
Self-Checking Deep Neural Networks in
Deployment

Yan Xiao∗, Ivan Beschastnikh†, David S. Rosenblum‡, Changsheng Sun∗, Sebastian Elbaum¶,
Yun Lin∗ and Jin Song Dong∗

∗School of Computing, National University of Singapore, Singapore
dcsxan@nus.edu.sg, changsheng_sun@outlook.com, dcsliny@nus.edu.sg, dcsdjs@nus.edu.sg

†Department of Computer Science, University of British Columbia, Vancouver, BC, Canada, bestchai@cs.ubc.ca
‡Department of Computer Science, George Mason University, Fairfax, VA, USA, dsr@gmu.edu

¶Department of Computer Science, University of Virginia, Charlottesville, VA, USA, selbaum@virginia.edu

Abstract—The widespread adoption of Deep Neural Networks
(DNNs) in important domains raises questions about the trust-
worthiness of DNN outputs. Even a highly accurate DNN will
make mistakes some of the time, and in settings like self-driving
vehicles these mistakes must be quickly detected and properly
dealt with in deployment.

Just as our community has developed effective techniques and
mechanisms to monitor and check programmed components, we
believe it is now necessary to do the same for DNNs. In this paper
we present DNN self-checking as a process by which internal
DNN layer features are used to check DNN predictions. We
detail SelfChecker, a self-checking system that monitors DNN
outputs and triggers an alarm if the internal layer features of
the model are inconsistent with the final prediction. SelfChecker
also provides advice in the form of an alternative prediction.

We evaluated SelfChecker on four popular image datasets
and three DNN models and found that SelfChecker triggers
correct alarms on 60.56% of wrong DNN predictions, and false
alarms on 2.04% of correct DNN predictions. This is a substan-
tial improvement over prior work (SELFORACLE, DISSECTOR,
and ConfidNet). In experiments with self-driving car scenarios,
SelfChecker triggers more correct alarms than SELFORACLE for
two DNN models (DAVE-2 and Chauffeur) with comparable false
alarms. Our implementation is available as open source.

Index Terms—deep learning, trustworthiness, deployment

I. INTRODUCTION

Deep Neural Networks (DNNs) are now used in a variety of
domains, including speech processing [1], NLP [2], medical
diagnostics [3], image processing [4], robotics [5] and even
reconstruction of brain circuits [6]. The power and accuracy
of DNNs have led to deployments of Deep Learning (DL)
systems in safety- and security-critical domains, including self-
driving cars [7], malware detection [8] and aircraft collision
avoidance systems [9]. Such domains have a low tolerance
for mistakes. The software systems in a self-driving car, for
example, must have high assurance in deployment.

Unfortunately, the stochastic nature of DL virtually ensures
that DL models will not achieve 100% accuracy, even on
the training dataset. Since in mission-critical applications a
wrong DNN decision could be costly, we believe that such
applications must include logic to (1) check the trustworthiness
of a DNN’s output, and (2) raise an alarm when there is low
confidence in the output. Our community has developed such

methods for programmed components [10]–[12] and now is
the time to do so for learned ones like DNNs.

Trustworthiness of a simple DNN can be measured with
softmax probabilities [13], or information theoretic metrics,
such as entropy [14] and mutual information [15]. However,
in complex DNNs with many layers and neurons, softmax
probabilities and entropy are unreliable confidence estimators
of the prediction [16], [17]. Even for abnormal samples,
DNNs may still produce overconfident posterior probabilities.
For example, when we built classifiers for VGG-16 [18] on
CIFAR-10 [19], we found that 75% of predictions that were
incorrect had maximum softmax probabilities over 70%; and
63% incorrect predictions had maximum softmax probabilities
over 80%. We had similar results on other datasets and models.
This illustrates the unreliability of the softmax probabilities as
confidence estimators of the final prediction.

Our goal is to build a general-purpose system that monitors
a deployed DNN’s predictions during inference, raises an
alarm if there is low confidence in the predictions, and
provides an alternative prediction that we call an advice. A
key challenge in building such a system is finding a source of
additional information to check DNN outputs. The inspiration
for our work comes from Kaya et al., who study internal DNN
behavior [20]. They found that a DNN can reach a correct
prediction before the final layer. In fact, the final layer of a
DNN may change a correct internal prediction into an incorrect
prediction. This work illustrates that features extracted from
internal layers of a DNN contain information that can be used
to cross-check a model’s output.

Inspired by Kaya et al.’s work, we define self-checking as
a process by which internal DNN layer features are used to
check DNN predictions. In this paper we describe a novel self-
checking system, called SelfChecker, that triggers an alarm if
the internal layer features of the model are inconsistent with
the final prediction. SelfChecker also provides advice in the
form of an alternative prediction. SelfChecker assumes that
the training and validation datasets come from a distribution
similar to that of the inputs that the DNN model will face in
deployment.

SelfChecker uses kernel density estimation (KDE) to ex-
trapolate the probability density distributions of each layer’s

372

2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)

1558-1225/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSE43902.2021.00044

output by evaluating the DNN on the training data. Based
on these distributions, the density probability of each layer’s
outputs can be inferred when the DNN is given a test instance.
SelfChecker measures how the layer features of the test
instance are similar to the samples in the training set. If a
majority of the layers indicate inferred classes that are different
from the model prediction, then SelfChecker triggers an alarm.
In addition, not all layers can contribute positively to the final
prediction [20]. SelfChecker therefore uses a search-based
optimization to select a set of optimal layers to generate a
high quality alarm and advice.

We evaluated SelfChecker’s alarm and advice mechanisms
with experiments on four popular and publicly-available data-
sets (MNIST, FMNIST, CIFAR-10, and CIFAR-100) and
three DNNs (ConvNet, VGG-16, and ResNet-20) against three
competing approaches (SELFORACLE [21], DISSECTOR [22],
and ConfidNet [17]). Our results show that SelfChecker
achieves the highest F1-score (68.07%), which is 8.77% higher
than the next best approach (ConfidNet). Our evaluation of
SelfChecker’s DNN prediction checking runtime shows an
acceptable time overhead of 34.98ms. We also compared
SelfChecker to the state-of-the-art approach for self-driving
car scenarios (SELFORACLE [21]), and found that SelfChecker
triggers more correct alarms and a comparable number of false
alarms.

Our paper makes the following three contributions:

? We present the design of SelfChecker, which uses density
distributions of layer features and a search-based layer
selection strategy to trigger an alarm if a DNN model
output has low confidence. We show that SelfChecker
achieves better alarm accuracy than previous work.

? Unlike existing work, SelfChecker provides advice in the
form of an alternative prediction. We find that models on
a 10-class dataset can use this advice to achieve higher
prediction accuracy.

? We demonstrate the effectiveness of SelfChecker’s alarms
and advice on publicly available DNNs, ranging from
small models (ConvNet) to large and complex models
(VGG-16 and ResNet-20), and self-driving car scenarios.
Our implementation is open-source1.

II. BACKGROUND AND MOTIVATION

In a deep neural network (DNN), an input is fed into the
input layer, then passed through a series of hidden layers
that extract features from the input using activation functions
attached to neurons, and the process concludes with the output
layer, which uses the extracted features to output a prediction
using either classification (from a categorical set of classes) or
regression (in the form of real-valued ordinals). The behavior
of a layer during inference thus can be characterized by its
vector of neuron activation outputs. In what follows, we refer
to these layer-wise vectors of activation outputs as the layer
features analyzed by our approach.

1https://github.com/self-checker/SelfChecker

A. The Promise of Using Layer Features

DNNs make decisions based on features extracted from
training data. But how can we judge if a model is making a
wrong decision for a given test instance? One way is to check
whether the model has previously observed a similar instance
during training. This raises the question of how to define the
similarity between a test instance x and a training instance
x′. Most existing studies use a distance-based measure [23],
such as Lp or cosine similarity. We think this is problematic
since the inputs are complex enough and need DNNs to extract
features, so we doubt that a distance measure defined directly
on the inputs can properly capture similarity.

