
DeepArc: Modularizing Neural Networks for the
Model Maintenance

Xiaoning Ren1, Yun Lin2
∗
, Yinxing Xue1

∗
, Ruofan Liu3, Jun Sun4, Zhiyong Feng5, Jin Song Dong3

1 University of Science and Technology of China, China, hnurxn@mail.ustc.edu.cn, yxxue@ustc.edu.cn
2 Shanghai Jiao Tong University, China, lin yun@sjtu.edu.cn

3 National University of Singapore, Singapore, e0134091@u.nus.edu, dcsdjs@nus.edu.sg
4 Singapore Management University, Singapore, junsun@smu.edu.sg

5 Tianjin University, China, zyfeng@tju.edu.cn

Abstract—Neural networks are an emerging data-driven pro-
gramming paradigm widely used in many areas. Unlike tradi-
tional software systems consisting of decomposable modules, a
neural network is usually delivered as a monolithic package,
raising challenges for some maintenance tasks such as model
restructure and re-adaption. In this work, we propose DeepArc,
a novel modularization method for neural networks, to reduce the
cost of model maintenance tasks. Specifically, DeepArc decom-
poses a neural network into several consecutive modules, each
of which encapsulates consecutive layers with similar semantics.
The network modularization facilitates practical tasks such as
refactoring the model to preserve existing features (e.g., model
compression) and enhancing the model with new features (e.g.,
fitting new samples). The modularization and encapsulation allow
us to restructure or retrain the model by only pruning and tuning
a few localized neurons and layers. Our experiments show that (1)
DeepArc can boost the runtime efficiency of the state-of-the-art
model compression techniques by 14.8%; (2) compared to the
traditional model retraining, DeepArc only needs to train less
than 20% of the neurons on average to fit adversarial samples
and repair under-performing models, leading to 32.85% faster
training performance while achieving similar model prediction
performance.

Index Terms—architecture, modularization, neural networks

I. INTRODUCTION

Deep neural network (DNN) models have attracted in-
creasing attention in both industry and academia, widely
incorporated in many modern software systems [1]–[6]. As a
new programming paradigm, neural network models are pro-
grammed with predefined structures of mathematical functions
[7], [8], whose parameters are learned automatically to fit a
given training dataset. While a network model can be learned
to function well, its hundreds of thousands of stacked “tiny
functions” make it hard to interpret how the decisions are
made, which in turn makes model maintenance challenging.

In practice, a trained DNN model needs to evolve with
new requirements. Analogous to code logic modification and
redundant code refactoring in traditional software, program-
mers and data scientists need to adapt the model regarding
the new samples, or prune the model while preserving its
behaviors (e.g., adapting a functional model into mobiles
or IoT devices). However, existing practice usually requires
retraining the model with the new and existing training dataset

∗ Yun Lin and Yinxing Xue are the corresponding authors.

[9], which induces large maintenance costs. Note that classical
neural networks usually consist of millions of weights (Resnet-
50 [10] has about 25.6 million weights, VGGNet19 [11] has
143 million weights, and the emerging GPT-3 [12] even has
175 billion weights), which makes the current practice to
maintain the models computationally expensive.

For the maintenance of DNN models, there are emerging
works in SE community to decompose a model for improving
its reusability. Pan et al. proposed to decompose a multi-
classification model into a set of binary classification models
for fully connected networks [13] and convolutional networks
[14]. Technically, given a network model G and predication
class set C, their solution extracts a subgraph G′ ∈ G as a
binary classifier to preserve the behavior of G on C ′ (C ′ ⊂ C).
However, this technique can provide limited support if we need
to restructure the model G while preserving its behaviors or
improve G’s performance with minimum modifications.

In this work, we aim for a model modularization solution fo-
cusing on the encapsulation nature. Specifically, we investigate
whether we can change only a few modularized neurons and
layers in the model maintenance tasks. We propose to extract
the semantic architecture of a neural network by encapsulating
consecutive model layers as a semantic module. In a semantic
module, (1) all layers extract features with similar expres-
siveness/separability for training/testing samples, and (2) some
layers can be removed and duplicated without changing much
model behavior (e.g., model prediction and robustness).

