.e., pass-to-pass scripts).

Answer to RQ1: AEGIS achieves the best performance in
the bug reproduction task, exceeding the best baseline by
19.0% on the bug reproduction rate.

5.2 RQ2: Effectiveness of Different Modules in
AEGIS

To answer RQ2, we explore the effectiveness of different modules on
the performance of AEGIS. Specifically, we study the two involved
modules: the bug-related context summarization module (BCS) and
the FSM-guided script generation module (FSG).

5.2.1 Bug-related Context Summarization Module. To understand
the impact of this module, we deploy a variant of AEGIS without
the bug-related context summarization module (i.e., w/o BCS). This
variant generates the bug reproduction script based on the issue
description and the retrieved context without reranking and sum-
marizing. Table 2 shows the performance of this variant. Adding
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the bug-related context summarization module yields a 4.3% en-
hancement in the bug reproduction rate (F — P). Overall, the
results indicate that the bug-related context summarization module
enables the LLM agent to focus on a condensed context, thereby
improving its comprehension of the bug and better leveraging the
retrieved information.

5.2.2  FSM-guided Script Generation Module. To explore the contri-
bution of this module, we also construct a variant of AEGIS without
the FSM-guided script generation module (i.e., w/o FSG). This vari-
ant modifies the bug reproduction script without the guidance of
the proposed FSM. As illustrated in Table 2, adding the FSM-guided
script generation module yields a 23.7% enhancement in the bug
reproduction rate (F — P). This enhancement can be attributed to
the module’s capability to guide the LLM agent in avoiding repeated
and spurious modifications, thus leading to a constrained script
modification process. We also observe that this variant shows a
great decrease in the F — X metric to 56.7% and a notable increase
in the P — P metric to 27.0%. This indicates that without guidance,
the LLM agent is more likely to generate unhelpful scripts.

5.2.3 Different States in the Proposed FSM. To further investigate
the influence of different states within the proposed FSM, we design
three variants: one without Modify-in-FSG, one without Restart-in-
FSG, and one without External-Verify-in-FSG. These variants rep-
resent generating scripts in a single attempt without modification,
continuously modifying scripts until reporting success or exceeding
the maximum iterations, and verifying scripts’ execution informa-
tion without external verification, respectively. Table 2 shows the
performances of three variants. The states of Modify, Restart, and
External-Verify contribute to enhancements in the bug reproduction
rate (F — P) by 10.0%, 2.7%, and 1.0%, respectively. The Modify
state shows a notable improvement, suggesting that AEGIS can
iteratively optimize the reproduction scripts based on execution
information. The Restart state improves AEGIS’s performance by al-
lowing the exploration of diverse reproduction paths and avoiding
endless modifications. The External-Verify state enhances AEGIS’s
performance by providing external oversight, which helps prevent
the LLM agent from being misled by spurious modifications.

Answer to RQ2: Both BSG and FSG modules can improve
the performance of AEGIS. The BSG module boosts the
bug reproduction rate of 4.3% and the FSG module en-
hances AEGIS by 23.7%. Besides, different states within the
proposed FSM are essential to the bug reproduction.

5.3 RQ3: Influence of Hyper-parameters on the
Performance of AEGIS

To answer RQ3, we explore the impact of different hyper-parameters,
including the maximum number of restarts and the maximum num-
ber of applied modifications per restart during the script modifica-
tion process.

5.3.1 Maximum number of restarts. Figure 5 shows the perfor-
mance of AEGIS with different maximum numbers of restarts. As
the maximum number of restarts increases from 1 to 5, the bug
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Figure 5: The influence of the maximum number of applied
modifications per restart and maximum number of restarts
for AEGIS. The horizontal axis represents the number of
modifications per restart or the number of restarts.

reproduction rate (F — P) improves from 30.7% to 33.7%. This
suggests that more restarts allow LLM agents to explore diverse
bug reproduction paths and accumulate more failure experiences.
However, as the maximum number of restarts increases from 7
to 9, the bug reproduction rate stabilizes, indicating that further
increases have a limited impact on performance. This is likely be-
cause the LLM agents have already tried all possible reproduction
paths and cannot derive additional insights from the failure experi-
ences. Considering the balance between resource consumption and
performance, we choose 5 as the optimal number of restarts.

