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Abstract
Automatically reproducing bugs in issue descriptions helps devel-
opers pinpoint and fix bugs timely, greatly facilitating the software
development and maintenance. Built upon the powerful under-
standing capabilities of large language models (LLMs), agent-based
approaches have achieved the state-of-the-art performance in the
task. They generally leverage LLMs as the central controller to first
retrieve bug-related information as context and then generate bug
reproduction scripts. During the script modification process, agent-
based approaches modify the script iteratively until the execution
information reflects the bug accurately or the iterative turns are
exhausted. Nevertheless, the agent-based approaches still face the
following challenges: (1) Lengthy retrieved bug-related infor-
mation: The retrieved bug-related information is usually long in
length and contains irrelevant snippets, which is hard to be well
comprehended by LLMs. (2) Lack of guidance in bug reproduc-
tion script generation: They generally modify bug reproduction
scripts randomly and tend to generate repeated or spurious modifi-
cations, leading to bug reproduction failure.

To address the above challenges, in this paper, we propose an
automated bug reproduction script generation framework named
AEGIS. AEGIS consists of two main modules: (1) Bug-related con-
text summarization module, aiming at condensing the retrieved
information into structural context through further reranking and
summarization. (2) Finite state machine (FSM)-guided script
generationmodule, which aims at guiding the script modification
process with proposed FSMwhich contains predefined modification
rules. Extensive experiments on SWE-Bench, one public benchmark
dataset, and six baseline methods show that AEGIS achieves the
best performance in the task, exceeding the best baseline by 19.0%
with respect to the bug reproduction rate. Besides, we deploy AEGIS
in five internal repositories of ByteDance. During the three-month
deployment period, it successfully reproduces 12 bugs and assists
developers in implementing fixes.
∗ Work done during an internship at ByteDance.
† Corresponding authors.
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1 INTRODUCTION
Reproducing bugs in issue descriptions is essential to localize bugs
and implement corresponding fixes. Existing surveys [9, 22] in-
dicate that writing bug reproduction scripts closely aligns with
developers’ needs, as these scripts assist developers in compre-
hending the bugs and preventing their recurrence. Kang et al.[21]
conduct a study on 300 popular Java projects and find that up to
28% of the test cases are related to bug reproduction. Besides, the
execution information [23] obtained from running these scripts
aids in more precise bug localization, thereby improving automated
debugging tools’ [25, 46] performance. These findings imply that
writing bug reproduction scripts to verify bug fixes has become a
standard workflow for developers and can greatly enhance software
development and maintenance efficiency.

Manually writing bug reproduction scripts is time-consuming
and automated bug reproduction approaches have garnered increas-
ing attention. Previous bug reproduction approaches [6, 11, 13, 32,
38, 47] focus primarily on reproducing crashes, which represent
only a subset of bugs, and these approaches struggle to compre-
hend the semantic information in issue descriptions. Given the
powerful text understanding and generation capabilities of large
language models (LLMs), LLM-based approaches achieve promis-
ing results in the bug reproduction task [21]. However, they can
only generate scripts in a single attempt and cannot interactively
modify them based on execution information, leading to limited per-
formance [21]. In contrast, agent-based approaches [5, 28, 40, 48],
which can interact with the environment by invoking external tools,
have shown great potential in bug fixing. The initial and critical
step in these approaches is bug reproduction. They leverage LLMs
as the central controller to first retrieve bug-related information
as context and then generate bug reproduction scripts. During the
script modification process, agent-based approaches make iterative
modifications until the execution information accurately reflects
the bug or the iterative turns are exhausted. These agent-based
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Turn 21

Turn 10

Turn 6 

##Thought: Let me review the repository structure ...
##Action: ls django 
##Observation: 
AUTHORS  django  eslint.config.mjs  Gruntfile.js  js_tests  
LICENSE.python  package.json  README.rst  tests  docs ...

script modification with lack of guidance

##Thought: Before editing the test, I will first modify this file ...
##Action: diff django/db/models/sql/compiler.py
+ "local_setter": partial(local_setter, final_field) if len(joins) <= 2 1              
- "local_setter": partial(local_setter, final_field),                   1         
##Observation: Modified successfully. Turn 15

##Thought: I will modify the script to raise an error ...
##Action: diff django/test_bug_reproduce.py
+  tournament_pool=FilteredRelation('pool__tournament__pool’),     1
+ raise AssertionError("Test failed due to set wrong object")     1                    
- tournament_pool=FilteredRelation('pool__tournament__pool’),     1
##Observation: Modified successfully. Turn 19

##Thought: I will modify the script ...
##Action: diff django/test_bug_reproduce.py
+  tournament_pool=FilteredRelation('pool__tournament__pool’),          
- tournament_pool=FilteredRelation('pool__tournament’),     1
##Observation: Modified successfully. Turn 13

Turn 20

##Thought:I will execute the script ...
##Action: python3 django/test_bug_reproduce.py
##Observation: AssertionError: "Test failed"

##Thought:I have reproduced the bug since it failed.
##Action: Submit the bug reproduction script

Turn 17

##Thought: I will modify the script ...
##Action: diff django/test_bug_reproduce.py
+ tournament_pool=FilteredRelation('pool__tournament’),     1 
- tournament_pool=FilteredRelation('pool__tournament__pool’),                   
##Observation: Modified successfully.

##Thought: Now I will create the bug reproduction script.
##Action: diff django/test_bug_reproduce.py
+ def test_wrong_select_related(self): 1
+     with self.assertNumQueries(3):   1
+     ...                              1
##Observation: Modified successfully.

Turn 3

##Thought: Then, I want to view the tests.py in the repository.
##Action: find -name "tests.py"
##Observation: 
bash_completion/tests.py  sites_framework/tests.py  model_regress/tests.py
m2o_recursive/tests.py  model_inheritance/tests.py humanize_tests/tests.py
files/tests.py  schema/tests.py  contrib/admin/tests.py

correct script

incorrect script

Turn 11

Turn 10

lengthy retrieved information

condensed retrieved information

generated by
SWE-AGENT

generated by 
AEGIS

retrieved information

`FilteredRelation`: The class may misconfigure or incorrectly implement the select related
mechanism, failing at multi-level filtering, causing related instances to be attributed incorrectly.
django/db/models/query_utils.py
class FilteredRelation:
      def __init__(self, relation_name, *, condition=Q()):...

`build_filtered_relation_q`: Constructs SQL where clauses for FilteredRelation objects. 
Mismanagement of subordinate relations in multi-level contexts can set wrong related objects, 
causing test failures.
django/db/models/sql/query.py
def build_filtered_relation_q(
     self, q_object, reuse, branch_negated=False, ...

##Thought: I should modify the file to reproduce the bug.
##Action: diff django/db/models/query_utils.py
##Observation: Your modification involve other files, which is not permitted, you 
should ... Turn 14

Turn 17

##Thought: I will invite other evaluators to verify the execution information ...
##Action: double_verify django/test_bug_reproduce.py
##Observation: The execution information does not really reflect the bug, because the it 
is outputted by the raise AssertionError("Test failed due to set wrong object")’, and it is 
not permitted…

script modification with guidance

(a) Multi-turn interactions of SWE-AGENT during the bug reproduction process.  

