gDefect4DL: A Dataset of General Real-World Deep Learning
Program Defects

Yunkai Liang Yun Lin* Xuezhi Song
liang1996 @tju.edu.cn desliny@nus.edu.sg songxuezhi@fudan.edu.cn
Tianjin University National University of Singapore Fudan University
China Singapore China
Jun Sun Zhiyong Feng Jin Song Dong
junsun@smu.edu.sg zyfeng@tju.edu.cn desdjs@nus.edu.sg
Singapore Management University Tianjin University National University of Singapore
Singapore China Singapore
ABSTRACT CCS CONCEPTS

The development of deep learning programs, as a new programming
paradigm, is observed to suffer from various defects. Emerging
research works have been proposed to detect, debug, and repair
deep learning bugs, which drive the need to construct the bug
benchmarks. In this work, we present gDefects4DL, a dataset for
general bugs of deep learning programs. Comparing to existing
datasets, gDefects4DL collects bugs where the root causes and fix
solutions can be well generalized to other projects. Our general
bugs include deep learning program bugs such as (1) violation of
deep learning API usage pattern (e.g., the standard to implement
cross entropy function y - log(y), y — 0, without NaN error), (2)
shape-mismatch of tensor calculation, (3) numeric bugs, (4) type-
mismatch (e.g., confusing similar types among numpy, pytorch, and
tensorflow), (5) violation of model architecture design convention,
and (6) performance bugs.

For each bug in gDefects4DL, we describe why it is general and
group the bugs with similar root causes and fix solutions for ref-
erence. Moreover, gDefects4DL also maintains (1) its buggy/fixed
versions and the isolated fix change, (2) an isolated environment to
replicate the defect, and (3) the whole code evolution history from
the buggy version to the fixed version. We design gDefects4DL with
extensible interfaces to evaluate software engineering methodolo-
gies and tools. We have integrated tools such as ShapeFlow, DEBAR,
and GRIST. gDefects4DL contains 64 bugs falling into 6 categories
(i.e., API Misuse, Shape Mismatch, Number Error, Type Mismatch,
Violation of Architecture Convention, and Performance Bug). gDe-
fects4DL is available at https://github.com/llmhyy/defects4dl, its
online web demonstration is at http://47.93.14.147:9000/buglList,
and the demo video is at https://youtu.be/0XtaEt4Fhm4.

*Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE °22 Companion, May 21-29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9223-5/22/05...$15.00
https://doi.org/10.1145/3510454.3516826

« Software and its engineering — Software testing and debug-
ging.

KEYWORDS

datasets, neural networks, deep learning, defects, bugs

ACM Reference Format:

Yunkai Liang, Yun Lin, Xuezhi Song, Jun Sun, Zhiyong Feng, and Jin Song
Dong. 2022. gDefect4DL: A Dataset of General Real-World Deep Learning
Program Defects. In 44th International Conference on Software Engineering
Companion (ICSE °22 Companion), May 21-29, 2022, Pittsburgh, PA, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3510454.3516826

1 INTRODUCTION

Deep learning models and programs have been widely applied
in various software systems, which increases the demand of the
techniques for their testing, debugging, and repair [12, 14, 15, 19].
Many researchers have constructed various bug datasets for deep
learning programs, for the purpose of empirical studies [3, 17, 18]
and the development of techniques to automate bug-related tasks
[12, 14, 15, 19]. The collected bugs are classified into different fix
patterns (e.g., change loss function, optimizer, neural architecture,
etc) [4], job failure types (e.g., corrupt data, syntax error, etc.) [3, 17],
symptoms (e.g., low efficiency), and root causes (e.g., incorrect
model hyper-parameter as learning rate) [18].

Despite the effort, existing deep learning bug collections lack
clear specification to understand why the bugs happen. For example,
some fixes in the dataset [18] are to load an additional pretrained
model or add one more layer of activation function. Without well-
defined specification, it is hard to know whether such a fix (as
well as the root cause of the bug) can be generalized to the deep
learning programs in other projects. We observe that the similar
problem also applies to datasets proposed in [3] and [4]. Listing 1
and Listing 2 show a project-specific and a general deep learning
program bug respectively.