5.3.2  Maximum number of applied modifications per restart. Simi-
larly, as the maximum number of applied modifications per restart
increases from 1 to 5, the bug reproduction rate (F — P) rises
from 30.0% to 32.0%. This demonstrates that LLM agents can ef-
fectively leverage guidance from the proposed FSM to refine the
reproduction script. However, as the maximum number of modifica-
tions further increases from 5 to 9, the bug reproduction rate tends
to stabilize, indicating that further modifications become increas-
ingly challenging. This may be due to the involvement of multiple
methods and classes in reproducing bugs. To balance resource con-
sumption and performance, we select 5 as the optimal number of
applied modifications per restart.

Answer to RQ3: The performance of AEGIS is influenced
by the maximum number of restarts and the maximum
number of applied modifications per restart. Our default
settings yield optimal results.

6 DISCUSSION

6.1 Case Study

To further demonstrate the effectiveness of AEGIS in the bug repro-
duction task, we analyse three cases from SWE-Bench. The results
are shown in Figure 6.

Figure 6 (a) shows the bug reproduction process for the issue
“django-11964” . The LLM agent encounters difficulties in the script

Zhttps://code.djangoproject.com/ticket/30902
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## Part of the script modification procss

##Action: diff django/test_bug_reproduce.py [1] import flask
+ # 'testing.pkg', # Commented out the non-existent app [2] from flask import Flask
‘testing.pkg', # Replace with your actual app name [3]1 app = Flask(__name__)
" : - [4] def test_blueprint_name_wi
##Action: diff django/test_bug_reproduce.py ts]

+ apps = [MyAppConfig] t6]
+ django.setup()
django. setup()

##Action: diff django/test_bug_reproduce.py
+ call_command('migrate’, 'reproduce_app')
call_command('migrate’, ‘reproduce_app',run_syncdb=True)

##Action: diff django/test_bug_reproduce.py
+ 'myapp', # Adding a temporary app

- # 'testing.pkg', # Commented out the non-existent app
[1] import flask
##Action: diff django/test_bug_reproduce.py [2] from flask import Flask
+ call_command( 'makemigrations', '__main__") [3] app = Flask(__name__)
call_command('migrate’, '_main__', run_syncdb=True)
- call_command('migrate’, 'reproduce_app', run_syncdb=True) [4] def test_blueprint_name_wit

Correct Bug Reproduction Script

#4# Bug reproduction script only through self-verification

blueprint = Blueprint('test.blueprint', __name__)
raise AssertionError(“Blueprint name containing a dot
should have raised an error.")

## Guidance from external verification

The scripts raise a AssertionError because of the statement in
line 6 instead of triggering the bug correctly.

## Bug reproduction script through external verification

[s] blueprint = Blueprint('test.blueprint’, _ name_ )

(@) = 4 assert i te
Give up the current n 2 (6] app. register_blueprint (blueprint) el "Result should be a list or ndarray”
script and restart

[7] test_blueprint_name_with_dot()

## Issue Description

Issue when passing empty lists/arrays to WCS transformations

The following should not fail but instead should return empty
lists/arrays:

In [1]: from astropy.wcs import WCS

In [2]: wes = WCS('2MASS_h.fits') Execute the reproduction method
In [3]: wes.wes_pix2world([1, [1, @) after applying the patch

## Execution information of the existing reproduction method

Execution Information:
[array([], dtype=float64), array([], dtype=float64)]

—

#4# Part of the bug-related summarized context
##Expected result:

The expected result is that passing empty lists or arrays
to “wcs_pix2world® should return empty lists/arrays
without any errors.

## Generated bug reproduction script

[1] def test_wcs_pix2world_empty_lists(
(2] wes = WCS('2MASS_h. fits’)
3] result = wcs.wes_pix2world([], [1, @)

e(result, (list, np.ndarray)),

[s] assert len(result) == @,
"Result should be empty for empty input lists"

(a) An example from django-11964, illustrating
avoiding endless modifications through restart.

(b) An example from flask-4045, illustrating correcting
spurious modifications through external verification.

(c) An example from astropy-7746, illustrating generating
script based on the bug-related summarized context.

Figure 6: Examples for illustrating the effectiveness of AEGIS.

configuration and becomes stuck in endless modifications. Our pro-
posed FSM limits the number of modifications per restart, allowing
the LLM agent to restart and recreate the reproduction script. Af-
ter restarting, the LLM agent adopts an alternative configuration
method and successfully generates the correct bug reproduction
script. This example demonstrates that the restart helps avoid end-
less modifications and enables the LLM agent to explore diverse
bug reproduction paths.