(b) Multi-turn interactions of AEGIS during the bug reproduction process.

Issue Description 

Title:
Multi-level FilteredRelation with select_related() may set wrong related object.
Recommended test case:
def test_wrong_select_related(self):

with self.assertNumQueries(3):...
Result:
FAIL: test_wrong_select_related 
(known_related_objects.tests.ExistingRelatedInstancesTests.test_wrong_select_related)
Traceback (most recent call last):

File "D:\Work\django\tests\known_related_objects\tests.py", line 171, in 
test_wrong_select_related...

Turn 1 

##Thought: I will retrieve the identifier 'pool' mentioned in the issue.
##Action: grep -rn 'pool'
##Observation: 
【1】tests/gis_tests/test_geoforms.py:18: class Pool(models.Model):
【2】tests/known_related_objects/tests.py:98: pool = style.pool
  ... 
【327】core/cache/backends/redis.py:84: self._client...

Turn 17

Turn 17

##Thought: I will review the query_utils.py
##Action: open django/db/models/query_utils.py
##Observation: 
【1】 from django.db.models import FilteredRelation
【2】 from django.test import TestCase
 (494 lines total)

Figure 1: Comparison of bug reproduction between using SWE-AGENT and AEGIS: the issue description in (a) includes the
bug that needs to be reproduced and the recommended test case. The number of each turn represents the relative order of
interaction turns. The actions marked in cyan are the LLM agent’s interaction with the environment. Blue boxes represent the
modifications of the reproduction script, while yellow boxes indicate the modifications of other functional files. The dashed
arrow indicates that SWE-AGENT simply copies the code snippet in the issue description.

approaches demonstrate the state-of-the-art performance in the
bug reproduction task [31].

However, existing agent-based approaches [5, 40, 48] still face
the following challenges: (1) Lengthy retrieved bug-related in-
formation: Agents retrieve bug-related information to localize
and comprehend bugs. However, the retrieved information is usu-
ally lengthy and contains numerous irrelevant snippets, increasing
agents’ contextual understanding burden [24]. (2) Lack of guid-
ance in bug reproduction script generation: During the script
modification process, agents generally modify bug reproduction
scripts randomly and tend to make repeated or spurious modifi-
cations. These modifications may deviate the script reproduction
process [26], leading to bug reproduction failure.

To address the above challenges, we propose an Agent-based
framEwork for Generating bug reproductIon Scripts from issue
descriptions, named AEGIS. AEGIS consists of two main mod-
ules: (1) Bug-related context summarization module: We first

retrieve bug-related information from the code repository. Then
we condense the retrieved information into the structural context
through further reranking and summarization. (2) Finite state
machine (FSM)-guided script generation module: We propose
an FSM that contains predefined modification rules, aiming at well
guiding the script modification process. Extensive experiments on
the SWE-Bench benchmark [19], one public benchmark, and six
baseline methods demonstrate the superior performance of AEGIS
in the task, exceeding the best baseline by 19.0% with respect to
the bug reproduction rate. In addition, AEGIS has been deployed in
five internal repositories of ByteDance for three months. During
this period, AEGIS generates bug reproduction scripts for emerg-
ing bugs to assist developers in debugging, further illustrating its
effectiveness in practice.

In summary, the major contributions of this paper are summa-
rized as follows:
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(1) We propose AEGIS, a novel agent-based bug reproduction
framework, which involves a bug-related context summa-
rizationmodule for constructing a condensed and structural
bug-related context and an FSM-guided script generation
module for guiding the script modification process under
predefined modification rules utilizing the proposed FSM.

(2) We conduct extensive experiments onAEGIS and the results
demonstrate the effectiveness of AEGIS in bug reproduc-
tion.

(3) We deploy AEGIS in internal repositories of ByteDance
to assist developers in localizing and fixing bugs timely,
demonstrating its effectiveness in practice.

The remaining sections of this paper are organized as follows.
Section 2 reveals agent-based approaches’ challenges in the bug
reproduction task. Section 3 presents the architecture of AEGIS.
Section 4 describes the experimental setup, including datasets, base-
lines, and experimental settings. Section 5 presents the experimental
results and analysis. Section 6 further discusses AEGIS’s effective-
ness in bug reproduction and bug fixing, as well as the threats
to validity. Section 7 introduces the background of automatic bug
reproduction and LLM-based agent. Section 8 concludes the paper.

2 MOTIVATION
In this section, we explore the challenges of agent-based approaches
by analyzing the failure case of SWE-AGENT [48], one advanced
agent-based approach for the bug reproduction task. Agent-based
approaches utilize LLMs to conduct the multi-turn interactions
with the environment. During each interaction, the LLM agent re-
sponds with “thought” and “action”, respectively, where “thought”
represents its reasoning analysis of the environment feedback and
“action” represents the command to be executed. The actions are
executed within the environment, and the corresponding environ-
ment feedback is collected as input (i.e., “observation”) to the LLM
agent in the next interaction.

Figure 1 (a) illustrates the bug reproduction process by SWE-
AGENT for the issue “django-16408”1. The issue description includes
the title, the recommended test case, and the result. SWE-AGENT
needs to leverage this information to generate the bug reproduction
script. In turns 1, 3, 6, and 10, SWE-AGENT invokes the “grep -r”
command (returning 327 lines), calls “find” to search test files, uses
“ls” to observe the repository structure, and browses bug-related
files (494 lines), respectively. SWE-AGENT examines the repository
structure first, looking for files related to bug localization before
attempting to reproduce the bug. However, the retrieved informa-
tion is often lengthy and contains irrelevant snippets, increasing
the agent’s contextual burden.

Although SWE-AGENT observes the repository and retrieves a
great amount of information between turn 1 and turn 10, it fails to
utilize this information for bug reproduction. It merely copies the
recommended test case from the issue description in turn 11 and
ignores the initialization of the involved classes. This indicates that
the lengthy retrieved information is difficult for LLMs to compre-
hend and utilize effectively, leading to the previous searches being
unproductive.

1https://code.djangoproject.com/ticket/34227

Output

Generated bug 
reproduction script

(a) Bug-related context summarization module

Issue description

Bug description

Recommended test case

Current and expected result

Buggy code

Bug-related test

Relevance explanation

Code repository 

(b) FSM-guided script generation module 

Code repository

Issue description

Input

Generate

(1) Retrieve

(2) Rerank
(3) Summarize

Restart

External-Verify

Create

Execute

Self-Verify

Modify

Report

Figure 2: The architecture of AEGIS. It consists of two mod-
ules: (a) a bug-related context summarization module for
condensing the retrieved bug-related information into struc-
tural context and (b) an FSM-guided script generationmodule
for guiding the script modification process based on prede-
fined modification rules.

From turn 13 to turn 21, SWE-AGENT randomly modifies the
bug reproduction script. In turn 13 and turn 17, SWE-AGENTmakes
repeated modifications, resulting in unproductive iteration turns.
In turn 15, SWE-AGENT modifies the functional file, which is not
allowed as it violates the original functionality. In turn 19, SWE-
AGENT adds the “raise AssertionError (‘Test failed due
to set wrong object’)” statement in the reproduction script
to spuriously “reproduce” the same bug. This indicates that SWE-
AGENT struggles to modify the bug reproduction script effectively
and tends to make repeated and spurious modifications, leading to
bug reproduction failure.