In this work, we introduce gDefects4DL, a dataset for general deep
learning bugs, which aims to facilitate research on general bug fix-
ing techniques for deep learning programs. We ensure the bugs are
general in two folds. First, we specify each bug with the specification
it violates, such as implicit API precondition and type/dimension
compatibility. Second, we provide each bug with a support level,
indicating how many similar bugs share similar root causes and

https://github.com/llmhyy/defects4dl
http://47.93.14.147:9000/bugList
https://youtu.be/0XtaEt4Fhm4
https://doi.org/10.1145/3510454.3516826
https://doi.org/10.1145/3510454.3516826

ICSE ’22 Companion, May 21-29, 2022, Pittsburgh, PA, USA

1 for batch in data.batch_qg_iter:

2 feed_dict = {inputs: batch}
results = model.infer(sess, feed_dict)

4 bs_infer = results['output']['bs_infer']

E batch_hyps = gen_text(bs_infer, ...)

6 + if beam_width > 0:
bs_turn = dict(question=question, answer=batch_hyps[1]1[i])

Listing 1: A bug fix reported in [17], which is caused by

project-specific logical error. The bug and fix are difficult

to generalize to other projects.

1 with tf.name_scope("cost"):
if loss_func == 'cross_entropy':
cost = - tf.reduce_mean(ref_input *
- tf.log(model_output)
+ tf.log(tf.clip_by_value(model_output, 1e-10, float(’inf’)))

;éif,cost = cost

Listing 2: A bug fix in gDefects4DL for a numeric error, which
makes the log() function undefined with the input variable
model_output is approaching 0. The fix solution by applying
a tf.clip_by value() function is popular in multiple projects.

fix solutions in the dataset. Overall, we construct gDefects4DL with
the following goals:

e Generality: The bugs in gDefects4DL are selected based on how
general the deep-learning program defects are. When construct-
ing the dataset, we avoid the application-specific defects whose
specification can hardly be generalized.

Authenticity: Each defect in gDefects4DL is selected from a real-

world closed issue on a popular Github repository. Thus, each bug

is naturally documented with all the corresponding discussion
and code evolution history.

Isolated Environment: gDefects4DL also isolates the runtime

environment of each defect as both Conda and Docker imple-

mentation. Moreover, we enhance a test case for each bug to
distinguish the buggy and the fixed version.

e Tool Extension: gDefects4DL supports a variety of program-
mable interfaces, potentially integrable to existing and future
deep-learning based software engineering tools. gDefects4DL now
integrates tools as ShapeFlow [12], DEBAR [19] and GRIST [15].

gDefects4DL consists of 64 deep-learning program defects falling
into 6 categories. The source code, demo video, and demo website
is available at https://github.com/llmhyy/defects4dl, https://youtu.
be/0XtaEt4Fhm4, and http://47.93.14.147:9000/bugList.

2 DATABASE CONSTRUCTION

Figure 1 shows our workflow to collect the deep-learning program
defects from the popular deep-learning Github code repositories.
We consider a Github repository as a deep learning project if it
uses a popular framework like Tensorflow, PyTorch, or Keras. We
consider a Github repository as popular if the number of either its
stars, forks, or watches is larger than a threshold (e.g., 100). The
whole process starts with a closed issue on a popular deep-learning
repository, and isolates a replicable deep-learning program defect
consisting of its meta information (including defect type, error type,

Yunkai and Yun, et al.

Commit Tracking " Test Case
Issue and Filtering Commit Construction
Meta Meta Information Buggy
Information Extraction Version Test Case
Runtime Environment Fixed Test Case
Environment Isolation Version Enhancement

Figure 1: Work flow of gDefects4DL database construction

description, etc.) and runtime environment (in the forms of Conda
and Docker container) to replicate the bug and its fix.

Commit Tracking and Filtering. Given an issue, we first track the
commit to close the issue. In this work, we build such traceability
through two sources. First, we analyze the issue discussion threads
for the potential Git commit id. Second, we search through the
whole git commit history and report the commit with message
containing the issue id. By this means, for each issue, we can have
a set of candidate commits through the automated approaches. To
minimize the manual effort, we only manually check the issue
reported with only one candidate commit by comparing the code
with the issue description.