Figure 6 (b) shows the bug reproduction process for the issue
“flask-4045” 3. The script verified only by the LLM agent fails to re-
produce the bug because it directly uses the “raise AssertionError”
statement to output the bug described in the issue. In our designed
FSM, the bug reproduction script and its execution information
undergo additional external verification. This external verifica-
tion provides guidance, indicating that “the scripts raise an As-
sertionError because of the statement in line 6 instead of trig-
gering the bug correctly”. Based on the guidance from external
verification, the LLM agent modifies the script by employing the
“app.register_blueprint(blueprint)” statement to trigger the
bug. This example shows that the external verification in our pro-
posed FSM can prevent the LLM agent from being misled by spuri-
ous modifications.

Figure 6 (c) shows the bug reproduction process for the issue
“astropy-7746” *. The issue description provides a bug reproduction
method. Based on the constructed bug-related summarized context,
the LLM agent expects the “wcs.wcs_pix2world” method to return
empty lists or arrays when given empty inputs. It uses “assert
isinstance()” and “assert len()” to validate the type and length
of the method’s return values. However, this bug reproduction script
triggers assert errors in both the original and patched code reposi-
tories. When we execute the bug reproduction method provided by
the issue description in the patched code repository, we find that the
execution information consists of “[array([1, dtype=float64),
array([], dtype=float64)]” instead of empty lists or arrays.
This indicates that the issue creator does not accurately describe the

3https://github.com/pallets/flask/issues/4041
4https://github.com/astropy/astropy/issues/7389

expected behaviour of the reproduction method. Although AEGIS
can meticulously generate bug reproduction script, such inappro-
priate issue descriptions are beyond its understanding capabilities.

Table 3: Effectiveness of AEGIS on bug fixing, including the
fix rates and the number of fixed bugs.

Method Fix Rate (%) # of Fixed Bugs
Agentless 273 82

+ w/ LLM Voting 23301 4.0 70 | 12
+w/ AEGIS 30.7 734 92710

6.2 AEGIS’s Effect on Bug Fixing

We explore the impact of AEGIS in the entire bug fixing pipeline.
Specifically, we apply AEGIS to the advanced bug fixing approach,
Agentless [44], and compare the performance before and after ap-
plying AEGIS. Besides, we deploy AEGIS in internal repositories of
ByteDance and help developers in localizing and fixing bugs.

For the Agentless approach, we leverage the bug reproduction
scripts to filter its generated patches. We prioritize patches that
cause the bug reproduction script to fail before applying the patch
and pass afterwards, as such patches are likely to fix the bug. If such
patches do not exist, we then select those that produce different
execution information before and after applying the patch, as such
patches may alter the execution path related to the bug. Besides,
we explore the effectiveness of leveraging LLM to select the most
suitable patch by providing the issue description and generated
patches. This approach is referred to as LLM Voting. As shown in
Table 3, leveraging the bug reproduction scripts generated by AEGIS
improves the performance of Agentless. Specifically, the number
of fixed bugs increases from 82 to 92, with the fix rate rising from
27.3% to 30.7%, showing a 12.5% relative improvement. This result
demonstrates the effectiveness of AEGIS in bug fixing. However,
LLM Voting results in a 4.0% decrease, as it is challenging for the
LLM to select the correct patch without execution information.
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Table 4: Impact of different search tools to AEGIS.

Method F—-x P—>P F—-P
AEGIS 90.0 9.0 36.0
AEGIS-BM25 93.0 6.0 347 | 1.3
AEGIS-BashCommand 91.0 8.3 34.0 | 2.0

We deploy AEGIS in five internal repositories of ByteDance,
covering multiple programming languages and involving over 200
developers. Other staff of ByteDance report issues in the issue track-
ing system when they encounter bugs in these repositories, and
ask developers for solutions. During the three-month deployment
period, AEGIS generates bug reproduction scripts for 25 bugs. Each
bug reproduction script is evaluated by three developers of its cor-
responding repository, and 12 of these scripts accurately reproduce
the bugs in the staff’s issue descriptions. The execution information
from these scripts helps developers localize the bugs and implement
fixes. Overall, AEGIS proves to be effective in facilitating bug fixing
in industrial practice.