Those properties can facilitate applications such as model
compression and model enhancement. The network modular-
ization provides the following maintenance benefits:
• Decomposition Overview: By encapsulating similar layers,

we can have an abstract view on how many actual transfor-
mation functions a network model can be decomposed. Each
actual transformation (i.e., semantic module) is essentially
a modularized feature-extraction subfunction.

• Modularized Restructure: Similar layers indicate potential
redundant layers, which provides us the flexibility to remove
and add some layers in a module without changing much
model behavior.

• Modularized Re-adaption: Each semantic module can rep-
resent a unique feature-extraction function, which allows us
to localize and retrain a certain critical module (instead of

Neural Network

Semantic Architecture

1. Modularization

Compressed
Network

Performance-
Improved Network

2. Architecture-based
Model Restructure

3. Architecture-based
Model Re-adaption

RQ3

RQ1/RQ2

RQ4

Fig. 1: Overview of DeepArc Framework

the whole model) to either adapt to new samples or improve
the performance on some mispredicted samples.

In this light, we propose, DeepArc, a modularization tech-
nique to extract the semantic architecture of a neural net-
work, by encapsulating layers with similar semantics. Based
on the modularized results, DeepArc can facilitate pruning
model layers for model compression and localizing critical
modules for model repair. Our extensive experiments show
that DeepArc can boost the runtime efficiency of the state-of-
the-art model compression techniques by 14.8%. Moreover,
compared to the traditional model retraining, DeepArc only
needs to fine-tune less than 20% of the neurons in the model
to fit adversarial samples and repair under-performing models,
leading to 32.85% faster training performance while achieving
similar model prediction performance.

To summarize, we make the following contributions:
• We propose to extract semantic architecture to facilitate

model maintenance tasks:
– Model restructuring task: We improve the model com-

pression efficiency by pruning the localized intra-module
layers.

– Model re-adaption task: We improve the model training
efficiency by retraining the localized modules instead of
the whole neural network.

• We publish our DeepArc framework, implemented for sup-
porting the state-of-the-art deep models including both fully
connected and convolutional layers.

• Our extensive experiments confirm the usefulness of se-
mantic architecture on various model restructuring and re-
adaption tasks.

II. DEEPARC FRAMEWORK

Figure 1 shows an overview of our DeepArc framework.
Given a DNN model, DeepArc first extracts several modules to
form a semantic architecture, each of which includes semanti-
cally similar model layers. Based on the semantic architecture,
we can support (1) model restructure to modify the network
while preserving its behaviors, and (2) model re-adaption to
fix mis-prediction or fit a model on new samples. Moreover,
the restructured or improved DNN can be further modularized
to support new model restructuring or re-adaption tasks.

(a) Embedding
Landscape 1

(b) Embedding
Landscape 2

(c) Embedding
Landscape 3

Fig. 2: Example of Embedding Landscape: For the sake of
illustration, we use two-dimensional space in the examples.

A. Semantic Architecture

Typically, a neural network can be decomposed into a se-
quence of network layers, i.e., fn(·) = ln(ln−1(...l1(·)))(n >
1), where each subfunction fi(·)(i > 1) takes the output
of its former subfunction fi−1(·) as input. We denote each
layer as li(·) : Rni−1 → Rni where ni and ni−1 are the
number of neurons in li and li−1 respectively. Given an input
x ∈ Rin and a network fn(·) with n layers, fn(·) can
generate n − 1 representations each of which is the output
of fi(·) = li(li−1(· · · l1(·)))(2 ≤ i ≤ n).

a) Layer Similarity: Given a dataset D = {x1, · · ·xm},
we denote xj ∈ D as an input and fi(xj) as the output
representation of xj on layer li. With a similarity measurement
on li, denoted as simli(·, ·), we call the matrix Mli as the
similarity matrix of li where Mli [p, q] = simli(xp, xq), p and
q are the indexes of a pair of samples xp and xq . Therefore, the
matrix at each layer has the same shape as [m,m] and contains
the similarity of all pairs of samples. Intuitively, Mli indicates
the embedding landscape of dataset on the ith layer. Figure 2
demonstrates the embedding landscape of 16 data samples.
Figure 2a and Figure 2b share similar landscape as the samples
are in similar spatial distribution. Specifically, the data points
share similar neighbours in the embedding space. In contrast,
Figure 2a and Figure 2c share different landscape. A similar
embedding landscape indicates that the model extracts similar
semantics from the input samples. Typically, we implement
simli(·, ·) as

simli(xp, xq) = fi(xp) · fi(xq) (1)