Instead, we use the features of the inputs extracted by
internal layers in DNNs to capture similarity. Specifically,
we define the similarity as the likelihood of the DNN having
seen a similar layer features during training. We use probabil-
ity density distributions extrapolated from the training process
to measure the similarity between layer features of a given
input and those observed for training data.

Input
28*28 26*26 24*24 12*12

Convolutional
layer

Convolutional
layer

Convolutional
layer

Fully	connected
layer Softmax

Visualization

...
...

Similar	to	"3" Similar	to	"3" Similar	to	"2"

Predicted
as	"3"

Similar	to	"1" Similar	to	"6" Similar	to	"6"

Predicted
as	"1"

Input	"3"

Input	"6"

Attention	score:	Low High

32 48 64

Fig. 1. The top of the figure depicts the architecture of a Convolutional
Neural Network with three convolutional layers to classify digit images. The
two rows of images at the bottom depict attention heatmaps for the associated
layers when given test inputs for digits 3 and 6, respectively.

Fig. 1 presents a motivating example where a Convolutional
Neural Network (CNN) with three convolutional layers trained
on MNIST is used to classify images of digits 3 and 6, while
outputting labels “3” and “1” as the respective predictions. To
visualize where the features of each layer focus, we apply
Grad-CAM [24] to highlight the attention heatmap on the
original images as shown in the bottom two rows of images
in Fig. 1. The heatmap images show that different layers have
different points of focus. For example, the first and second
images of digit 3 are similar to 3 itself, but the third image is
closer to digit 2. Similarly, the first image of digit 6 is similar
to digit 1, but the second and third images are similar to 6.

Although the CNN misclassifies the second image, in both
cases the images appear to be recognized correctly by one or
more hidden layers. This example thus illustrates the promise

373

SelfChecker

KDE	on	Training	set

Density	functions
per	class	

of	each	layer

(1)	Extrapolate
with	KDE	(Alg.	1)

Trained	M

Layer	Selection

Validation
set

(2)	Estimate	each	layer
density	using	density

functions

Trained	M

Training
set

(3)	Search	for	proper
layer	combinations
(Alg.	2	and	Alg.	3)

(4)	Estimate	each	layer
density	using	density

functions

Trained	M

(5)	Select	layers	for
class	c

Test	instance

Prediction
c

Alarm
(Alg.	4)

Alarm	=	True
Advice	z

Alarm	=	FalseNo

Yes
Checking	Model
in	Deployment

Selected	layers	with
max	alarm	or	advice
accuracy	per	class

Fig. 2. The design of SelfChecker and its integration with a trained model and model predictions.

of using layer features to check the model’s classification of
a test instance.

DNNs exist in many variants and can be combined to form
more complex models. For example, models used in urban
flow prediction [25], [26] combine convolutional, graph and
recurrent neural nets. However, all these DNNs extract features
using internal layers, and that is the focus of our research.

The design we present targets DNN classifiers with con-
volutional layers and fully-connected layers. Our system also
works for regression networks by transforming the network
into a binary classification problem. Since our design uses
layer features, it should work on other types of DNNs, such
as recurrent neural networks. We leave the evaluation of our
system on other DNN types to future work.

B. The Challenges of Using Layer Features

The preceding example also raises two challenges that a
technique using layer features must resolve:
• Which layers should be selected for checking the clas-

sification of a test instance? For example, does selecting
more layers lead to a better checker?

• How should the features from the different layers be
aggregated — either to determine if an alarm should be
raised, or to produce alternative advice?

Resolving these questions is the goal of this paper.
Problem statement. Given a trained DNN classifier and

a test instance, we aim to develop a systematic method
called SelfChecker for determining whether the DNN will
misclassify the test instance, based on extensive checking the
DNN’s internal features. First, SelfChecker should trigger an
alarm if it detects a potential misclassification of the test
instance. Second, and going beyond the previous studies [17],
[21], [22], SelfChecker should provide advice once an alarm is
triggered, in the form of an alternative classification. Our goal

is for SelfChecker to achieve high accuracy in both triggering
alarms and offering advice.

III. DESIGN OF SELFCHECKER

The goals of SelfChecker are (1) to check a DNN’s pre-
diction, (2) to raise an alarm if the DNN’s prediction is
determined to be incorrect, and (3) to provide an advice, or
an alternative prediction.

SelfChecker’s training module is used after the model has
been trained to configure SelfChecker’s behavior in deploy-
ment. The training module uses the training and validation
datasets, as well as the trained model to generate a deployment
configuration.

SelfChecker’s deployment module runs along with the infer-
ence process: it analyses the internal features of a DNN when
the model is given a test instance and provides an alarm as
well as an advice if it detects an inconsistency in the model’s
output. To detect these inconsistencies, the deployment module
uses the configuration supplied to it by the training module.

Note that although SelfChecker analyses the features ex-
tracted from the internal layers of a DNN, the training module
is independent from the architecture of the model and requires
no model modifications or retraining. The deployment module,
however, is specific to a DNN.

Fig. 2 overviews our approach. Given a DNN model M
trained on training dataset Dtrain and validated on validation
set Dvalid , for each layer in M, SelfChecker’s training module
first (1) computes layer-wise density distributions of each
class using kernel density estimation (KDE) [27] on Dtrain

(Section III-A). Based on the distributions, (2) SelfChecker can
estimate the density values of each validation or test instance
on each class. The higher the values of the class, the more
similar the features of the instance in this layer are to the spe-
cific class. After SelfChecker obtains all of estimated density
values on Dvalid across all layers, SelfChecker (3) finds the

374

4 2 0 2 4
X

0

10

20

30

D
en

si
ty

(a) Histogram

4 2 0 2 4
X

0.0

0.2

0.4

0.6

D
en

si
ty

 F
un

ct
io

n

(b) KDE

4 2 0 2 4
X

0.0

0.2

0.4

0.6

D
en

si
ty

 F
un

ct
io

n

h = 0.2
h = 1.5

(c) Bandwidth

Fig. 3. An example to illustrate KDE computation with (a) showing the set of input 1D points, (b) showing how to obtain the distribution using a KDE, and
(c) showing the distributions obtained by using different bandwidths.

optimal layer combinations to reach the best alarm and advice
accuracy. Since different classes produce distinctive feature
behaviors in different layers, SelfChecker uses global search to
find the optimal layer combinations per class (Section III-B).

Finally, when the model is presented with a test instance
in deployment, SelfChecker’s deployment module decides
whether to provide an alarm as well as an advice by using
(4) the density values and (5) specific layer combinations
(Section III-C). We now detail each step in our approach.

A. KDE of the Training Set

Given a trained classifier M with L layers (except for
the input layer) and C classes, let X t = {x1, . . . ,xn} and
Yt = {y1, . . . , yn} in Dtrain be the set of training inputs and
corresponding ground truth labels. Similarly, let X v , Yv , and
Ŷv in Dvalid be the validation inputs, corresponding ground
truth labels, and model predictions.

We denote the outputs of all layers in the training set
as feature vectors Vt = {vt

1, . . . ,v
t
L}, where the feature

vectors of the layer l with nl neurons are vt
l ∈ Rnl . We

note that the feature vectors are trivially available after each
execution of the trained model M over a given input. In
general, M focuses on different features in different layers for
different classes. SelfChecker’s aim is to compute the density
probability of feature vectors in each layer for each class based
on the training set Dtrain . Using these density probabilities
SelfChecker will then estimate how close the features in a
specific layer (for a certain input) are to those of the training
set.

KDE is a non-parametric method for estimating a probabil-
ity density function by using a finite number of samples from a
population [27], [28]. The resulting density function allows the
estimation of relative likelihood of a given random variable. In
this paper we use the Gaussian kernel, which works well for
the multivariate data common to most datasets and produces
smooth functions. Given a data sample {x1, x2, . . . , xm},
SelfChecker estimates the kernel density function f as follows:

f̂(x) =
1

mh

m∑
i=1

K(
x− xi
h

) (1)

where K is the Gaussian kernel function and h is bandwidth.
To see how a KDE with Gaussian kernels works, consider

Fig. 3. First, each observation in the sample is replaced with a
Gaussian curve centered at that value (green curves); these

work as a kernel. The green curves are then summed to
compute the value of the density at each point. Fig. 3(b) also
shows the normalized curve (in blue) whose area under the
curve is 1. The bandwidth parameter h of the KDE controls
how tightly the estimate is fit to the sample data. It corresponds
to the width of the kernels (green lines in Fig. 3(b)). Fig. 3(c)
shows that if h is large, the curve is smooth but flat. And, if h
is small, the curve is peaked and oscillating. The choice of h
is based on the number of sample points and their dimensions.