From the above case, we demonstrate that agent-based approaches
often retrieve lengthy bug-related information, which makes it dif-
ficult to comprehend and utilize the relevant details. Besides, they
tend to generate repeated or spurious modifications due to the lack
of guidance in bug reproduction script generation. Therefore, in this
paper, we propose a novel agent-based framework to mitigate these
challenges and improve the performance in the bug reproduction
task.

Figure 1 (b) illustrates the bug reproduction process by AEGIS.
Based on the retrieved bug-related information, the LLM agent
reranks the code snippets and summarizes information according
to their relevance with the bug in turn 10, producing condensed
information. This condensed information displays methods, classes,
and files, allowing AEGIS to avoid interference from lengthy and ir-
relevant information. In turn 14, the LLM agent attempts to modify
functional files but is constrained by our predefined modification
rules. In turn 17, we introduce external verification to offer guid-
ance and avoid spurious modifications. Eventually, the LLM agent
successfully reproduces the bug.

3 PROPOSED FRAMEWORK
In this section, we introduce the general framework of AEGIS.
As shown in Figure 2, AEGIS consists of two main modules: (1)
Bug-related context summarization module, which condenses the
retrieved bug-related information into structural context through
reranking and summarization, (2) Finite statemachine (FSM)-guided

3
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script generation module, which guides the script modification
process utilizing proposed FSM and predefined modification rules.
Given the issue description and code repository as inputs, the output
of AEGIS is the bug reproduction script.

3.1 Bug-related Context Summarization Module
In this module, AEGIS employs an LLM agent to retrieve, rerank,
and summarize bug-related context based on the issue description
and code repository.

Retrieve:We employ theAbstract Syntax Tree (AST) to parse the
files in the code repository and extract their code structures, includ-
ing methods, classes, and identifiers. To facilitate fine-grained code
retrieval, we design a set of search tools including “search_method”,
“search_class”, and “search_identifier”.
When the LLM agent invokes these search tools, search requests
are processed locally based on the parsed files, and the results are
then fed back to the LLM agent as the retrieved context. Besides
these search tools, the LLM agent can also utilize bash commands
like “ls”, “grep”, and “find”.

Rerank: The retrieved context 𝐶retrieve consists of numerous
code snippets. Let 𝐶retrieve = {𝑐1, 𝑐2, . . . , 𝑐𝑛} be the set of retrieved
code snippets. The LLM agent reranks these snippets according to
their relevance to the issue description and repeats this process𝑚
times independently. This results in rankings 𝑅1, 𝑅2, . . . , 𝑅𝑚 . Each
𝑅𝑖 is a vector representing the rank positions of code snippets:

𝑅𝑖 = (𝑟𝑖1, 𝑟𝑖2, . . . , 𝑟𝑖𝑛) for 𝑖 = 1, 2, . . . ,𝑚 (1)
Here, 𝑟𝑖 𝑗 denotes the rank position of the 𝑗-th code snippet in the 𝑖-
th ranking, where 𝑟𝑖 𝑗 is an integer from 1 to 𝑛. The average ranking
𝑅avg is computed using the equation:

𝑅avg =

(
1
𝑚

𝑚∑︁
𝑖=1

𝑟𝑖1,
1
𝑚

𝑚∑︁
𝑖=1

𝑟𝑖2, . . . ,
1
𝑚

𝑚∑︁
𝑖=1

𝑟𝑖𝑛

)
(2)

Then, we obtain the reranked context 𝐶rerank by sorting the code
snippets according to 𝑅avg:

𝐶rerank = Sort(𝐶retrieve, 𝑅avg) (3)
Summarize: Based on the reranked context 𝐶rerank, the LLM

agent filters out lengthy and irrelevant code snippets and condenses
the remaining snippets along with the issue description to obtain
the following summarized bug-related context:

(1) From the issue description: 1○ Bug description: A clear
and detailed description of the bug, which helps the LLM agent
comprehend the issue. 2○ Recommended test case: If the issue de-
scription already contains the recommended test case, the LLM
agent can leverage this information to help generate the reproduc-
tion script. 3○ Current result and expected result: Analysis of the
current result caused by the bug and the expected result after fixing
the bug, which helps verify whether the execution information
reflects the bug accurately.

(2) From the code repository: 1○ Buggy code: Code snippets
that are likely to cause the bug. 2○ Bug-related test: Test cases
that can be reused directly or are relevant for reproducing the
bug. 3○ Relevance explanation: The detailed explanation of the
relevance between the buggy code, bug-related test, and the bug.
Such explanations help LLM agents better leverage these code
snippets for bug reproduction.

Example of the Summarized Bug-related Context

## Bug Description

Error message prints extra code line when using assert in python3.9.

…

The test "test_right_statement" fails at the first assertion,but print extra code (the "t" decorator) 

in error details…

## Recommended test case:
```python
def test_right_statement(foo):
  assert foo == (3 + 2) * (6 + 9)
  @t
  def inner():
    return 2
  assert 2 == inner
```

## Current Result

The current result includes extra inline code lines due to the issue in line number calculations 

within the `getstatementrange_ast` function.

## Expected Result

The expected result is the error message should not print the decorator line when the assertion 

fails, ensuring accurate line number calculations in error messages. 

From Issue Description

From Code Repository

## Buggy Code

[96]
[97]
[98]
[99]

pytest-dev__pytest/src/_pytest/_code/source.py
def getstatementrange(self, lineno: int) -> Tuple[int, int]:
    """Return (start, end) tuple which spans the minimal statement region
                       which containing the given lineno."""
    ...

## Bug-related Test

[179]
[180]
[181]
[182]

pytest-dev__pytest/testing/code/test_source.py
def test_getstatementrange_bug2(self) -> None:
    source = Source("""assert (33==[X(3,b=1, c=2),])""")
    assert len(source) == 9
    assert source.getstatementrange(5) == (0, 9)

1. Buggy Code Relevance: The `getstatementrange_ast`, `get_statement_startend2`, and 

`getstatement` functions are related to the issue, because they handle the calculation of source 

code ranges and statement boundaries.

2. Bug-related Tests Relevance: The `test_getstatementrange_bug2` test is related to the 

issue, because it includes tests for assertions spanning multiple lines, which mirrors the 
described error scenario for Python 3.9. 

## Revelance Explanation

Figure 3: The example of the summarized bug-related con-
text, including the bug-related information from the issue
description and the code repository.

Figure 3 shows an example of the summarized bug-related con-
text after retrieving, reranking, and summarizing. This structural
context serves as the input for the next module.

3.2 FSM-guided Script Generation Module
In this module, we propose a finite state machine (FSM) to guide
LLM agents in generating bug reproduction scripts. We first intro-
duce the complete formulation of our proposed FSM, then describe
the process of FSM-guided script modification.

3.2.1 Formulation of the proposed FSM. FSM [3] is a computational
model representing a process with a finite number of states and
the transitions between these states. It can guide and constrain the
actions of the LLM agent, helping to prevent the LLM agent from
generating repeated or spurious modifications. As illustrated in
Figure 4, our proposed FSM is defined as a 5-tuple (𝑄, Σ, 𝛿, 𝑞0, 𝑞4),
comprising the following components:

(1) State Set 𝑄 = {𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6} denotes the different
states of the LLM agent during the script modification process,
which are Create, Execute, Self-Verify, External-Verify, Report,Modify,
and Restart, respectively.