Further, given a dataset D and two layers li and lj , we
can define a layer similarity measurement simlayer(·, ·) :
(Mli ,Mlj) → R1 with a range of [0, 1], to measure the
similarity of the output representations of two layers. Fol-
lowing centered kernel alignment metrics [15], we implement
simlayer(·, ·) as:

simlayer(Mli ,Mlj) =
Mli ·Mlj

||Mli || · ||Mlj ||
(2)

b) Module Similarity: Given a module pk consisting
of m = |pk| consecutive layers starting at lk1

, i.e., p =
{lk1 , lk2 , ..., lkm} where ki(1 ⩽ i ⩽ m) denotes the index

...

Module A Module B Module C

Input

...

[5-9] [22-35] [38-49]

...

...

...

Target

horse
0.89

[53-54]

Fig. 3: An example of a modularized DNN for classification

A
cc

u
ra

cy

Layer/Block Index

Module A

Module B

Module C

0.5

1.0

0.75

0.25

Fig. 4: Layers within the same modules share similar expres-
siveness: The x-axis represents layers, and y-axis represents
the classification accuracy of a linear classifier trained on
output representation of layers.

of the i-th layer in module pk, we define the intra-module
similarity measurement of p as:

simmodule(pk) =

∑|pk|−1
i=1 simlayer(Mlki

,Mlki+1
)

|pk| − 1
(3)

If |pk| = 1, we define simmodule(pk) = 0. Intuitively, if
the output representations of li and li+1 are similar, the trans-
formation of fi+1(·) preserves the similar output (embedding)
semantics as fi(·). Moreover, we call a module pk as single-
layer module if |pk| = 1; and call pk as multiple-layer module
if |pk| > 1.

Given a network model fn(·) and a similarity threshold ths,
the semantic architecture of fn(·) is a partition P∗ = {p1, p2,
..., pM} (M is the number of modules) on a sequence of
consecutive model layers so that

max
P

M∑
k=1

simmodule(pk)−
∑

li∈pk1
,lj∈pk2

,
∀pk1

∈P,pk2
∈P

simlayer(Mli ,Mlj)

s.t. ∀pk(|pk| > 1), simmodule(pk) > ths

(4)

In Equation 4, the objective function requires that the overall
layer similarity of each module in the partition is maximized
while the layer similarity between different modules should be
minimized. In addition, the condition requires that the overall
layer similarity of each module in the partition should be larger
than the predefined threshold ths.
Example. Next, we use a RestNet-110 [10] model trained
on CIFAR-10 [24] dataset to illustrate the modularization. The
trained network has 54 blocks, which can be decomposed
into 26 modules including multiple-layer and single-layer
modules. Three largest multiple-layer modules are highlighted
in Figure 3. Module A corresponds to 5-9th blocks, Module B

Fig. 5: Demonstration of the neighboring closeness of the layer
similarity in neural network layers in ResNet-110.

Algorithm 1: Semantic Architecture Extraction
Input: sim, a layer-similarity matrix with shape (n, n)

(sim[i, j] indicates the similarity between two layers)
Input: ths, a modular similarity threshold
Output: Slayer , a layer partition

1 module = ∅
2 for layer=1; layer≤n; layer++ do
3 if module == ∅ then
4 module = module ∪ {layer}
5 else
6 module′ = module ∪ {layer}
7 if sim(module′) < ths then
8 Slayer = Slayer ∪ {module}
9 module = {layer}

10 else
11 module = module ∪ {layer}

12 Slayer = Slayer ∪ {module}
13 return Slayer

corresponds to 22-35th blocks, Module C corresponds to 38-
49nd blocks in ResNet-110. Specifically, Figure 3 shows an
optimal partition P∗ = {· · · , [5−9], · · · , [22−35], · · · , [38−
49], · · · , [53− 54]}.