For each combination of class and layer, SelfChecker uses
Gaussian KDE to estimate the density function that the training
data for the class induces on the layer’s feature vector. Then
given a test instance, SelfChecker estimates the probability
density for each class within each layer from the computed
density functions. Finally, SelfChecker uses these probability
densities to infer classes for each layer, defined as follows:

Definition 1 (Inferred class for a layer): Given a test
instance, the inferred class for layer l is the class for which
the test instance induces the maximum estimated probability
density among l ’s per-class density functions.

Algorithm 1 details SelfChecker’s procedure for KDE es-
timation and inference. Lines 1-10 show the Gaussian KDE
used to extrapolate the density distribution functions of feature

Algorithm 1: KDE Estimation and Inference
Input: Input instances in Dtrain , Dvalid : X t, Xv , true labels in Dtrain : Yt;
Trained model M with L layers and C classes;
Variance threshold: tvar
Output: KDE functions for each combination of class and layer: kdes;
Inferred classes for all layers on Dvalid : kdeInferLv

1 # Estimation
2 for c in C do
3 Obtain instances X t

c whose true label is c;
4 for l in L do
5 vt

lc = M.outputl(X t
c);

6 Remove elements in vt
lc whose variance is less than tvar ;

7 f̂(x) = 1
|vt

lc
|h

∑|vt
lc|

i=1 K(
x−vt

lc[i]

h);

8 kdes[l][c] = f̂(x);
9 end

10 end
11 # Inference
12 for x in Xv do
13 for l in L do
14 vl = M.outputl(x);
15 Remove values of the neurons filtered in the training set from vl;
16 for c in C do
17 kde_values[c] = kdes[l][c](vl);
18 end
19 kdeInferLv [x.index][l] = max(kde_values).index ;
20 end
21 end

375

vectors per class in each layer. As illustrated with Fig. 1, we
want to extrapolate the patterns of the attention overlaid on
the raw input. Since the input instances with different classes
perform differently in different layers, the attentions in the
first layer of digit 3 are different from the first one of 6 that
is also different from the second one of 6 itself. SelfChecker
therefore splits the original training input instances according
to their true classes (Line 3). Based on these it obtains the
outputs of each layer given the trained model M (Line 5).
SelfChecker also uses mean-pooling to reduce dimensions
for convolutional layers and then filters out neurons whose
values show variance lower than a pre-defined threshold, tvar,
to reduce the dimension of feature vectors as these neurons
do not contribute much information to the KDE (Lines 6).
SelfChecker then uses the filtered feature vectors to extrapolate
the density functions for each layer and class, and stores them
(Lines 7-8) so that they can be used for inference on new
examples, such as Dvalid (Lines 11-21).

During inference on a given input instance, SelfChecker first
obtains the outputs in each layer (Line 14), from which it
removes the values of the neurons filtered in Line 6 (Line 15).
It then generates the estimated density values of each class,
given the corresponding KDE functions (Lines 16-18). Finally,
the layer inference for the input instance is the class that has
the maximum density value (Line 19), which indicates that
the feature vectors of the input instance in this layer are close
to those in training set that belong to this specific class. For
instance, in Fig. 1, the class inferences given by Algorithm 1
in the three layers are 3, 3, 2 for digit 3, and 1, 6, 6 for digit
6, respectively.

B. Layer Selection

In Section II we noted that different layers have different
attentions, but some of these focus on a particular part of
the image and may be misleading. For example, in Fig. 1
the second and third layers for 6 are different from the final
prediction. If SelfChecker would consider the outputs of these
layers, it can detect that the model is not confident about
the final output. And, if SelfChecker considers just these
layers and uses maximum voting, then it can also provide
an alternative prediction that correctly classifies this image.
Therefore, the design of robust layer selection in SelfChecker
is important to accurately raise an alarm and to provide a high
quality advice.

We first explain what we mean by a model output’s confi-
dence. Our definition is based on an observation: given a test
instance, if the features of DNN layers are different from the
final prediction, then the decision made by the model on the
test instance will tend to be incorrect. For example, in Fig. 1
the attentions in the second and third images of a 6 are more
similar to those of a 6 instead of the final prediction of 1. In
this case the model misclassifies the 6 as 1. We evaluated
this observation by using Spearman rank-order correlation
coefficient and p-values [29]. Spearman rank-order measures
the relationship between the prediction correctness and the
consistency of inferred layer classes and final predictions.

Our results show that they are correlated with p-value much
less than 0.05 (at most 3.09e-26) on all evaluated four image
datasets and three DNN models listed in Table I.

We formally define the confidence (δ) of a model output (ŷ)
given a test instance x as follows:

δ =
NkdeInferLx==ŷ

NselectedLayerCalarm[ŷ]
(2)

where NkdeInferLx==ŷ is the number of selected layers whose
inferred class is the same as the final prediction ŷ and
NselectedLayerCalarm[ŷ] is the number of selected layers for
the class ŷ. Based on the maximum voting, if δ is lower than
0.5, we say that a DNN has low confidence in prediction ŷ for
a test instance x.

We now discuss how SelfChecker selects the proper layer
combinations for each class to reach a high alarm accuracy
(Algorithm 2). We use the training set to estimate the density
function, from which the inferred class for each layer can
be obtained for a given input instance. As mentioned in
Section II, different layers have different attentions but some
of these may be misleading, we thus use the validation
dataset to select layers. Given the validation dataset Dvalid ,

Algorithm 2: Layer Selection for Alarm
Input: Input instances in Dvalid : Xv , true labels and predictions: Yv , Ŷv ;
Total classes: C;
Inferred classes for all layers on Dvalid : kdeInferLv

Output: Selected layers for all classes: selectedLayerCalarm

1 for c in C do
2 Obtain the indexes idxc of instances Xv

c whose prediction Ŷv is c;
3 Generate all kinds of layer combinations combL;
4 for layers ls in combL do
5 for l in ls do
6 ys .add(kdeInferLv [idxc][l]);
7 end
8 KdePredPos .add(index of sum(ys !=

Ŷv [idxc]) >= sum(ys == Ŷv [idxc]));
9 TrueMisBehavior .add(index of Ŷv [idxc]! = c);

10 TP = TrueMisBehavior & KdePredPos;
11 FP = ¬TrueMisBehavior & KdePredPos;
12 FN = TrueMisBehavior & ¬KdePredPos;
13 F1 = 2 ∗ TP/(2 ∗ TP + FN + FP);
14 if F1 is max then
15 selectedLayerCalarm [c] = ls ;
16 end
17 end
18 end

SelfChecker splits the input instances into C subsets based
on their predictions (Line 2). SelfChecker then generates all
possible layer combinations with lengths in range 1 through
L, from which it searches for the best combination for each
class to reach the highest accuracy (Lines 4-17). To calculate
the alarm accuracy, SelfChecker first obtains the inferred class
of each layer in the given layer combination (Lines 5-7) based
on the generated KDE inferences across all layers on Dvalid

(kdeInferLv) by Algorithm 1. To conclude whether or not the
model has made a wrong prediction for an input, SelfChecker
considers the layers in the layer combination. If a majority
of the layers indicate inferred classes that are different from
the model prediction (the confidence δ is less than 0.5), then
SelfChecker concludes that the model is wrong (Line 8). In

376

this case, if the model prediction is indeed different from the
true label of this input, the alarm is correct (True Positive),
otherwise, it is incorrect (False Positive). SelfChecker uses the
F1-score to measure the alarm accuracy (Lines 10-13), and it
selects the layer combination with the highest accuracy for the
corresponding class (Lines 14-16).