Once the issue-commit relation is confirmed, then we search
through the issues to see whether the patch (i.e., commit) to fix it
is generalizable in two ways. On one hand, we define the similarity
between the ASTs of two fixes (i.e., patches) and their context. If
the similarity is higher than a threshold, we further manually check
whether the defect fixed by the commit is general and group the
bugs with similar root causes and fix solutions. The group size is the
support level of the general bug. On the other hand, we manually
sample bugs with no similar bugs (i.e., support level is 1) to observe
their generality potential. Specifically, two of the authors first select
bugs with high generality potential and ask an expert with 3 years
of experience of deep learning program development to confirm
their generality. As a result, we collect 64 general bugs, falling into
the categories in Table 1.

In contrast to those bugs in dataset like [1], [3], [4] and [18], our
collected bugs and their fix solution in gDefects4DL can largely be
generalized to other deep learning projects.

Test Case Construction and Enhancement. Once a commit ¢ to fix
an issue is confirmed, we will manually construct a test case t so
that ¢ can pass in the version of ¢ while ¢ can fail in the version of
c—1 (i.e., the commit before c). Then, we integrate the creation of the
test case t into the code commit history?. Specifically, we create two
branches, i.e., “fix” branch from the commit ¢ and “buggy” branch
from the commit ¢ — 1. Then, we introduce a commit for adding the
test case t based on both branches. By this means, we can check
out a buggy version and a fixed version from the Git repository.

!Considering the extensibility of gDefects4DL to facilitate more software engineering
tasks in the future, we backup the whole Git repository of the defect.

https://github.com/llmhyy/defects4dl
https://youtu.be/0XtaEt4Fhm4
https://youtu.be/0XtaEt4Fhm4
http://47.93.14.147:9000/bugList

gDefect4DL: A Dataset of General Real-World Deep Learning Program Defects

ICSE 22 Companion, May 21-29, 2022, Pittsburgh, PA, USA

Table 1: Types of general bugs of deep learning programs, and their support by three state-of-the-art tools. Some bug types
have not been supported by any tools, the corresponding entry is marked as “/”. Some tools cannot support some framework
such as Keras or PyTorch, thus the corresponding entry is the number less than the total number of bugs under the same type.

Type Description Bug Tools
Number | ShapeFlow | DEBAR | GRIST
Shape Mismatch The tensors are operated (e.g., multiplied) with incorrect dimensionality. In 11 7 / /
gDefects4dl, we focus on the common patterns of their fix solutions.
API Misuse Mistakes made when invoking a library call. In gDefects4dl, we focus on the 23 / / /

common root causes or mistakes leading to the general bugs.

Convention Violation

Numeric Error The NaN value caused by some operation such as zero division error. In gDe- 8 / 4 6
fects4dl, we focus on the common patterns of their fix solutions.

Type Mismatch The deep-learning specific type mismatch, e.g., The tensor type is misused as 16 / / /
numpy type, or numpy-float type is misused as numpy-int type.

Architecture

The architecture convention is violated, e.g., a normalization layer such as 4 / / /
softmax or sigmoid needs to applied as the last layer of a classifier.

Performance Bug

The performance bugs with fixed pattern, e.g., improve the training perfor- 2 / / /
mance if a machine is equipped with multiple GPUs.

Moreover, we manually label (i.e., isolate) which changes are the
fix to an individual bug.

Environment Isolation. The bugs can only be replicated with
specific environments, i.e. specific dataset, depending libraries of
specific versions, and specific configuration of operation systems.
Therefore, after we enhance the test case, we provide two ways to
isolate the environment.

o Conda Version: In this version, we provide a conda environment
for each bug, where we prepare the scripts of downloading dataset
and depending libraries (including the integrated tools). Users
need to run the scripts in conda to set up the environment before
replicating the bugs.

e Docker Version: In this version, we pre-install all the prereq-
uisite environments of each bug in an individual Docker image.
Users can replicate the bug in Docker container.

The conda version is designed for the sake of maintaining gDe-
fects4DL with a small size of disk. In contrast, the docker version is
designed for the convenience of installation and the future mainte-
nance of bugs related to system configuration.

Meta Information Extraction and Tool Integration. We manually
attach the meta information for each bug, such as bug id, summa-
rized bug type, issue URL, defect description, support level, and the
reason for why the bug is general. In addition, we integrate three
tools (ShapeFlow [12], DEBAR [19] and GRIST [15]) to support
their evaluation on the general bugs.