Given a dataset D and a layer li, we say that D is k% linear
separable on li if we can achieve a prediction accuracy of k%
through training a logistic regression classifier to fit the output
representation of D on li. The linear separability of layer li
indicates how expressive the ith layer can be used to fit the
dataset. Figure 4 demonstrates how the layers within a module
are similar in expressing samples. Overall, the layers within a
same module share similar expressiveness.
Layer Modularization. Equation 4 indicates the modular-
ization (i.e., the search for an optimal partition) is an NP-
complete problem, the global optimization is computationally
expensive. We design our efficient modularization algorithm
based on the observation of a phenomenon of neighboring
closeness in neural network layers. Specifically, given layer i,
i + k1, and i + k2 where k2 > k1 > 0, it is more likely that
simlayer(li, li+k1

) > simlayer(li, li+k2
). Intuitively, closer

layers go through less transformation, which are more likely
to be similar. Figure 5 shows a visualized layer matrix where
each row or column represents a layer and a matrix entry
represents the similarity between two layers. The darker the

SOTA Model
Compression

Intra-module
Reduction

Semantic Architecture
Extraction

Architecture-based Preprocessinginput
model

reduced
model

dataset

compressed
model

A B C

Fig. 6: An architecture-based acceleration for state-of-the-art
model compression techniques.

color, the smaller the similarity; the brighter the color, the
larger the similarity.

Given that there is a high correlation between layer proxim-
ity and layer similarity, we design a progressive semantic ar-
chitecture algorithm as a sub-optimal solution to Algorithm 1,
which takes as input a layer-similarity matrix sim (as in
Figure 5) and a modular similarity threshold (ths), and gener-
ates a layer partition as the semantic architecture Slayer. We
represent one network layer with its layer index, one network
module as a set of layer indexes, and the semantic architecture
as a set of modules. In Algorithm 1, we progressively merge
the layers in sequential order (line 2). Specifically, we add a
layer into a module if (1) the module is empty (line 3) or
(2) the inner-module similarity of the to-be-merged module is
above the threshold ths. If a layer cannot be merged into the
current module (line 7), we add the module into the semantic
architecture, and create a new module for further analysis
(lines 8-9). Overall, the complexity of Algorithm 1 is O(n)
where n is the model layer size.

B. Model Restructure

Given that the layers within a module share similar feature
extraction, their “redundancy” can be used to reduce the
model size. Some layers inside a module can be removed
without modifying much of the model structure, while largely
preserving the model behaviors such as prediction accuracy.
Figure 6 shows our architecture-based model compression
acceleration technique. Our architecture-based compression
acceleration techique firstly obtains the reduced depth network
B by removing the redundant network layers from network
A, and then performs the standard compression technique to
obtain network C. Larger granularity of pruning will lead to
effective speedup. Overall, the extracted architecture serves as
an informative guidance to prune redundant layers to have a
pre-processed model. Then, the follow-up model compression
techniques such as [16]–[20] can be applied to further fine-
grained compression of the pre-processed model to drop the
neurons/channels.
Layer Reduction. Given a module pk = {lk1

, lk2
, ..., lkn

},
for each layer lki

, we denote its input shape as Sin(lki
)

and its output shape as Sout(lki
). Also, we denote the layer

after the module is lnext. We reduce the module by keep-
ing the first layer which acts as the interface layer, and
removing the rest layers which represent redundant trans-

weak/buggy
model

dataset

Semantic
Architecture
Extraction

Critical Module
Location

Modularized
Training

enhance/
repaired model

to-be-enhanced/
repaired samples

Fig. 7: An architecture-based model re-adaption approach

... ...

...