Algorithm 3: Layer Selection for Advice
Input: Input instances in Dvalid : Xv , true labels and predictions: Yv , Ŷv ;
Total classes: C;
Inferred classes for all layers on Dvalid : kdeInferLv ;
Selected layers for all classes: selectedLayerCalarm

Output: Selected layers and weights per class: selectedLayerPosCadvice ,
Wpos , selectedLayerNegCadvice , Wneg ;

1 for cp in C do
2 Obtain the indexes idxcp of instances Xv

cp
whose prediction Ŷv is cp;

3 Generate ys given selectedLayerCalarm [cp];
4 Generate all kinds of layer combinations combL;
5 KdePredPos .add(index of sum(ys !=

Ŷv [idxcp]) >= sum(ys == Ŷv [idxcp]));
6 TrueMisBehavior .add(index of Yv [idxcp]! = cp);
7 FP = ¬TrueMisBehavior & KdePredPos;
8 for ct in C do
9 idxct .add(index of KdePredPos where

Yv [KdePredPos] = ct);
10 Select layers selectedLayerPosCadvice with highest accuracy

accmax from combL;
11 if ct = cp then
12 Wpos [cp][ct] = len(idxct)∗accmax/len(KdePredPos)
13 else
14 Wpos [cp][ct] =

len(idxct) ∗ accmax/(len(KdePredPos)− FP)
15 end
16 end
17 KdePredNeg .add(index of sum(ys !=

Ŷv [idxcp]) < sum(ys == Ŷv [idxcp]));
18 TN = ¬TrueMisBehavior & KdePredNeg ;
19 Iterate Lines 8-16 to obtain selectedLayerNegCadvice and Wneg

20 end

After selecting the layer combinations for the alarm, Self-
Checker must determine the layer combinations that give a
good advice whenever SelfChecker raises an alarm about a
prediction. Algorithm 3 details SelfChecker’s procedures for
layer selection to achieve the best advice accuracy. First,
SelfChecker splits the validation set Dvalid into C subsets
(Line 2), and for each subset it searches for the best layer com-
bination. Given the layers selected for alarms by Algorithm 2,
SelfChecker generates the KDE inferred classes in these layers
as in Lines 5-7 in Algorithm 2. Given a test instance, if
the confidence of the model prediction (δ) is less than 0.5,
SelfChecker concludes that the model misbehaved (Line 5).
SelfChecker then searches for the best layer combination
where the model predicts the input with label ct as cp (Lines 9-
10). Since not all classes have correlation, SelfChecker obtains
weights for different combinations (Lines 11-15). For example,
1 is prone to be misclassified as 7 but has little chance to be
misclassified as 2. Subsequently, in Lines 17-19, SelfChecker
finds the layer combination that achieves the highest accuracy
for the case where the selected layers by Algorithm 2 indicate
a negative decision (the model behaves normally).

Boosting strategy: SelfChecker searches for both positive
and negative decisions made by the selected layers in Algo-
rithm 2 in order to boost the quality of the alarm. In particular,
if the layers selected by Algorithm 2 indicate an alarm but

the advice given by selectedLayerPosCadvice (Line 10) is the
same as the model prediction, then SelfChecker does not raise
an alarm. Similarly, if the layers selected by Algorithm 2
indicate that the model prediction is correct but the advice
given by selectedLayerNegCadvice (Line 19) is different from
the model prediction, SelfChecker will raise an alarm.

C. Checking the Model in Deployment

SelfChecker checks a trained DNN in deployment. It raises
an alarm if it disagrees with the model’s prediction of a
given test instance and also generates an advice (alternative
prediction). Algorithm 4 presents this process.

Algorithm 4: Checking Model in Deployment
Input: Input instance and its prediction by M with L layers: x, ŷ;
KDE functions for all layers and classes: kdes;
Selected layers for all classes: selectedLayerCalarm ,
selectedLayerPosCadvice , selectedLayerNegCadvice ;
Weights for advice: Wpos , Wneg

Output: alarm and advice z
1 Generate inferred class for each layer kdeInferL using KDE functions kdes;
2 Lalarm = selectedLayerCalarm [ŷ];
3 Generate ys given Lalarm and kdeInferL;
4 if sum(ys != ŷ) >= sum(ys == ŷ)) then
5 initialize prob with C dimensions;
6 for c in C do
7 Ladvice = selectedLayerPosCadvice [ŷ][c];
8 for l in Ladvice do
9 prob[c] = sum(kdeInferL[l] == c);

10 end
11 prob[c] = prob[c] ∗Wpos [ŷ][c]/len(Ladvice)
12 end
13 advice = max(prob[c]).index ;
14 if advice != ŷ then
15 alarm = True, z = advice
16 else
17 alarm = False
18 end
19 else
20 Iterate 5-18 if the alarm is not triggered initially;
21 end

First, SelfChecker generates inferred classes of all layers
kdeInferL using layer outputs and KDE functions kdes ob-
tained from Algorithm 1. Then, as in Lines 5-7 in Algorithm 2,
SelfChecker generates ys consisting of inferred classes given
the selected layers for ŷ. If the output class ŷ is not inferred
in the majority of cases in ys, then SelfChecker has an initial
alarm that still needs to go through the boosting strategy
(mentioned in the last section).

Lines 5-18 show that SelfChecker first generates the proba-
bilities of each class given selectedLayerPosCadvice [ŷ], which
are weighted by Wpos . If the class with the largest probability
is still different from the model prediction ŷ, SelfChecker
triggers the alarm and it selects the class with the largest
probability as the advice. Otherwise, SelfChecker does not
trigger the alarm. A similar strategy is used if the alarm is not
triggered initially where the output class ŷ is inferred in the
majority of cases in ys.

IV. EVALUATION

In this section we present experimental evidence for the
effectiveness of SelfChecker. The goal of our evaluation is to
answer the following research questions.

377

TABLE I
DL MODELS AND DATASETS USED IN THE EXPERIMENTS.

Dataset # Class # Train # Valid # Test
DL models

ConvNet VGG-16 ResNet-20
Layers Accuracy% # Layers Accuracy% # Layers Accuracy%

MNIST 10 50,000 10,000 10,000 8 99.36 16 98.87 - -
FMNIST 10 50,000 10,000 10,000 8 92.13 16 93.75 20 92.74

CIFAR-10 10 40,000 10,000 10,000 8 80.45 16 92.17 20 92.08
CIFAR-100 100 40,000 10,000 10,000 - - 16 66.79 20 69.52

ResNet-20 and ConvNet are seldom used for MNIST and CIFAR-100. We omit their results due to space limitation but we will release them with our code.
DAVE-2 and Chauffeur for self-driving cars are regression models so we exclude them in this table.

A. Research Questions

RQ1. Alarm Accuracy: How effective is SelfChecker in
predicting DNN misclassifications in deployment?

To evaluate the effectiveness of SelfChecker for raising
alarms in deployment, we compare its alarm accuracy on
the test dataset with related techniques, namely, SELFOR-
ACLE [21], DISSECTOR [22], and ConfidNet [17]. For the
comparison, we chose the variant from SELFORACLE—the
VAE (variational autoencoder)—that achieved the best perfor-
mance against other SELFORACLE variants, with confidence
threshold of 0.05. Since DISSECTOR did not provide the
threshold for distinguishing beyond-inputs from within-inputs,
we used the validation dataset to choose a threshold in the 0−1
range with the highest F1-score and the best weight growth
type from linear, logarithmic, and exponential defined in [22]
with the highest Area Under Curve (AUC) for each dataset and
DNN classifier. We also used the validation dataset to find the
best threshold of failure prediction for ConfidNet to reach the
highest F1-score.

RQ2. Advice Accuracy: Does the advice given by Self-
Checker improve the accuracy of a DNN?

In cases where SelfChecker raises an alarm about a model
prediction, we also determine whether it can provide an advice
and the accuracy of this advice. To answer this question,
we compare the advice accuracy of SelfChecker against the
accuracy of the original DL model M . For self-driving cars,
we use the dataset released by SELFORACLE. This dataset
only includes anomalous/normal labels, which is not enough
to provide realistic advice, such as turning right/left.

RQ3. Deployment Time: What is the time overhead of
SelfChecker in deployment for a given test instance?