(2) Input Condition Σ = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ, 𝑖, 𝑗, 𝑘, 𝑙} represents
the conditions that the LLM agent satisfies. Specifically, once the
LLM agent takes an action, one certain condition will be satisfied.
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##Thought: I will create the bug reproduction script.
##Action: diff django/reproduce.py
##State: Create…

𝑞0

##Thought: I will execute the bug reproduction script.
##Action: python django/reproduce.py
##State: Execute…

𝑞1

##Thought: I will verify whether the execution messages reflect the bug ...
##Action: self_verified
##State: Self-Verify…

𝑞2

##Thought: I will invite external referee to verify the bug reproduction script.
##Action: double_verified
##State: External-Verify…

𝑞3

##Thought: I will modify the bug reproduction script.
##Action: diff django/reproduce.py && check
##State: Modify…

𝑞5

##Thought: I have tried many modifications but it does not work.
##Action: restart
##State: Restart…

𝑞6

##Thought: I have reproduced the bug successfully and I will report this result.
##Action: submit
##State: Report…

𝑞4

𝒂: 𝑪𝒓𝒆𝒂𝒕𝒆 𝑭𝒊𝒏𝒊𝒔𝒉𝒆𝒅

𝒃: 𝑬𝒙𝒆𝒄𝒖𝒕𝒆 𝑭𝒊𝒏𝒊𝒔𝒉𝒆𝒅

##Observation: You have verified that the bug has been 
reproduced successfully, now you should transition to:
##State: External-Verify

𝒄: 𝑺𝒆𝒍𝒇 𝑽𝒆𝒓𝒊𝒇𝒚 𝑷𝒂𝒔𝒔

##Observation: You reproduce the bug 
successfully, now you should transition to:
##State: Report

𝒅: 𝑬𝒙𝒕𝒆𝒓𝒏𝒂𝒍 𝑽𝒆𝒓𝒊𝒇𝒚 𝑷𝒂𝒔𝒔

##Observation: Your modification attempts 
is exceeded, you should transition to:
##State: Restart

𝒌:  𝑬𝒙𝒄𝒆𝒆𝒅𝒆𝒅 𝑪𝒉𝒆𝒄𝒌 𝑭𝒂𝒊𝒍

##Observation: You need to start from scratch 
and transition to:
##State: Create

𝒆:  𝑺𝒆𝒍𝒇 𝑽𝒆𝒓𝒊𝒇𝒚 𝑭𝒂𝒊𝒍 

𝒇: 𝑬𝒙𝒕𝒆𝒓𝒏𝒂𝒍 𝑽𝒆𝒓𝒊𝒇𝒚 𝑭𝒂𝒊𝒍
##Observation: You modification is unauthorized, you 
should remain:
##State: Modify

𝒊: 𝑨𝒖𝒕𝒉𝒐𝒓𝒊𝒛𝒆𝒅 𝑪𝒉𝒆𝒄𝒌 𝑭𝒂𝒊𝒍

𝒋: 𝑨𝒍𝒍 𝑪𝒉𝒆𝒄𝒌𝒔 𝑷𝒂𝒔𝒔

𝒍: 𝑹𝒆𝒔𝒕𝒂𝒓𝒕 𝑭𝒊𝒏𝒊𝒔𝒉𝒆𝒅

##Observation: Your modification is 
repeated, you should remain:
##State: Modify

𝒉:  𝑹𝒆𝒑𝒆𝒂𝒕𝒆𝒅 𝑪𝒉𝒆𝒄𝒌 𝑭𝒂𝒊𝒍

##Observation: Your modification has syntax 
errors, you should remain:
##State: Modify 𝒈:  𝑺𝒚𝒏𝒕𝒂𝒙 𝑪𝒉𝒆𝒄𝒌 𝑭𝒂𝒊𝒍

##Observation: You have modified the script, now 
you should transition to:
##State: Execute

##Observation: Reproduction failed, now you 
should transition to: 
##State: Modify

##Observation: Reproduction failed, now you 
should transition to:
##State: Modify##Observation:

##State:

##Thought: 
##Action:
##State:

Environment feedback

Agent response

State

Condition

𝑞i

##Observation: You have executed the 
script, now you should transition to:
##State: Self-Verify

##Observation: You have created the initial script, 
now you should transition to:
##State: Execute

Generated bug 
reproduction script

𝑞𝑖

Figure 4: The proposed finite state machine (FSM). Each circle represents a state, with the blue circle 𝑞0 indicating the initial
state, 𝑞4 indicating the final state, and 𝑞6 indicating the restart state. Each green box and blue box represents environment
feedback and agent response, respectively, with The dark background text indicating the current state. Specifically, in the state
𝑞5, when any of the conditions 𝑔, ℎ, or 𝑖 is satisfied, the LLM agent will stay in the current state.

The conditions we define include Create Finished, Execute Finished,
Self Verify Pass, etc.

(3) Initial State 𝑞0 (Create) represents the starting point where
the LLM agent begins to create the reproduction script based on
the summarized bug-related context.

(4) Accepting State 𝑞4 (Report) indicates the point at which the
LLM agent successfully reproduces the bug and reports success. It
is the final state of the FSM.

(5) Transition function 𝛿 = 𝑄 × Σ → 𝑄 describes how the
LLM agent transitions between different states when certain condi-
tions are satisfied. The detailed transition function of the FSM is as
follows:

At state 𝑞0 (Create)

𝜹 (𝒒0, 𝒂) = 𝒒1: In state 𝑞0, the LLM agent creates the initial
script. Once the script is created, the condition 𝑎 (Create
Finished) is satisfied, and the LLM agent transitions its state
to 𝑞1 (Execute).

At state 𝑞1 (Execute)

𝜹 (𝒒1, 𝒃) = 𝒒2: In state𝑞1, the LLM agent executes the script
and obtains the execution information. After that, the con-
dition 𝑏 (Execute Finished) is satisfied and the LLM agent
transitions its state to 𝑞2 (Self-Verify).

At state 𝑞2 (Self-Verify)

In state 𝑞2, the LLM agent verifies the execution informa-
tion from 𝑞2 to determine whether it accurately reflects the
bug.
𝜹 (𝒒2, 𝒄) = 𝒒3: If the bug is accurately reflected, the con-
dition 𝑐 (Self Verify Pass) is satisfied, and the LLM agent
transitions its state to 𝑞3 (External-Verify).

𝜹 (𝒒2, 𝒆) = 𝒒5: Otherwise, the LLM agent should explain
the reasons for bug reproduction failure. In this case, the
condition 𝑒 (Self Verify Fail) is satisfied and the LLM agent
transitions its state to 𝑞5 (Modify).