...

p1

adversarial input, x’

...
normal input, x

(reference)

p2
x1

x2

xk

...

x1'

x2'

xk’

adversarial representation

normal representation
(reference)

Fig. 8: Rationale of model re-adaption: (1) detecting a module
where the representation of to-be-fixed samples deviates from
that of normal samples (i.e., reference), and (2) training the
localized module regarding the reference.

formation information within the module. In the ideal case,
Sout(lki

) = Sin(lnext)(1 ≤ i ≤ n), which means that we just
need to “sew” the model by feeding lnext with the output
of lki . The smaller the value of i, the more model layers
to remove. This lead to a static preprocessing way to prune
the model, largely preserving the model behaviors. However,
when Sout(lki

) ̸= Sin(lnext)(1 ≤ i ≤ n), we need to
introduce a “placeholder” layer to sew lki and lnext, i.e., we
have a sewing layer lsew where Sin(lsew) = Soutput(lki) and
Sout(lsew) = Sin(lnext). In this work, we locally train lsew
with the output representations of lki

and lkn
as the input

and output respectively. Specifically, we define loss function
of lsew by:

loss(pk, lsew) = ||lsew(lki
(·)), lkn

(· · · lki
(·))||2

From the perspective of software engineering, this sewing
layer serves as a new interface between two modules.

C. Model Re-adaption

The model re-adaption includes enhancement and repair.
• Model enhancement: The model m is trained well on its

original dataset D, while there is a requirement that m needs
to perform well on new samples (e.g., adversarial samples).

• Model repair: The model m cannot perform well on a part
of its original dataset. Thus, we need to retrain m on this
part of dataset to achieve better performance.
Figure 7 shows an overview of our architecture-based model

re-adaption technique, for both model enhancement and repair.
The input of our technique is a model, the original training
dataset, and a set of samples to be enhanced and repaired.

After achieving the semantic architecture, we apply a module-
wise root-cause analysis technique to locate the most critical
modules. Finally, we isolate the critical modules and apply
traditional retraining process on them.
Rationale. The transformation between two module serves as
the module interface. Suppose a module outputs a deviated
representation from the “normal” representation, the deviation
can cause all the follow-up modules to output unexpected
representations, leading the model to make an unexpected
prediction. Therefore, our approach aims to locate the most
significant module where the representations of some samples
are most deviated and fix it back to a normal representation.

Figure 8 shows an example where a normal input and its
derived adversarial sample are fed into a modularized model.
Taking the normal representation as a reference, we can retrain
a single module (instead of the whole network) to correct
the prediction. Therefore, the training can be applied in an
encapsulated module instead of the whole network. Next, we
introduce how to localize critical modules.

1) Critical Module Location: We locate the critical module
by measuring the deviation of the new samples from the
original dataset. Given a model m and its semantic architecture
P∗ = {p1, p2, ..., pn}, we know that m can be decomposed
into n transformations. For each transformation (or module),
we denote it as Mi : R

u → Rv , where Ru is the input space
of the module and Rv is the output space. Given an input
x, any module Mi can have its input space representation,
denoted as xMI

i
and output space representation, denoted as

xMO
i

. In other words, Mi(xMI
i
) = xMO

i
.

We assume that we have a dataset D where m can perform
well and D′ where m cannot perform well. For any module,
taking its output space representation of D as a reference, we
can evaluate the deviation of the representations of D′ from
that of D. Our goal is to find a module where such deviation is
significant, as the critical module for a re-adaption task. From
the other perspective, we also identify the most non-robust
features (or transformation) for its significant deviation.
Deviation Measurement. Let the dataset to be en-
hanced/repaired as D′, We use Dev(D′) as the deviation
measurement for D′. Given an input x ∈ D′, we denote its
deviation measurement as Dev(x). We design different devi-
ation measurements regarding explicit reference and implicit
reference as follows.

• Explicit Reference: Given an dataset D′, for each x ∈ D′,
if we can infer its exact ground truth output representation
(denoted as xMO

i
) in any modules, we call D′

MO
i

as the
explicit reference of D′. For example, assuming that we
know some adversarial inputs D′ are derived from a normal
dataset D, we can take the explicit reference DMO

i
as D′

MO
i

(see Figure 8). Specifically, we use simlayer(·, ·) distance
between DMO

i
and D′

MO
i

as Dev(D′).
• Implicit Reference: In contrast, if we need to estimate the

ground truth output representation in any modules, we call
the estimated ground truth as the explicit reference of x.
Intuitively, we estimate how likely x is to fall into the dis-

tribution of a subset of well-predicted dataset Ds ∈ D. For
example, in a classification task, we estimate the probability
that x can fall into the distribution of the sample set DC ⊂ D
where (1) the label of each s ∈ DC is C, and (2) the model
m can perform well on DC . Specifically, we estimate a
multi-variable Gaussian probability distribution function P
for DC , then calculate the probability of x being in the
distribution of DC by P(x). As a result, we use P(x) as
Dev(x) and

∑
x∈D′ Dev(x)

|D′| as Dev(D′).