We consider what different algorithms do in deployment
and evaluate the computation time of their deployment-time
components. SelfChecker performs DNN computation, KDE
inferences, and alarm and advice analysis. SELFORACLE uses
the reconstructor to compute a loss and anomaly detector. DIS-
SECTOR generates probability vectors and performs validity
analysis2. ConfidNet computes an output using two DNNs.

2By contrast, Wang et al. [22] only include validity analysis. We believe that
the probability vector generation must also be performed during deployment,
since this is the input to validity analysis.

RQ4. Layer Selection: Does the choice of layers for selection
by SelfChecker have an impact on its alarm accuracy?

Kaya et al. [20] characterized "over-thinking" as a prevalent
weakness of DL models, which occurs when a DL model can
reach correct predictions before its final layer. Over-thinking
can be destructive when a correct prediction within hidden
layers changes to a misclassification at the output layer (see
Section II). Therefore, it is important to select proper layers for
different classes. To evaluate the impact of layer selections on
the alarm accuracy, we experimented with three layer selection
strategies as discussed in Section IV-C: RQ4.

RQ5. Boosting Strategy: Does the boosting strategy improve
SelfChecker’s alarm accuracy, particularly in terms of de-
creasing the number of false alarms?

As discussed in Sections III-B and III-C, we use a boosting
strategy to check whether or not to raise an alarm.

B. Experimental Setup

We evaluate SelfChecker on four popular datasets
(MNIST [30], FMNIST [31], CIFAR-10 [19], and CIFAR-
100 [19]) using three DL models (ConvNet [32], VGG-16 [18],
and ResNet-20 [33]). We also compare the alarm accuracy
of SelfChecker against SELFORACLE [21] for self-driving
car scenarios evaluated on two publicly-available DL models,
NVIDIA’s DAVE-2 [7] and Chauffeur [34]. To reduce the
possibility of fluctuation due to randomness, we ran all exper-
iments involving MNIST, FMNIST, CIFAR-10, and CIFAR-
100 three times and computed the average of all metrics.
For the experiments involving the driving datasets, we ran
each experiment just once, since we used pre-trained models
released by the authors of SELFORACLE [21]. We conducted
all experiments on an Ubuntu 18.04 server with Intel i9-
10900X (10-core) CPU @ 3.70GHz, one RTX 2070 SUPER
GPU, and 64GB RAM.
Datasets and DL models. Table I lists the number of classes
and the number of training, validation, and test instances in
each dataset, as well as the number of layers and the testing
accuracy of all trained DL models. These datasets are widely
used and each is a collection of images. ConvNet, VGG-16,
and ResNet-20 are commonly-used DL models whose sizes
range from small to large, with the number of layers ranging
from 8 to 20. Table I presents the accuracy of each model we
obtained for each dataset; these accuracies are similar to the

378

TABLE II
ALARM ACCURACY.

Dataset DL ↑ TPR % ↓ FPR % ↑ F1 %
SO DT CN SC SO DT CN SC SO DT CN SC

MNIST ConvNet 18.75 60.94 60.94 62.50 4.39 0.24 0.58 0.23 4.69 61.42 48.45 62.99
VGG-16 20.35 68.14 61.95 74.34 4.29 0.32 0.46 0.31 8.21 69.37 61.40 73.68

FMNIST
ConvNet 9.53 47.65 38.12 41.55 5.60 4.03 0.73 0.51 10.89 48.92 51.99 56.33
VGG-16 8.00 48.48 43.36 46.88 5.75 4.16 0.98 0.86 8.24 45.98 54.86 58.66

ResNet-20 9.64 54.96 47.66 51.79 5.69 3.76 1.14 0.98 10.57 54.14 58.74 63.03

CIFAR-10
ConvNet 5.01 61.43 58.57 61.89 3.97 9.83 2.29 2.04 8.26 60.86 69.73 72.69
VGG-16 6.39 53.77 43.17 49.30 3.94 4.47 3.03 1.16 8.36 52.10 48.29 60.50

ResNet-20 7.07 47.98 49.87 52.15 3.96 4.93 1.03 0.64 9.23 46.74 61.62 65.35

CIFAR-100 VGG-16 10.48 82.78 78.20 84.22 7.88 23.78 16.17 6.57 16.59 71.79 74.22 85.31
ResNet-20 11.25 75.16 61.15 80.97 7.64 21.63 13.56 7.09 17.49 66.96 63.67 82.14

Driving DAVE-2 76.85 - - 99.01 7.29 - - 9.37 46.43 - - 49.88
Chauffeur 81.15 - - 93.44 4.77 - - 4.56 32.25 - - 37.25

SO, DT, CN, and SC stand for SELFORACLE, DISSECTOR, ConfidNet, and SelfChecker, respectively.

state-of-the-art. As mentioned in Section III, SelfChecker has
a training module and a deployment module. The training and
validation dataset were used in the training module, and the
test dataset were used on the deployment module to evaluate
the performance of SelfChecker.

For our experiments with NVIDIA’s DAVE-2 [7] and Chauf-
feur [34] for self-driving cars, we used the dataset and pre-
trained models released by the authors of SELFORACLE.
There are 37,947 training images, 9,486 validation images
and 134,820 testing images for DAVE-2 and 250,830 for
Chauffeur. The testing images are collected by the self-driving
car respectively equipped with the two trained DL models. The
collection process stops when the car has collisions or out-of-
bound episodes. Therefore, the testing images are different for
the two DL models. DAVE-2 contains five convolutional layers
followed by three fully-connected layers, while Chauffeur
consists of six convolutional layers followed by one fully-
connected layer.

Configurations. As discussed in Section III, we filter out
neurons whose activation values show variance lower than a
pre-defined threshold (tvar in Algorithm 1), as these neurons
do not contribute much information to the KDE. For all
research questions, the default variance threshold is set to
10−5, and the bandwidth for KDE is set using Scott’s Rule [35]
based on the number of data points and dimensions.

Metrics. Given the KDE inferences of the selected layers,
if more layers disagree than agree with the model output,
SelfChecker triggers an alarm. We compute the confusion
metrics (TP, FP, TN, and FN) as our measurement. Conse-
quently, a True Positive (TP) is defined when SelfChecker
triggers an alarm to predict a misclassification where the
model output is indeed wrong. Conversely, a False Negative
(FN) occurs when SelfChecker does not trigger an alarm
on a real misclassification by the model. A False Positive
(FP) represents a false alarm by SelfChecker, whereas True
Negative (TN) cases occur when SelfChecker is silent on
correct classifications. Our goal is to achieve (1) a high true
positive rate (TPR = TP / (TP+FN)), (2) a low false positive

rate (FPR = FP / (TN+FP)), and (3) a high F1-score (F1 = (2
* TP) / ((2 * TP) + FN + FP)).

C. Results and Analyses

We now present results that answer our research questions.
RQ1. Alarm Accuracy
Table II presents the alarm accuracies of three DL mod-
els (ConvNet, VGG-16, and ResNet-20) in deployment on
four datasets (MNIST, FMNIST, CIFAR-10, and CIFAR-
100) checked by SELFORACLE, DISSECTOR, ConfidNet and
SelfChecker, and the alarm accuracies of two self-driving car
DL models checked by SelfChecker and SELFORACLE [21],
in terms of TPR, FPR and F1-score. Fig. 4 shows the average
confusion metrics of all datasets and DL models. SelfChecker
can always trigger more correct alarms (TP) and miss fewer
true alarms (FN) than SELFORACLE and ConfidNet.