At state 𝑞3 (External-Verify)

In state 𝑞3, we leverage another independent LLM agent
to act as an external judger. Given the current bug repro-
duction script from 𝑞0, the corresponding execution infor-
mation from 𝑞1, and the summarized bug-related context
from 3.1, this external judger determines whether the exe-
cution information reflects the bug accurately.
𝜹 (𝒒3, 𝒅) = 𝒒4: If the external judger believes that the re-
production script accurately reflects the bug, the condition
𝑑 (External Verify Pass) is satisfied, and the LLM agent tran-
sitions its state to the accepting state 𝑞4 (Report).
𝜹 (𝒒3, 𝒇 ) = 𝒒5: Otherwise, the external judger should ex-
plain the reasons for bug reproduction failure. In this case,
the condition 𝑔 (External Verify Fail) is satisfied, and the
LLM agent transitions its state to 𝑞5 (Modify).

At state 𝑞4 (Report)

In state 𝑞4, the LLM agent submits the generated bug re-
production script and reports success to indicate that it
successfully reproduces the bug.

At state 𝑞5 (Modify)

In state 𝑞5, the LLM agent analyses the explanations for bug
reproduction failure from 𝑞2 or 𝑞3, or the checking reports
from 𝑞5 itself, and provides the proposed modification. Be-
fore applying the modification, we perform the exceeded,
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syntax, repeated, and authorized checks. If all of them pass,
the modification is applied.
𝜹 (𝒒5, 𝒌) = 𝒒6: For the exceeded check, we count the num-
ber of applied modifications in the modification history. If
the number reaches the predefined limit, the condition 𝑘

(Exceed Check Fail) is satisfied and the LLM agent transi-
tions its state to 𝑞6 (Restart).
𝜹 (𝒒5, 𝒈) = 𝒒5: For the syntax check, we leverage syntax-
checking tools to verify the correctness of the proposed
modification’s syntax. If it contains syntax errors, the con-
dition 𝑖 (Syntax Check Fail) is satisfied. Thus, the LLM agent
remains in its state at 𝑞5. The tools also provide a detailed
checking report, including the error code and the types of
errors.
𝜹 (𝒒5, 𝒉) = 𝒒5: For the repeated check, we evaluatewhether
the proposed modification results in the same script as
any previous version in the modification history. If so, the
condition ℎ (Repeated Check Fail) is satisfied and the LLM
agent remains in its state at 𝑞5. We further provide the LLM
agent with a checking report, which clarifies the reasons
for considering the modification as repeated. The report
also includes a consolidated context of the modification
history.
𝜹 (𝒒5, 𝒊) = 𝒒5: For the authorized check, we evaluatewhether
the LLM agent attempts to modify files in the original code
repository instead of the generated script. If so, the con-
dition 𝑖 (Authorized Check Fail) is satisfied and the LLM
agent remains in its state at 𝑞5. We further provide the LLM
agent with a checking report, which clarifies the reasons
for considering the modification as unauthorized.
𝜹 (𝒒5, 𝒋) = 𝒒1: If the proposed modification passes all four
checks above, we apply it to the current script. Hence, the
condition 𝑗 (All Checks Pass) is satisfied and the LLM agent
transitions its state to 𝑞1 (Execute).

At state 𝑞6 (Restart)

𝜹 (𝒒6, 𝒍) = 𝒒0: In state 𝑞6, the LLM agent summarizes the
explanation for the bug reproduction failure from states 𝑞2
and 𝑞3. Besides, we clear the current script and its modifica-
tion history, preparing the LLM agent to restart and create
a new script. In this case, the condition 𝑙 (Restart Finished)
is satisfied. Therefore, the LLM agent transitions its state
to 𝑞0 (Create).

3.2.2 FSM-guided script modification process. Figure 4 illustrates
the script modification process guided and constrained by our pro-
posed FSM. In each interaction with the environment, the LLM
agent’s response includes thoughts, actions, and the current state.
We extract actions and the current state from LLM agent’s response
and then execute actions in the environment. Based on the current
state and conditions satisfied by executing the actions, we guide
the LLM agent using environment feedback.

This feedback includes the “observation” to explain satisfied con-
ditions and provide additional information, such as script execution
details, explanations for bug reproduction failure, and checking
reports on failed modification checks. It also includes the “state”,
which details the next state and required actions in the next state.

Based on environment feedback, the LLM agent transitions be-
tween different states and iteratively modifies the script. To prevent
the script modification process from becoming an endless loop, we
limit the maximum number of restarts. If the number of restarts
reaches this limit, the LLM agent stops and outputs the current bug
reproduction script.

4 EXPERIMENTAL SETUP
In this section, we evaluate AEGIS and aim to answer the following
research questions (RQs):

RQ1: How does AEGIS perform in the bug reproduction task
compared with different methods?

RQ2: What is the impact of different modules on the perfor-
mance of AEGIS?

RQ3: How do the different hyper-parameters impact the per-
formance of AEGIS?

4.1 Dataset
To answer the questions above, we utilize the popular SWE-Bench [19]
dataset, which is designed to assess the capability of addressing
software engineering bugs. For faster and more cost-effective eval-
uation, we focus on a refined subset called SWE-Bench Lite. This
subset comprises 300 instances from SWE-Bench that have been
sampled to be more self-contained, ensuring a comparable range
and distribution of projects as the full dataset. Each instance in
SWE-Bench Lite includes an issue description of a bug, the corre-
sponding code repository containing the bug, and the patch to fix
the bug. Our goal is to generate bug reproduction scripts for each
instance in SWE-Bench Lite.

4.2 Comparative Methods
To evaluate the performance of our framework, we compare two
types of bug reproduction methods: LLM-based and agent-based.

4.2.1 LLM-based methods.

• ZEROSHOT [31] prompts the LLM with the issue descrip-
tion, bug-related context retrieved using BM25 [37], and
instructions to generate scripts in unified diff format.

• ZEROSHOTPLUS [31] is similar to ZEROSHOT but lever-
ages adjusted diff format, which allows entire functions or
classes to be inserted, replaced, or deleted.

• LIBRO [21] generates multiple candidate scripts based on
the issue description. It then executes all the generated
scripts and selects the one whose execution information
most accurately reflects the bug.

4.2.2 Agent-based methods.

• SWE-AGENT [48] comprises several principal components,
including search, file viewer, file editor, and context man-
agement. It is employed to fix bugs, and bug reproduction
is one of its stages.

• AUTOCODEROVER [51] consists of two distinct stages.
In the first stage, it is tasked with retrieving bug-related
code snippets. Then AUTOCODEROVER generates patches
based on the issue description and the retrieved context,
retrying until the patch is successfully applied.
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Table 1: Comparison results between AEGIS, the LLM-based
methods, and the agent-based methods.

Method 𝐹 → × 𝑃 → 𝑃 𝐹 → 𝑃

LLM-based
ZEROSHOT 38.8 3.6 5.8
ZEROSHOTPLUS 55.4 7.2 10.1
LIBRO 60.1 7.2 15.2

Agent-based
AUTOCODEROVER 43.8 7.6 9.1
AIDER 57.6 8.7 17.0
SWE-AGENT 48.2 9.8 16.7
AEGIS 90.0 9.0 36.0

• AIDER [1] includes a repository indexing step to guide file
selection and proposesmodifications in an edit block format.
Before a modification is applied, it undergoes validation via
syntax-checking tools.

4.3 Implementation Details
AEGIS is provided access to GPT4o-2024-0513 [33] with the sam-
pling temperature set to 0.7. We limit the maximum number of
applied modifications per restart to 5 and allow up to 5 restarts
during the bug reproduction script generation process. Besides, we
construct environment-completed Docker images for each instance
in the SWE-bench Lite. For the comparison methods, we use their
default settings [31].