3 TOOL DESIGN

Figure 2 shows our design of gDefects4DL dataset, consisting of user
interface layers, defect abstraction layer, and isolated environment
layer. As mentioned above, for each bug, we provide both docker
container and conda-setup script to provide an isolated environ-
ment for its replication. In either environment, we also support its
version control system (via git) and detection tools (e.g., ShapeFlow,
GRIST, and DEBAR). In the defect abstraction layer, we provide a
set of programming interfaces for downloading a bug, finding/view-
ing certain bugs, replicating a specific bug, and running detection

User Interface

Command Line Interface Web Interface

Abstraction Interface (e.g., download, search, etc.)

Isolated Environment (Docker/Conda)

Defects of Deep

Learning Programs Version Control

System

Integrated Tools
(Shapeflow, GRIST, ...)

Figure 2: Overview of gDefects4DL Design

tools for a bug. In the user interface, we provide both command
line interface and user interface. More details can be checked at our
demonstrated video and website.

4 USER INTERFACE FOR FEATURES

All the features are supported in both command line and web fron-
tend. Readers can check our user manual/videos for more details.

4.1 Web Frontend

The web frontend is designed for users to browse the overall in-
formation of each recorded bug. In gDefects4DL, users can search
bugs based on the bug type (e.g., API misuse, shape-mismatch, etc.),
framework (e.g., Tensorflow or PyTorch), error message, supported
tools (e.g., DEBAR or ShapeFlow). Users can install the bug either
by setting up the conda environment or pulling its corresponding
docker image (from DockerHub).

As shown in Figure 3, for each bug, we further show its detailed
information including bug id, bug type, support level, error mes-
sage, and description in the “bug details” webpage. gDefects4DL

ICSE ’22 Companion, May 21-29, 2022, Pittsburgh, PA, USA

cent call last):
2

22, in
n. logpdf([[0.0]]).eval().shape == (1,1))

Figure 3: A screenshot of the web frontend of gDefects4DL to
view an individual bug

further presents which Github issue reports the bug (along with
its discussion), and its fixing commit. Clicking the corresponding
button allows the user to visit their corresponding URL on Github.
The “diff” button further shows the fixing change in the fixing
commit. Next, user can click “passing test” or “failing test” to view
the error message (on the web console) produced by running the
test on the fixed and buggy revision. Moreover, in the region of
“detection tools”, we show three tools integrated in gDefects4DL.
The grey button indicates that the bug is not supported by the tool,
in contrast, the green button indicates the tool is runnable against
the bug. Note that, some tools like DEBAR only support Tensorflow
framework, which cannot infer the deep learning program bugs in
PyTorch framework. The running message will be shown on the
web console. Finally, for each general bug, we will also show the
other bugs sharing similar root cause and fix solution, as shown
in the region of “similar bugs”. Clicking each bug id allows user to
view its own “bug detail” page.

4.2 Command Line End

The command line end is equipped with the same functionalities as
provided by the web frontend. Each function specified in Section 4.1
is wrapped as an API for user to invoke. The Java Doc of gDefects4DL
API is available at http://47.93.14.147:9000/javadoc. In addition, the
conda and docker environment allows the user to investigate the
source code of each project and their evolution history.

5 DISCUSSION

In this section, we discuss the limitations and future work of gDe-
fects4DL, which lies in two folds.

Scalability. gDefects4DL is still a relatively small dataset consist-
ing of 64 bugs. In this work, we develop a semi-automated workflow
(as Figure 1) to save manual efforts. Automated solutions to con-
struct Java bug dataset have emerged, such as RegMiner [10] and
BugSwarm [11]. We foresee a more automated solution to improve
the scalability of dataset construction.

Diversity. We select the general bugs with regard to their diver-
sity. Nevertheless, there are still general bug types which have not
been included in gDefects4DL. For example, a bug can be caused by
noisy training dataset, or lies in the deep learning framework like
PyTorch and Tensorflow. Such types have not been included for
now. In our future work, we will further improve the diversity of

Yunkai and Yun, et al.

gDefects4DL for facilitating software engineering research on deep
learning program.