On traditional DNN classifiers, SelfChecker correctly trig-
gers an alarm on over half of the misclassifications (av-
erage TPR 60.56%), which is much higher than that of
SELFORACLE (average TPR 10.65%) and ConfidNet (average
TPR 54.30%), and comparable to DISSECTOR (average TPR
60.13%). In particular, the highest TPR of SelfChecker is
84.22%; this means that over 80% of misclassifications can
be detected by SelfChecker. However, there are four cases
on which DISSECTOR achieves higher TPR. Similar to Self-
Checker, DISSECTOR also benefits from the internal layer
features. It builds several sub-models that are retrained on top
of internal layers. Therefore, additional information may be
learned by the training process that SelfChecker lacks. But,
SelfChecker outperforms DISSECTOR on TPR in the majority
of cases, which indicates that the additional information is
limited. Significantly, SelfChecker outperforms SELFORACLE,
which has no internal information and ConfidNet, which only
considers high-level representations on all datasets and DNN
classifiers on TPR. We thus conclude that the internal layer
features obtained by SelfChecker are important to detecting
misclassifications. On the other hand, SelfChecker achieves
lower FPR than all the competitors. The low FPR indicates that
SelfChecker triggers few false alarms. This is expected since

379

Con
vNetVGG

-16
Con

vNetVGG
-16
ResN

et-20Con
vNetVGG

-16
ResN

et-20VGG
-16
ResN

et-20
Chau

ffeurDAV
E-2

SelfOracle DISSECTOR ConfidNet SelfChecker

(a) # True Positives (TP)

Con
vNetVGG

-16
Con

vNetVGG
-16
ResN

et-20Con
vNetVGG

-16
ResN

et-20VGG
-16
ResN

et-20
Chau

ffeurDAV
E-2

SelfOracle DISSECTOR ConfidNet SelfChecker

(b) # False Positives (FP)

Con
vNetVGG

-16
Con

vNetVGG
-16
ResN

et-20Con
vNetVGG

-16
ResN

et-20VGG
-16
ResN

et-20
Chau

ffeurDAV
E-2

SelfOracle DISSECTOR ConfidNet SelfChecker

(c) # True Negatives (TN)

SelfOracle DISSECTOR ConfidNet SelfChecker

Con
vNetVGG

-16
Con

vNetVGG
-16
ResN

et-20Con
vNetVGG

-16
ResN

et-20VGG
-16
ResN

et-20
Chau

ffeurDAV
E-2

(d) # False Negatives (FN)

Fig. 4. Confusion metrics comparing the performance of all approaches.

the boosting strategy (Section III-B) makes SelfChecker very
prudent in triggering alarms. Finally, SelfChecker has a higher
F1-score than all the competing approaches with an average
values of 68.07% against 10.25%, 57.83%, and 59.30% for
SELFORACLE, DISSECTOR, and ConfidNet, respectively. The
reason SELFORACLE has worse accuracy on traditional DNN
classifiers is that it is tailored for time series analysis on
video frame sequences that change little over short periods
of time. ConfidNet is trained on top of the original DL
model whose weights of feature extraction are frozen using
the training dataset and it uses the loss function based on true
class probability. Since there are few wrong predictions in the
training dataset after the original model is trained, overfitting
leads to limited performance of ConfidNet. Note that the
results of ConfidNet shown in Table II are different from those
in [17] since our study regards wrong predictions as positive
cases (discussed in Metrics in Section IV-B) while [17] regards
correct predictions as positive cases.

In the self-driving car scenarios, we transformed the re-
gression network that predicts steering angles into a binary
classification network that classifies steering angles as either
normal or anomalous. Since the true class probability is the
base of ConfidNet, and the first and second highest class
probabilities are necessary for DISSECTOR, both of these
cannot be used in the self-driving car scenarios. Given the
validation dataset, a Gamma distribution is fitted to the errors
between the predictions and the real-valued angles (MSE),
and density values of each layer generated by Algorithm 1,
respectively. Given an ε value of 0.05 (the same as used in
SELFORACLE) from the Gamma fitting distribution, if the
error of an instance in the validation dataset is larger than the
value corresponding to ε, it is labeled as an anomaly. Similarly,
if the density value is less than the values corresponding to ε, it
is predicted as an anomaly. We then use SelfChecker to solve
the regression problem as a binary classification problem.
Table II shows that SelfChecker achieves a higher TPR than
SELFORACLE on both DAVE-2 and Chauffeur, indicating that
SelfChecker can trigger more correct alarms. Even though
SelfChecker triggers more false alarms for DAVE-2, it also
triggers more true alarms (201 against 156 by SELFORACLE)

and misses only 2 true alarms. In addition, the F1-score for
SelfChecker is higher than for SELFORACLE on both models.

For RQ1, we conclude that SelfChecker effectively triggers
alarms that predict misbehaviors of DL models in deployment
with high TPR and low FPR.
RQ2. Advice Accuracy
Table III compares the accuracies of the original model M
to those of M having advice provided by SelfChecker. Even
though SelfChecker achieves high alarm accuracies, it is
challenging for it to provide correct advice as we regard
the advice as correct only if the inferred classes of most
selected internal layers are the same as the true label. This
condition is more strict than triggering an alarm that requires
the inferred classes of most selected internal layers to be
different from the model’s prediction. Our results show that

TABLE III
ADVICE ACCURACY.

Accuracy Strategies ConvNet VGG-16 ResNet-20

MNIST M 99.36 98.87 -
M+SC 99.37 99.21 -

FMNIST M 92.13 93.75 92.74
M+SC 92.34 93.78 92.80

CIFAR-10 M 80.45 92.17 92.08
M+SC 80.63 92.41 92.11

CIFAR-100 M - 66.79 69.52
M+SC - 66.16 68.85

SC stands for SelfChecker.

even though the trained DL models have achieved state-of-the-
art accuracies, the advice can still improve model’s prediction
accuracy by about 0.138% for datasets with 10 classes but
decrease the prediction accuracy by about 0.65% for datasets
with 100 classes. There are two reasons for this. First, finding
a correct prediction from 100 classes is a harder problem.
Second, the validation set per class is more limited: CIFAR-
10 has 1000 samples per class but CIFAR-100 only has 100
samples per class. We empirically find that SelfChecker’s
advice can improve model’s prediction accuracy when the
number of samples per class is over 200. The results also
show that the advice provided by SelfChecker can improve

380

the prediction accuracy at most 0.34% without retraining with
additional inputs or changing the architecture. Even though
this difference is small, for a safety-critical domain such as
self-driving cars, which make tens of decisions per second, a
difference of 0.2% in 10,000 decisions translates to 20 fewer
misclassifications.

For RQ2, we showed that SelfChecker’s advice can improve
the accuracy of the original models beyond their state-of-the-
art performance with a sufficiently large validation dataset.
RQ3. Deployment Time

We measured the average time that it takes a method to
check a model’s inference on a single input. Table IV lists
the average times for all the datasets in Table II for each
DNN classifier. The results for DAVE-2 and Chauffeur are for
their corresponding self-driving datasets. SELFORACLE and
ConfidNet take the least time since they use an additional
DL model and their deployment checking time is the time it
takes for two DL models to compute their outputs. However,
these methods have alarm accuracies that are lower than
DISSECTOR and SelfChecker. DISSECTOR takes longer than
SelfChecker (average of 50.47ms vs 34.98ms) on traditional
DNN classifiers.

TABLE IV
DEPLOYMENT TIME.

Time (ms) SO DT CN SC
ConvNet 0.96 29.74 0.98 26.47
VGG-16 1.35 58.34 1.02 35.83

ResNet-20 1.79 63.33 1.36 42.63
DAVE-2 45.80 - - 67.78

Chauffeur 42.66 - - 63.12
SO, DT, CN, and SC stand for SELFORACLE,

DISSECTOR, ConfidNet, and SelfChecker, respectively

We believe that these checking times are acceptable across
a variety of application domains. As is, SelfChecker can be
used for applications ranging from medical image-based diag-
nosis to airport security screening. For real-time applications
(e.g., autonomous driving), the latency of SelfChecker and
SELFORACLE needs to improve. The checking time in the
self-driving car scenarios is high because 32 frames must be
analyzed before raising an alarm. Efficiency is not this paper’s
focus, but we acknowledge its importance for cyber-physical
systems. We plan to parallelize SelfChecker by using a process
per class density function to decrease latency by 1/(number of
classes).
RQ4. Layer Selection
As discussed in Section III-B, we use search-based optimiza-
tion to select suitable layers for improving alarm accuracy.
We present the results of checking VGG-16 on FMNIST
and Chauffeur on the self-driving car dataset in Table V; we
omit results for the other models and dataset since they have
similar properties. We evaluate three layer selection strategies
for triggering alarms and compare them in terms of alarm
accuracy. The first strategy involves random selection of layers
for each class, with the number of layers selected for each class

being the same as the number selected using our approach, in
order to make a fair comparison. The second strategy uses
the full set of layers. The third strategy is our own approach
described in Section III-B, which selects suitable layers based
on the validation dataset. To ensure a fair comparison, none
of the strategies use the boosting strategy.