4.4 Evaluation Metrics
We leverage the bug reproduction rate to measure AEGIS’s perfor-
mance.

BugReproductionRate (𝐹 → 𝑃 ): Following the prior study [31],
we consider a script to successfully reproduce the bug described in
the issue if it fails on the original code repository (i.e., before the
patch is applied) but passes on the patched repository (i.e., after the
patch is applied). We call this a fail-to-pass script. Hence, the bug
reproduction rate (𝐹 → 𝑃 ) measures the portion of instances where
the generated script is a fail-to-pass script. Besides, we consider a
script as a fail-to-any script if it fails on the original repository, and
as a pass-to-pass script if it passes on both the original and patched
repositories. We further measure the fail-to-any rate (𝐹 → ×) and
the pass-to-pass rate (𝑃 → 𝑃 ) for a more comprehensive analysis.

5 EXPERIMENTAL RESULTS
5.1 RQ1: Effectiveness of AEGIS in Bug

Reproduction
To answer RQ1, we conduct a comprehensive comparative analysis
against three LLM-based methods and three agent-based methods.
The experimental results are shown in Table 1.

AEGIS exhibits superior performance compared with the
baseline methods. As shown in Table 1, AEGIS outperforms all
the baseline methods in terms of bug reproduction rate (𝐹 → 𝑃 ).
Specifically, AEGIS achieves an absolute improvement of 19.0% over
the best baseline method. Compared to the average performance of

Table 2: Impact of the bug-related context summarization
module (i.e. BCS) and the FSM-guided script generation mod-
ule (i.e. FSG) on the performance of AEGIS.

Module 𝐹 → × 𝑃 → 𝑃 𝐹 → 𝑃

w/o BCS 90.7 8.0 31.7 ↓ 4.3
w/o FSG 56.7 27.0 12.3 ↓ 23.7

w/o Modify-in-FSG 84.7 14.0 26.0 ↓ 10.0
w/o Restart-in-FSG 92.0 7.7 33.3 ↓ 2.7

w/o External-Verify-in-FSG 92.7 6.7 35.0 ↓ 1.0
AEGIS 90.0 9.0 36.0

compared methods, AEGIS demonstrates an absolute improvement
of 23.7%. This is due to the ability of AEGIS to better leverage
bug-related information and guide the script modification process.
Overall, AEGIS can reproduce more bugs successfully, showcasing
its effectiveness.

Fail-to-any scriptsmatter for reproducingmore bugs.When
considering the best-performing methods in the LLM-based and
agent-based baselines, LIBRO and AIDER, we find that these two
methods achieve the highest 𝐹 → × metrics, 60.1% and 57.6% re-
spectively. Additionally, we observe that AEGIS achieves a much
higher rate in the 𝐹 → × metric, reaching 90.0%, whereas the
best baseline method only reaches 57.6%. Under the constraints of
our proposed FSM and modification rules, the LLM agent aims to
make the bug reproduction script fail in the original code reposi-
tory. Although fail-to-any scripts are not always desirable, they are
essential for generating fail-to-pass scripts, as pass-to-any scripts
can never reproduce the bug. When considering the 𝑃 → 𝑃 metric,
AEGIS and agent-based methods show little difference, indicating
that some bugs are difficult to reproduce solely based on the issue
description, resulting in unhelpful scripts (i.e., pass-to-pass scripts).

Answer to RQ1: AEGIS achieves the best performance in
the bug reproduction task, exceeding the best baseline by
19.0% on the bug reproduction rate.

5.2 RQ2: Effectiveness of Different Modules in
AEGIS

To answer RQ2, we explore the effectiveness of different modules on
the performance of AEGIS. Specifically, we study the two involved
modules: the bug-related context summarization module (BCS) and
the FSM-guided script generation module (FSG).

5.2.1 Bug-related Context Summarization Module. To understand
the impact of this module, we deploy a variant of AEGIS without
the bug-related context summarization module (i.e., w/o BCS). This
variant generates the bug reproduction script based on the issue
description and the retrieved context without reranking and sum-
marizing. Table 2 shows the performance of this variant. Adding
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the bug-related context summarization module yields a 4.3% en-
hancement in the bug reproduction rate (𝐹 → 𝑃 ). Overall, the
results indicate that the bug-related context summarization module
enables the LLM agent to focus on a condensed context, thereby
improving its comprehension of the bug and better leveraging the
retrieved information.

5.2.2 FSM-guided Script Generation Module. To explore the contri-
bution of this module, we also construct a variant of AEGIS without
the FSM-guided script generation module (i.e., w/o FSG). This vari-
ant modifies the bug reproduction script without the guidance of
the proposed FSM. As illustrated in Table 2, adding the FSM-guided
script generation module yields a 23.7% enhancement in the bug
reproduction rate (𝐹 → 𝑃 ). This enhancement can be attributed to
the module’s capability to guide the LLM agent in avoiding repeated
and spurious modifications, thus leading to a constrained script
modification process. We also observe that this variant shows a
great decrease in the 𝐹 → × metric to 56.7% and a notable increase
in the 𝑃 → 𝑃 metric to 27.0%. This indicates that without guidance,
the LLM agent is more likely to generate unhelpful scripts.

5.2.3 Different States in the Proposed FSM. To further investigate
the influence of different states within the proposed FSM, we design
three variants: one without Modify-in-FSG, one without Restart-in-
FSG, and one without External-Verify-in-FSG. These variants rep-
resent generating scripts in a single attempt without modification,
continuously modifying scripts until reporting success or exceeding
the maximum iterations, and verifying scripts’ execution informa-
tion without external verification, respectively. Table 2 shows the
performances of three variants. The states of Modify, Restart, and
External-Verify contribute to enhancements in the bug reproduction
rate (𝐹 → 𝑃 ) by 10.0%, 2.7%, and 1.0%, respectively. The Modify
state shows a notable improvement, suggesting that AEGIS can
iteratively optimize the reproduction scripts based on execution
information. The Restart state improves AEGIS’s performance by al-
lowing the exploration of diverse reproduction paths and avoiding
endless modifications. The External-Verify state enhances AEGIS’s
performance by providing external oversight, which helps prevent
the LLM agent from being misled by spurious modifications.

Answer to RQ2: Both BSG and FSG modules can improve
the performance of AEGIS. The BSG module boosts the
bug reproduction rate of 4.3% and the FSG module en-
hances AEGIS by 23.7%. Besides, different states within the
proposed FSM are essential to the bug reproduction.

5.3 RQ3: Influence of Hyper-parameters on the
Performance of AEGIS

To answer RQ3, we explore the impact of different hyper-parameters,
including the maximum number of restarts and the maximum num-
ber of applied modifications per restart during the script modifica-
tion process.