6 RELATED WORK
6.1 Deep Learning Bug Datasets

Existing researchers have constructed a number of datasets of deep
learning bugs. Zhang et al. pioneered the collection of deep learning
programs from both Stackoverflow and Github, followed with an
empirical study to categorize bug root cause and symptoms [18].
Following their work, Zhang et al. enlarge the scalability of the
empirical study by collecting failures of deep learning jobs from
Microsoft [17]. Humbatova et al. collect deep learning bugs and
propose a more sophisticated taxonomy with a survey supported by
21 developers [2]. In the meantime, Islam et al. propose a taxonomy
of deep learning program bugs [3] and their fix patterns [4].

gDefects4DL is different from those works in two folds. First,
gDefects4DL focuses on the bugs with much higher potential to be
generalized to other projects. We have shown examples in Listing 1
and Listing 2. Each bug is also described with a support level, indicat-
ing how many bugs sharing the similar root cause and fix solution.
We believe that, for developing automated software engineering
techniques, a dataset of bugs with higher generality is preferred.
Second, gDefects4DL targets for the general bugs in sophisticated
projects, and captures more comprehensive bug information such
as bug evolution history, the environment of replication, and even
the description for their root cause and generality.

6.2 Deep Learning Fault Localization

The datasets of deep learning programs give rise to a number of tech-
niques to locate and repair the bugs. Verma et al. propose ShapeFlow
[12] to detect potential shape-mismatch problem of deep learning
programs. Zhang et al. propose DEBAR [19] by statically detecting
numeric bugs with an abstraction interpretation technique. Yan et
al. propose GRIST [15] which improves DEBAR by inferring the
location of numeric errors via gradient back-propagation. Moham-
mad et al. propose DeepLocalize [14] to capture numeric errors
such as disappearing and exploding gradients.

We integrate the most of the above tools in gDefects4DL, which
(1) confirms their effectiveness and (2) presents the engineering
effort requires to improve their generality and the need of new
tools to localize and repair new types of bugs.

7 CONCLUSION AND FUTURE WORK

In this work, we introduce gDefects4DL which is the first general
deep learning bug dataset, aiming to facilitate more researches of
deep learning programs in the community. gDefects4DL consists
of 64 general bugs, which isolates the runtime environment via
both conda and docker settings, code evolution history, and the
integration of three tools. In the future, we will extend gDefects4DL
to support more general deep learning program bugs, visualized UI
for users, incorporate more baseline approaches such as DeepVi-
suallnsight [16] and DeepLocalize [14], and even develop our own
static and dynamic bug detection and analysis techniques [5-9, 13],
to facilitate controlled research experiments.

http://47.93.14.147:9000/javadoc

gDefect4DL: A Dataset of General Real-World Deep Learning Program Defects ICSE 22 Companion, May 21-29, 2022, Pittsburgh, PA, USA

ACKNOWLEDGMENTS 1159-1170.

We thank . f hei luable i . [18] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018.
e thank anonymous reviewers for their valuable iput to im- An empirical study on TensorFlow program bugs. In Proceedings of the 27th ACM

prove our work. This work was supported in part by the Minister SIGSOFT International Symposium on Software Testing and Analysis. 129-140.

of Education Singapore (NO. MOET32020-0004. T2EP20120-0019 [19] Yuhao Zhang, Luyao Ren, Ligian Chen, Yingfei Xiong, Shing-Chi Cheung, and

> . > . . ’ Tao Xie. 2020. Detecting numerical bugs in neural network architectures. In
and T1-251RES1901), the National Research Foundation Singapore Proceedings of the 28th ACM Joint Meeting on European Software Engineering
through its National Satellite of Excellence in Trustworthy Software Conference and Symposium on the Foundations of Software Engineering. 826-837.

Systems (NSOE-TSS) office (Award Number: NSOE-TSS2019-05),
and the National Natural Science Foundation of China under Grant
No. 61832014.

REFERENCES

[1] Qianyu Guo, Sen Chen, Xiaofei Xie, Lei Ma, Qiang Hu, Hongtao Liu, Yang Liu,

Jianjun Zhao, and Xiaohong Li. 2019. An empirical study towards characterizing

deep learning development and deployment across different frameworks and

platforms. In 2019 34th IEEE/ACM International Conference on Automated Software

Engineering (ASE). IEEE, 810-822.

Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea

Stocco, and Paolo Tonella. 2020. Taxonomy of real faults in deep learning sys-

tems. In Proceedings of the ACM/IEEE 42nd International Conference on Software

Engineering. 1110-1121.

[3] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A
comprehensive study on deep learning bug characteristics. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 510-520.

[4] Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan. 2020. Repair-
ing deep neural networks: Fix patterns and challenges. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE). IEEE, 1135-1146.

[5] Yun Lin, Guozhu Meng, Yinxing Xue, Zhenchang Xing, Jun Sun, Xin Peng, Yang
Liu, Wenyun Zhao, and Jinsong Dong. 2017. Mining implicit design templates
for actionable code reuse. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 394-404.

[6] Yun Lin, You Sheng Ong, Jun Sun, Gordon Fraser, and Jin Song Dong. 2021.
Graph-based seed object synthesis for search-based unit testing. In Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1068—1080.

[7] Yun Lin, Jun Sun, Gordon Fraser, Ziheng Xiu, Ting Liu, and Jin Song Dong. 2020.
Recovering fitness gradients for interprocedural Boolean flags in search-based
testing. In Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis. 440-451.

[8] Yun Lin, Jun Sun, Lyly Tran, Guangdong Bai, Haijun Wang, and Jinsong Dong.

2018. Break the dead end of dynamic slicing: Localizing data and control omission

bug. In Proceedings of the 33rd ACM/IEEE international conference on automated

software engineering. 509-519.

Yun Lin, Jun Sun, Yinxing Xue, Yang Liu, and Jinsong Dong. 2017. Feedback-

based debugging. In 2017 IEEE/ACM 39th International Conference on Software

Engineering (ICSE). IEEE, 393-403.

Xuezhi Song, Yun Lin, Siang Hwee Ng, Ping Yu, Xin Peng, and Jin Song Dong.

2021. Constructing Regression Dataset from Code Evolution History. arXiv

preprint arXiv:2109.12389 (2021).

[11] David A Tomassi, Naji Dmeiri, Yichen Wang, Antara Bhowmick, Yen-Chuan
Liu, Premkumar T Devanbu, Bogdan Vasilescu, and Cindy Rubio-Gonzélez. 2019.
Bugswarm: Mining and continuously growing a dataset of reproducible failures
and fixes. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 339-349.

[12] Sahil Verma and Zhendong Su. 2020. ShapeFlow: Dynamic Shape Interpreter for

TensorFlow. arXiv preprint arXiv:2011.13452 (2020).

Haijun Wang, Yun Lin, Zijiang Yang, Jun Sun, Yang Liu, Jin Song Dong, Qinghua

Zheng, and Ting Liu. 2019. Explaining regressions via alignment slicing and

mending. IEEE Transactions on Software Engineering (2019).

[14] Mohammad Wardat, Wei Le, and Hridesh Rajan. 2021. DeepLocalize: Fault
Localization for Deep Neural Networks. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 251-262.

[15] Ming Yan, Junjie Chen, Xiangyu Zhang, Lin Tan, Gan Wang, and Zan Wang.

2021. Exposing numerical bugs in deep learning via gradient back-propagation.

In Proceedings of the 29th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering. 627-638.

Xianglin Yang, Yun Lin, Ruofan Liu, Zhenfeng He, Chao Wang, Jin Song Dong, and

Hong Mei. 2022. DeepVisuallnsight: Time-Travelling Visualization for Spatio-

Temporal Causality of Deep Classification Training. The Thirty-Sixth AAAI

Conference on Artificial Intelligence (2022).

Ru Zhang, Wencong Xiao, Hongyu Zhang, Yu Liu, Haoxiang Lin, and Mao Yang.

2020. An empirical study on program failures of deep learning jobs. In 2020

IEEE/ACM 42nd International Conference on Software Engineering (ICSE). IEEE,

[2

=

=

[10

[13

[16

[17

	Abstract
	1 Introduction
	2 Database Construction
	3 Tool Design
	4 User Interface for Features
	4.1 Web Frontend
	4.2 Command Line End

	5 Discussion
	6 Related Work
	6.1 Deep Learning Bug Datasets
	6.2 Deep Learning Fault Localization

	7 Conclusion and Future Work
	Acknowledgments
	References