TABLE V
IMPACT OF LAYER SELECTION ON ALARM ACCURACY.

FMNIST TP FP TN FN ↑ TPR ↓ FPR ↑ F1
Random 280 482 8893 345 44.80 5.14 40.37

Full 209 230 9145 416 33.44 2.45 39.29
SC-layera 317 329 9046 308 50.72 3.51 49.88
Chauffeur TP FP TN FN ↑ TPR ↓ FPR ↑ F1
Random 112 3059 5180 10 91.80 37.13 6.80

Full 99 2596 5643 23 81.15 31.51 7.03
SC-layera 116 2978 5261 6 95.08 36.15 7.21

a SC-layer stands for SelfChecker’s layer selection.

The results in Table V indicate that SelfChecker’s layer
selection strategy always achieves the highest TPR and F1-
score compared to random selection and full selection. Even
though using all layers to decide whether triggering an alarm
achieves lower FPR than our approach, it sacrifices the number
of correct alarms by 108 and 17 for FMNIST and driving
dataset, respectively. Therefore, selecting more layers does not
lead to a better checker.

For RQ4, we conclude that a careful selection of layers
allows SelfChecker to identify more misclassifications and
raise more correct alarms.
RQ5. Boosting Strategy
Table VI presents the alarm accuracies of SelfChecker both
with (SC) and without (SC-b) the boosting strategy described
in Section III-B, for ResNet-20 on FMNIST and CIFAR-100;
we omit results for the other models and dataset since they
have similar properties. As indicated in Table VI, adopting
the boosting strategy achieves much lower FPR (the lower the
better) than SC-b, with larger F1-score (the higher the better).

TABLE VI
IMPACT OF BOOSTING ON ALARM ACCURACY CHECKING RESNET-20.

FMNIST TP FP TN FN ↑ TPR ↓ FPR ↑ F1
SC-b 402 323 8951 324 55.37 3.48 55.41
SC 376 91 9183 350 51.79 0.98 63.03

CIFARa TP FP TN FN ↑ TPR ↓ FPR ↑ F1
SC-b 2571 930 6022 477 84.35 13.38 78.52
SC 2468 493 6459 580 80.97 7.09 82.14

a CIFAR stands for CIFAR-100

For RQ5, we showed that the boosting strategy significantly
improves alarm accuracy by reducing false alarms.

V. RELATED WORK

Most studies that check DL model trustworthiness focus
on the process of model engineering: generate adversarial
test instances [36]–[41], increase test coverage [42]–[44], and
improve robust accuracy [32], [45]. Unlike our work, which

381

checks the model in production, these approaches rely heavily
on manually supplied ground truth labels. Our focus is on non-
adversarial inputs, which require different considerations [46].
We plan to consider adversarial inputs in our future work.

SelfChecker’s performance will depend on the difference in
distribution. We conducted preliminary experiments by slightly
changing the testing dataset with random noise to push the
dataset embeddings of the first fully-connected layer after
all convolutional layers away from the training dataset. In
this setup, SelfChecker performs similarly to the normal in-
distribution dataset. Besides, there are existing studies de-
tecting out-of-distribution data [47]–[49]. For example, recent
work [49] uses temperature scaling and an input preprocessing
strategy to make the max class probability a more effective
score for detecting out-of-distribution data. Such studies are
complementary to SelfChecker: they could first check for
the input being out-of-distribution, and then SelfChecker can
check the prediction. In addition, our problem cannot be
subsumed by confidence calibration. As stated in Confid-
Net [17], confidence calibration helps to create confidence
criteria but ConfidNet’s focus is failure prediction. Comparing
SelfChecker against a technique with temperature scaling is
inappropriate because using temperature scaling to mitigate
confidence values doesn’t affect the ranking of the confidence
score on different classes and therefore cannot separate errors
from correct predictions.

In the SE community, several studies consider checking
a DL model’s trustworthiness in deployment. SELFORACLE,
proposed by Stocco et al. [21], estimates the confidence of
self-driving car models. In their work, an alarm is triggered
if the confidence of the model output is lower than a pre-
defined threshold, in which case a human is then involved. It
is designed for the scenario in which inputs are temporally
ordered, such as video frames. Its performance is limited on
other DNN types (see Section IV). Wang et al. [22] propose
DISSECTOR to detect inputs that deviate from normal inputs.
It trains several sub-models on top of the pre-trained DL
model for validating samples fed into this DL model. But the
generation of sub-models is manual and time-consuming, and
DISSECTOR does not provide an explicit design of the thresh-
old for distinguishing inputs, which depends on the model and
dataset. In the DL community, researchers have developed new
learning-based models to measure confidence [17], [50]–[53].
These models may also be untrustworthy and may suffer from,
e.g., overfitting. In [52], [53], nearest-neighbor classifiers are
built to measure the model confidence. A clear drawback of
both approaches is the lack of scalability, since computing
nearest neighbors in large datasets and complex models is ex-
pensive. Corbière et al. [17] propose a new confidence model,
namely ConfidNet, on top of the pre-trained model to learn the
confidence criterion based on True Class Probability for failure
prediction, which outperforms [53] in both effectiveness and
efficiency. But its performance is limited due to overfitting
since it is trained on the training dataset where there are few
wrong predictions. Except for [52], which cannot scale to
large datasets and models, none of the above papers provide

alternative advice. In contrast, SelfChecker achieves both high
alarm and advice accuracy (with sufficient validation data per
class) using internal features extracted from the DNN.

VI. LIMITATIONS AND CONCLUSION

Limitations. SelfChecker builds on an assumption that the
density functions and selected layers determined by the train-
ing module can be used to check model consistency in
deployment. This assumption depends on whether the training
and validation datasets are representative of test instances.
SelfChecker is a layer-based approach that requires white-box
access and will have more limited power on shallow DNNs
with few layers.
Conclusion. To be used in mission-critical contexts, DNN
outputs must be closely monitored since they will inevitably
make mistakes on certain inputs.

In this paper we hypothesized that features in internal layers
of a DNN can be used to construct a self-checking system
to check DNN outputs. We presented the design of such a
general-purpose system, called SelfChecker, and evaluated it
on four popular publicly-available datasets (MNIST, FMNIST,
CIFAR-10, CIFAR-100) and three DNNs (ConvNet, VGG-
16, ResNet-20). SelfChecker produces accurate alarms (accu-
racy of 60.56%), and SelfChecker-generated advice improves
model accuracy on the 10-class dataset by 0.138% on aver-
age, within an acceptable deployment time (about 34.98ms).
As compared to alternative approaches, SelfChecker achieves
the highest F1-score with 68.07%, which is 8.77% higher
than the next best approach (ConfidNet). In the self-driving
car scenarios, SelfChecker triggers more correct alarms than
SELFORACLE for both DAVE-2 and Chauffeur models with
a comparable number of false alarms. SelfChecker is open
source: https://github.com/self-checker/SelfChecker.

ACKNOWLEDGMENT

This work was supported in part by the National Research
Foundation, Singapore and National University of Singapore
through its National Satellite of Excellence in Trustworthy
Software Systems (NSOE-TSS) office under the Trustworthy
Software Systems – Core Technologies Grant (TSSCTG)
award no. NSOE-TSS2019-05.

REFERENCES

[1] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal processing magazine, vol. 29,
no. 6, pp. 82–97, 2012.

[2] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[3] D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Deep
neural networks segment neuronal membranes in electron microscopy
images,” in Advances in neural information processing systems, 2012,
pp. 2843–2851.

[4] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in 2012 IEEE conference on com-
puter vision and pattern recognition. IEEE, 2012, pp. 3642–3649.