5.3.1 Maximum number of restarts. Figure 5 shows the perfor-
mance of AEGIS with different maximum numbers of restarts. As
the maximum number of restarts increases from 1 to 5, the bug

Maximum number of applied modifications per restart

Maximum number of restarts
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Figure 5: The influence of the maximum number of applied
modifications per restart and maximum number of restarts
for AEGIS. The horizontal axis represents the number of
modifications per restart or the number of restarts.

reproduction rate (𝐹 → 𝑃 ) improves from 30.7% to 33.7%. This
suggests that more restarts allow LLM agents to explore diverse
bug reproduction paths and accumulate more failure experiences.
However, as the maximum number of restarts increases from 7
to 9, the bug reproduction rate stabilizes, indicating that further
increases have a limited impact on performance. This is likely be-
cause the LLM agents have already tried all possible reproduction
paths and cannot derive additional insights from the failure experi-
ences. Considering the balance between resource consumption and
performance, we choose 5 as the optimal number of restarts.

5.3.2 Maximum number of applied modifications per restart. Simi-
larly, as the maximum number of applied modifications per restart
increases from 1 to 5, the bug reproduction rate (𝐹 → 𝑃 ) rises
from 30.0% to 32.0%. This demonstrates that LLM agents can ef-
fectively leverage guidance from the proposed FSM to refine the
reproduction script. However, as the maximum number of modifica-
tions further increases from 5 to 9, the bug reproduction rate tends
to stabilize, indicating that further modifications become increas-
ingly challenging. This may be due to the involvement of multiple
methods and classes in reproducing bugs. To balance resource con-
sumption and performance, we select 5 as the optimal number of
applied modifications per restart.

Answer to RQ3: The performance of AEGIS is influenced
by the maximum number of restarts and the maximum
number of applied modifications per restart. Our default
settings yield optimal results.

6 DISCUSSION
6.1 Case Study
To further demonstrate the effectiveness of AEGIS in the bug repro-
duction task, we analyse three cases from SWE-Bench. The results
are shown in Figure 6.

Figure 6 (a) shows the bug reproduction process for the issue
“django-11964” 2. The LLM agent encounters difficulties in the script

2https://code.djangoproject.com/ticket/30902
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import flask
from flask import Flask
app = Flask(__name__)

def test_blueprint_name_with_dot():
  blueprint = Blueprint('test.blueprint', __name__)
  raise AssertionError("Blueprint name containing a dot 
  should have raised an error.")

test_blueprint_name_with_dot()

(a) An example from django-11964, illustrating 

avoiding endless modifications through restart. 

## Part of the script modification procss

(b) An example from flask-4045, illustrating correcting 

spurious modifications through external verification.

##Action: diff django/test_bug_reproduce.py
+ # 'testing.pkg', # Commented out the non-existent app 1 1 
- 'testing.pkg', # Replace with your actual app name    1

##Action: diff django/test_bug_reproduce.py
+ 'myapp', # Adding a temporary app                       1                    
- # 'testing.pkg', # Commented out the non-existent app  1                    

##Action: diff django/test_bug_reproduce.py
+  apps = [MyAppConfig]                                    1       
+  django.setup()                                          1              
- django.setup() 1                                        1

##Action: diff django/test_bug_reproduce.py
+  call_command('migrate', 'reproduce_app')                1 
- call_command('migrate', 'reproduce_app',run_syncdb=True)1

Give up the current 

script and restart

Correct Bug Reproduction Script

Issue when passing empty lists/arrays to WCS transformations

The following should not fail but instead should return empty 

lists/arrays:

In [1]: from astropy.wcs import WCS

In [2]: wcs = WCS('2MASS_h.fits')

In [3]: wcs.wcs_pix2world([], [], 0)

(c) An example from astropy-7746, illustrating generating 

script based on the bug-related summarized context.

Execution Information: 
[array([], dtype=float64), array([], dtype=float64)]

## Generated bug reproduction script
[1]
[2]
[3]
[4]

[5]

def test_wcs_pix2world_empty_lists():
    wcs = WCS('2MASS_h.fits’)
    result = wcs.wcs_pix2world([], [], 0)
    assert isinstance(result, (list, np.ndarray)), 
     "Result should be a list or ndarray"
    assert len(result) == 0, 
     "Result should be empty for empty input lists"

## Execution information of the existing reproduction method

## Issue Description

[1]
[2]
[3]

[4]
[5]
[6]

[7]

import flask
from flask import Flask
app = Flask(__name__)

def test_blueprint_name_with_dot():
  blueprint = Blueprint('test.blueprint', __name__)
  app.register_blueprint(blueprint)

test_blueprint_name_with_dot()

## Bug reproduction script only through self-verification

## Bug reproduction script through external verification

[1]
[2]
[3]

[4]
[5]
[6]

[7]

Execute the reproduction method 

after applying the patch

## Guidance from external verification

##Action: diff django/test_bug_reproduce.py
+ call_command('makemigrations', '__main__’)              1
call_command('migrate', '__main__', run_syncdb=True)    1 

- call_command('migrate','reproduce_app', run_syncdb=True)1

The scripts raise a AssertionError because of the statement in 

line 6 instead of triggering the bug correctly.
## Part of the bug-related summarized context
##Expected result:

The expected result is that passing empty lists or arrays 
to `wcs_pix2world` should return empty lists/arrays 
without any errors.

Figure 6: Examples for illustrating the effectiveness of AEGIS.

configuration and becomes stuck in endless modifications. Our pro-
posed FSM limits the number of modifications per restart, allowing
the LLM agent to restart and recreate the reproduction script. Af-
ter restarting, the LLM agent adopts an alternative configuration
method and successfully generates the correct bug reproduction
script. This example demonstrates that the restart helps avoid end-
less modifications and enables the LLM agent to explore diverse
bug reproduction paths.

Figure 6 (b) shows the bug reproduction process for the issue
“flask-4045” 3. The script verified only by the LLM agent fails to re-
produce the bug because it directly uses the “raise AssertionError”
statement to output the bug described in the issue. In our designed
FSM, the bug reproduction script and its execution information
undergo additional external verification. This external verifica-
tion provides guidance, indicating that “the scripts raise an As-
sertionError because of the statement in line 6 instead of trig-
gering the bug correctly”. Based on the guidance from external
verification, the LLM agent modifies the script by employing the
“app.register_blueprint(blueprint)” statement to trigger the
bug. This example shows that the external verification in our pro-
posed FSM can prevent the LLM agent from being misled by spuri-
ous modifications.

Figure 6 (c) shows the bug reproduction process for the issue
“astropy-7746” 4. The issue description provides a bug reproduction
method. Based on the constructed bug-related summarized context,
the LLM agent expects the “wcs.wcs_pix2world” method to return
empty lists or arrays when given empty inputs. It uses “assert
isinstance()” and “assert len()” to validate the type and length
of themethod’s return values. However, this bug reproduction script
triggers assert errors in both the original and patched code reposi-
tories. When we execute the bug reproduction method provided by
the issue description in the patched code repository, we find that the
execution information consists of “[array([], dtype=float64),
array([], dtype=float64)]” instead of empty lists or arrays.
This indicates that the issue creator does not accurately describe the
3https://github.com/pallets/flask/issues/4041
4https://github.com/astropy/astropy/issues/7389

expected behaviour of the reproduction method. Although AEGIS
can meticulously generate bug reproduction script, such inappro-
priate issue descriptions are beyond its understanding capabilities.

Table 3: Effectiveness of AEGIS on bug fixing, including the
fix rates and the number of fixed bugs.