6.3 Impact of Searching Tools on the
Performance of AEGIS

In this section, we design two variants to explore the impact of
different searching tools on AEGIS’s performance: AEGIS-BM25
and AEGIS-BashCommand. The AEGIS-BM25 variant leverages
BM25 [37] to obtain bug-related information from the code reposi-
tory based on the issue description, and the AEGIS-BashCommand
variant can only retrieve context through invoking bash commands.

As illustrated in Table 4, AEGIS achieves a slight enhancement
of 1.3% and 2.0% in the bug reproduction rate (F — P) compared to
AEGIS-BM25 and AEGIS-BugCommand, respectively. Both variants
show notable improvements over state-of-the-art bug reproduction
methods. This result indicates that AEGIS exhibits a weak depen-
dency on the capabilities of the searching tools, demonstrating
robustness and stability.

6.4 Threats and Limitations

Dataset Validity Concerns: SWE-Bench Lite’s scope is limited
because it is derived from only 12 popular repositories, and may not
cover all issue types and testing scenarios. Hence, the experimental
results based on this dataset may not be fully generalizable. In
future research, we intend to extend our investigations to more
repositories.

Result Variability: Due to AEGIS relying on LLM agents for
context retrieval and bug reproduction script generation, the exper-
imental results exhibit variability. We therefore conduct multiple
trials and average the results to obtain a more stable measure.

7 RELATED WORK
7.1 Automatic Bug Reproduction

Automatically reproducing bugs from issue descriptions helps de-
velopers localize and fix bugs in a timely manner, greatly enhanc-
ing software development efficiency. Prior bug reproduction ap-
proaches [6, 32, 38, 47] have explored reproducing specific types of
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bugs, such as those in Android applications [14, 17, 41], configuration-
triggered bugs [15], and program crashes [11, 13, 52]. However,
these bugs represent only a small subset of all bugs.

Given the strong understanding and generation capabilities of
LLMs, LIBRO [21] utilizes LLMs to reproduce bugs from issue de-
scriptions. It leverages LLMs to generate bug reproduction scripts
and employs post-processing to select promising scripts. However,
LIBRO cannot dynamically modify reproduction scripts based on
execution information, resulting in scripts that often lack depen-
dency statements and include incorrect assertions, thereby limiting
its performance. Recently, agent-based approaches [5, 28, 48] have
shown great potential in bug reproduction. These approaches first
retrieve bug-related information as context and then generate bug
reproduction scripts through iterative modifications until the exe-
cution information accurately reflects the bug.

7.2 LLM-based Agent

Al agents are artificial entities capable of autonomously perceiving
the environment and taking action to achieve specific goals [27,
43]. The rapid advancements in LLMs have greatly increased re-
searchers’ interest in LLM-based agents [7, 34]. These agents en-
hance LLMs by integrating external resources and tools, thereby
enabling them to address more complex real-world challenges. LLM-
based agents specifically designed for software engineering have
demonstrated substantial potential across a variety of software
development and maintenance tasks, including requirements engi-
neering [2, 20], code generation [16, 18], static bug detection [12, 30],
code review [36, 39], unit testing [8, 50], system testing [10, 49],
fault localization [35, 42], program repair [4, 45], end-to-end soft-
ware development [48], and end-to-end software maintenance [29].

Recently, LLM-based agents such as CodeR [5], MASAI [40], and
SWE-AGENT [48] have shown great potential in the bug fixing
task. These agents consider bug reproduction as part of the over-
all pipeline. However, they still face challenges such as handling
lengthy retrieved bug-related information and lacking guidance
in bug reproduction script generation. In this paper, we introduce
AEGIS, an agent-based framework for bug reproduction from issue
descriptions, aimed at addressing these challenges and improving
the bug reproduction rate.

8 CONCLUSION

This paper focuses on the bug reproduction task and proposes a
novel agent-based framework, named AEGIS. AEGIS consists of
a bug-related context summarization module for condensing the
retrieved information into structural context through reranking
and summarization and an FSM-guided script generation module
for guiding the script modification process with the proposed FSM
which contains predefined modification rules. Compared with the
state-of-the-art methods, the experimental results validate the ef-
fectiveness of AEGIS. Besides, we deploy AEGIS in five internal
repositories of ByteDance. During the three-month deployment
period, it successfully reproduces 12 bugs and helps developers
implement corresponding fixes. In the future, we intend to further
evaluate AEGIS on a broader range of datasets for bug reproduction.
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