382

[5] F. Zhang, J. Leitner, M. Milford, B. Upcroft, and P. Corke, “Towards
vision-based deep reinforcement learning for robotic motion control,” in
Proceedings of the Australasian Conference on Robotics and Automation
2015:. Australian Robotics and Automation Association, 2015, pp. 1–8.

[6] M. Helmstaedter, K. L. Briggman, S. C. Turaga, V. Jain, H. S. Seung,
and W. Denk, “Connectomic reconstruction of the inner plexiform layer
in the mouse retina,” Nature, vol. 500, no. 7461, pp. 168–174, 2013.

[7] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to
end learning for self-driving cars,” arXiv:1604.07316, 2016.

[8] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, “Droid-Sec: Deep learning in
android malware detection,” in Proceedings of the 2014 ACM conference
on SIGCOMM, 2014, pp. 371–372.

[9] K. D. Julian, J. Lopez, J. S. Brush, M. P. Owen, and M. J. Kochenderfer,
“Policy compression for aircraft collision avoidance systems,” in Digital
Avionics Systems Conference (DASC). IEEE, 2016, pp. 1–10.

[10] J. M. Chimento, W. Ahrendt, G. J. Pace, and G. Schneider, “StaRVOOrS:
a tool for combined static and runtime verification of java,” in Runtime
Verification. Springer, 2015, pp. 297–305.

[11] S. Mitsch and A. Platzer, “ModelPlex: Verified runtime validation of
verified cyber-physical system models,” Formal Methods in System
Design, vol. 49, no. 1-2, pp. 33–74, 2016.

[12] Y. Lin, J. Sun, Y. Xue, Y. Liu, and J. Dong, “Feedback-based debug-
ging,” in 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE, 2017, pp. 393–403.

[13] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified
and out-of-distribution examples in neural networks,” arXiv:1610.02136,
2016.

[14] J. Steinhardt and P. S. Liang, “Unsupervised risk estimation using only
conditional independence structure,” in Advances in Neural Information
Processing Systems, 2016, pp. 3657–3665.

[15] C. E. Shannon, “A mathematical theory of communication,” Bell system
technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[16] V. T. Vasudevan, A. Sethy, and A. R. Ghias, “Towards better confidence
estimation for neural models,” in ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2019, pp. 7335–7339.

[17] C. Corbière, N. Thome, A. Bar-Hen, M. Cord, and P. Pérez, “Addressing
failure prediction by learning model confidence,” in Advances in Neural
Information Processing Systems, 2019, pp. 2902–2913.

[18] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv:1409.1556, 2014.

[19] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009. [Online]. Available: https://www.cs.toronto.
edu/~kriz/cifar.html

[20] Y. Kaya, S. Hong, and T. Dumitras, “Shallow-deep networks: Under-
standing and mitigating network overthinking,” in International Confer-
ence on Machine Learning, 2019, pp. 3301–3310.

[21] A. Stocco, M. Weiss, M. Calzana, and P. Tonella, “Misbehaviour
prediction for autonomous driving systems,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 359–371.

[22] H. Wang, J. Xu, C. Xu, X. Ma, and J. Lu, “Dissector: Input validation
for deep learning applications by crossing-layer dissection,” in 2020
IEEE/ACM 42nd International Conference on Software Engineering
(ICSE). IEEE, 2020, pp. 727–738.

[23] Y. Sun, X. Huang, D. Kroening, J. Sharp, M. Hill, and R. Ashmore,
“Testing deep neural networks,” arXiv:1803.04792, 2018.

[24] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-CAM: Visual explanations from deep networks via
gradient-based localization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 618–626.

[25] Z. Pan, Y. Liang, W. Wang, Y. Yu, Y. Zheng, and J. Zhang, “Urban
traffic prediction from spatio-temporal data using deep meta learning,”
in Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2019, pp. 1720–1730.

[26] Y. Liang, K. Ouyang, L. Jing, S. Ruan, Y. Liu, J. Zhang, D. S. Rosen-
blum, and Y. Zheng, “UrbanFM: Inferring fine-grained urban flows,”
in Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, 2019, pp. 3132–3142.

[27] G. R. Terrell and D. W. Scott, “Variable kernel density estimation,” The
Annals of Statistics, pp. 1236–1265, 1992.

[28] R. A. Davis, K.-S. Lii, and D. N. Politis, “Remarks on some nonpara-
metric estimates of a density function,” in Selected Works of Murray
Rosenblatt. Springer, 2011, pp. 95–100.

[29] D. Zwillinger and S. Kokoska, CRC standard probability and statistics
tables and formulae. Crc Press, 1999.

[30] Y. LeCun, C. Cortes, and C. Burges, “MNIST handwritten digit
database,” 2010. [Online]. Available: http://yann.lecun.com/exdb/mnist/

[31] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[32] J. Kim, R. Feldt, and S. Yoo, “Guiding deep learning system testing
using surprise adequacy,” in 2019 IEEE/ACM 41st International Con-
ference on Software Engineering (ICSE). IEEE, 2019, pp. 1039–1049.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[34] T. Chauffeur. (2019) Steering angle model: Chauffeur. [On-
line]. Available: https://github.com/udacity/self-driving-car/tree/master/
steering-models/community-models/chauffeur

[35] D. W. Scott, Multivariate density estimation: theory, practice, and
visualization. John Wiley & Sons, 2015.

[36] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv:1412.6572, 2014.

[37] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deep-
Road: Gan-based metamorphic testing and input validation framework
for autonomous driving systems,” in Proceedings of the International
Conference on Automated Software Engineering, 2018, pp. 132–142.

[38] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: a simple
and accurate method to fool deep neural networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2574–2582.

[39] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 427–436.

[40] M. Wicker, X. Huang, and M. Kwiatkowska, “Feature-guided black-box
safety testing of deep neural networks,” in International Conference on
Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2018, pp. 408–426.

[41] Q. Li, Y. Qi, Q. Hu, S. Qi, Y. Lin, and J. S. Dong, “Adversarial adap-
tive neighborhood with feature importance-aware convex interpolation,”
IEEE Transactions on Information Forensics and Security, 2020.

[42] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated testing
of deep-neural-network-driven autonomous cars,” in Proceedings of the
International Conference on Software Engineering, 2018, pp. 303–314.

[43] L. Ma, F. Zhang, M. Xue, B. Li, Y. Liu, J. Zhao, and Y. Wang,
“Combinatorial testing for deep learning systems,” arXiv:1806.07723,
2018.

[44] K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Automated whitebox
testing of deep learning systems,” in proceedings of the 26th Symposium
on Operating Systems Principles, 2017, pp. 1–18.

[45] S. Ma, Y. Liu, W.-C. Lee, X. Zhang, and A. Grama, “MODE: Automated
neural network model debugging via state differential analysis and
input selection,” in Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2018, pp. 175–186.

[46] X. Zhang, X. Xie, L. Ma, X. Du, Q. Hu, Y. Liu, J. Zhao, and M. Sun,
“Towards characterizing adversarial defects of deep learning software
from the lens of uncertainty,” in 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). IEEE, 2020, pp. 739–
751.

[47] S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-
of-distribution image detection in neural networks,” in International
Conference on Learning Representations, 2018.

[48] K. Lee, H. Lee, K. Lee, and J. Shin, “Training confidence-calibrated
classifiers for detecting out-of-distribution samples,” in International
Conference on Learning Representations, 2018.

[49] Y.-C. Hsu, Y. Shen, H. Jin, and Z. Kira, “Generalized odin: Detecting
out-of-distribution image without learning from out-of-distribution data,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 10 951–10 960.

[50] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in Advances in
neural information processing systems, 2017, pp. 6402–6413.

383

[51] T. DeVries and G. W. Taylor, “Learning confidence for out-of-
distribution detection in neural networks,” arXiv:1802.04865, 2018.

[52] N. Papernot and P. McDaniel, “Deep k-nearest neighbors: Towards
confident, interpretable and robust deep learning,” arXiv:1803.04765,
2018.

[53] H. Jiang, B. Kim, M. Guan, and M. Gupta, “To trust or not to trust a
classifier,” in Advances in neural information processing systems, 2018,
pp. 5541–5552.

384