Method Fix Rate (%) # of Fixed Bugs

Agentless 27.3 82
+ w/ LLM Voting 23.3 ↓ 4.0 70 ↓ 12
+ w/ AEGIS 30.7 ↑ 3.4 92 ↑ 10

6.2 AEGIS’s Effect on Bug Fixing
We explore the impact of AEGIS in the entire bug fixing pipeline.
Specifically, we apply AEGIS to the advanced bug fixing approach,
Agentless [44], and compare the performance before and after ap-
plying AEGIS. Besides, we deploy AEGIS in internal repositories of
ByteDance and help developers in localizing and fixing bugs.

For the Agentless approach, we leverage the bug reproduction
scripts to filter its generated patches. We prioritize patches that
cause the bug reproduction script to fail before applying the patch
and pass afterwards, as such patches are likely to fix the bug. If such
patches do not exist, we then select those that produce different
execution information before and after applying the patch, as such
patches may alter the execution path related to the bug. Besides,
we explore the effectiveness of leveraging LLM to select the most
suitable patch by providing the issue description and generated
patches. This approach is referred to as LLM Voting. As shown in
Table 3, leveraging the bug reproduction scripts generated by AEGIS
improves the performance of Agentless. Specifically, the number
of fixed bugs increases from 82 to 92, with the fix rate rising from
27.3% to 30.7%, showing a 12.5% relative improvement. This result
demonstrates the effectiveness of AEGIS in bug fixing. However,
LLM Voting results in a 4.0% decrease, as it is challenging for the
LLM to select the correct patch without execution information.

9

https://github.com/pallets/flask/issues/4041
https://github.com/astropy/astropy/issues/7389


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

FSE 2025, June 23–27, 2025, Trondheim, Norway Xinchen Wang1∗ , Pengfei Gao2 , Xiangxin Meng2 , Ruida Hu1∗ , Chao Peng2† , Yun Lin3 , Cuiyun Gao1†

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 4: Impact of different search tools to AEGIS.

Method 𝐹 → × 𝑃 → 𝑃 𝐹 → 𝑃

AEGIS 90.0 9.0 36.0
AEGIS-BM25 93.0 6.0 34.7 ↓ 1.3
AEGIS-BashCommand 91.0 8.3 34.0 ↓ 2.0

We deploy AEGIS in five internal repositories of ByteDance,
covering multiple programming languages and involving over 200
developers. Other staff of ByteDance report issues in the issue track-
ing system when they encounter bugs in these repositories, and
ask developers for solutions. During the three-month deployment
period, AEGIS generates bug reproduction scripts for 25 bugs. Each
bug reproduction script is evaluated by three developers of its cor-
responding repository, and 12 of these scripts accurately reproduce
the bugs in the staff’s issue descriptions. The execution information
from these scripts helps developers localize the bugs and implement
fixes. Overall, AEGIS proves to be effective in facilitating bug fixing
in industrial practice.

6.3 Impact of Searching Tools on the
Performance of AEGIS

In this section, we design two variants to explore the impact of
different searching tools on AEGIS’s performance: AEGIS-BM25
and AEGIS-BashCommand. The AEGIS-BM25 variant leverages
BM25 [37] to obtain bug-related information from the code reposi-
tory based on the issue description, and the AEGIS-BashCommand
variant can only retrieve context through invoking bash commands.

As illustrated in Table 4, AEGIS achieves a slight enhancement
of 1.3% and 2.0% in the bug reproduction rate (𝐹 → 𝑃 ) compared to
AEGIS-BM25 and AEGIS-BugCommand, respectively. Both variants
show notable improvements over state-of-the-art bug reproduction
methods. This result indicates that AEGIS exhibits a weak depen-
dency on the capabilities of the searching tools, demonstrating
robustness and stability.

6.4 Threats and Limitations
Dataset Validity Concerns: SWE-Bench Lite’s scope is limited
because it is derived from only 12 popular repositories, and may not
cover all issue types and testing scenarios. Hence, the experimental
results based on this dataset may not be fully generalizable. In
future research, we intend to extend our investigations to more
repositories.

Result Variability: Due to AEGIS relying on LLM agents for
context retrieval and bug reproduction script generation, the exper-
imental results exhibit variability. We therefore conduct multiple
trials and average the results to obtain a more stable measure.

7 RELATEDWORK
7.1 Automatic Bug Reproduction
Automatically reproducing bugs from issue descriptions helps de-
velopers localize and fix bugs in a timely manner, greatly enhanc-
ing software development efficiency. Prior bug reproduction ap-
proaches [6, 32, 38, 47] have explored reproducing specific types of

bugs, such as those inAndroid applications [14, 17, 41], configuration-
triggered bugs [15], and program crashes [11, 13, 52]. However,
these bugs represent only a small subset of all bugs.

Given the strong understanding and generation capabilities of
LLMs, LIBRO [21] utilizes LLMs to reproduce bugs from issue de-
scriptions. It leverages LLMs to generate bug reproduction scripts
and employs post-processing to select promising scripts. However,
LIBRO cannot dynamically modify reproduction scripts based on
execution information, resulting in scripts that often lack depen-
dency statements and include incorrect assertions, thereby limiting
its performance. Recently, agent-based approaches [5, 28, 48] have
shown great potential in bug reproduction. These approaches first
retrieve bug-related information as context and then generate bug
reproduction scripts through iterative modifications until the exe-
cution information accurately reflects the bug.

7.2 LLM-based Agent
AI agents are artificial entities capable of autonomously perceiving
the environment and taking action to achieve specific goals [27,
43]. The rapid advancements in LLMs have greatly increased re-
searchers’ interest in LLM-based agents [7, 34]. These agents en-
hance LLMs by integrating external resources and tools, thereby
enabling them to address more complex real-world challenges. LLM-
based agents specifically designed for software engineering have
demonstrated substantial potential across a variety of software
development and maintenance tasks, including requirements engi-
neering [2, 20], code generation [16, 18], static bug detection [12, 30],
code review [36, 39], unit testing [8, 50], system testing [10, 49],
fault localization [35, 42], program repair [4, 45], end-to-end soft-
ware development [48], and end-to-end software maintenance [29].

Recently, LLM-based agents such as CodeR [5], MASAI [40], and
SWE-AGENT [48] have shown great potential in the bug fixing
task. These agents consider bug reproduction as part of the over-
all pipeline. However, they still face challenges such as handling
lengthy retrieved bug-related information and lacking guidance
in bug reproduction script generation. In this paper, we introduce
AEGIS, an agent-based framework for bug reproduction from issue
descriptions, aimed at addressing these challenges and improving
the bug reproduction rate.

8 CONCLUSION
This paper focuses on the bug reproduction task and proposes a
novel agent-based framework, named AEGIS. AEGIS consists of
a bug-related context summarization module for condensing the
retrieved information into structural context through reranking
and summarization and an FSM-guided script generation module
for guiding the script modification process with the proposed FSM
which contains predefined modification rules. Compared with the
state-of-the-art methods, the experimental results validate the ef-
fectiveness of AEGIS. Besides, we deploy AEGIS in five internal
repositories of ByteDance. During the three-month deployment
period, it successfully reproduces 12 bugs and helps developers
implement corresponding fixes. In the future, we intend to further
evaluate AEGIS on a broader range of datasets for bug reproduction.
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