2) Modularized Training: Given a critical module M, we
retrain the model by only fine-tuning the weights in M. Given
the original dataset D, the to-be-adapted dataset D′, and the
to-be-adapted model m, we train m with the following loss
function:

L(D,D′,model) = α · L(D∪D′,model)+ β ·Dev(D′) (5)

In Equation 5, the first item L(D ∪ D′,model) is the
original loss function to train a model. Note that the deviation
measurements for explicit and implicit reference are differen-
tiable. Intuitively, the deviation measurement can be regarded
as an additional constraint (or soft invariant) forced by the
“module interface”. In addition, α and β are two user-defined
hyperparameters.

III. EVALUATION

We evaluate DeepArc with the following research questions:

• RQ1 (Modularization Prevalence): To what extent can a
neural network be modularized? Under what circumstances
can and cannot the modularization disappear?

• RQ2 (Modularization Semantics): What semantics can the
layers in the same module share?

• RQ3 (Model Restructure): Can our architecture based
model restructure technique effectively boost the state-of-
the-art model compression tasks?

• RQ4 (Model Re-adaption): How effective is our architec-
ture based model re-adaption technique that can improve the
model retraining tasks?

RQ1 and RQ2 evaluate the effectiveness of our modulariza-
tion method and the properties of the module itself. RQ3 and
RQ4 evaluate the usefulness on two application tasks.

A. Dataset Setup

1) Model Architectures and Datasets: We choose the clas-
sical ResNet-110 [10], Wide-ResNet-38 [21], and VGGNet-19
[11] as the subject model architectures. In addition, we train
the models on MNIST [22], FMNIST [23], and CIFAR-10 [24]
datasets until the model performance converges. Moreover, we
train each configuration (i.e., architecture-dataset combination)
10 times. We choose ths = 0.99 (in Algorithm 1) to gener-
ate their semantic architectures. More detailed configurations
(e.g., hyperparameters such as learning rate and decay ratio to
train the models) can be referred to in [25].

0.60* 0.01Y MS= + 0.08* 0.38Y MS= − + 0.21* 0.50Y MS= − +

Fig. 9: Univariate linear regression analysis: The x-axis re-
spectively represents the value of three variables and y-axis
represents the modularity metric. For the five values of each
univariate, there are 25 combinations of the other two variables
and repeated 10 times, we can get 250 (5*5*10) values
respectively, and then take the average. Horizontal red line
reflect the high modularity threshold.

B. Modularization Prevalence Experiment (RQ1)

1) Experiment Setup: To answer the RQ1, we design an
experiment to observe the semantic architecture of a deep
classifier by controlling three variables, i.e.,

• Model Size (MS): The model architecture with different
numbers of parameters. We take ResNet architecture [10]
as the subject model because we can flexibly prune its size.

• Dataset Size (DS): The datasets with different sizes. We
take CIFAR-10 as the subject dataset and take 20%, 40%,
60%, 80%, 100% of the total samples in the experiment.

• Task Scale (TS): Given an N -classification task, we choose
five subsets of the task to control the classification task into
0.2N, 0.4N, 0.6N, 0.8N and N -classification.

The number of layers and parameters of the ResNet model
includes five configurations of <14,0.176M>, <44,0.663M>,
<86,1.34M>, <110,1.73M>, <152,2.42M>, each of which
is trained 10 times on 5 dataset sizes and 5 task scales of
CIFAR-10, with a total of 1250 (5*5*5*10) models.
Modularity Metrics. We define the modularity metrics
Ymodular =

N∗
layer

Nlayer
, indicating how modularized a model ar-

chitecture is, and conduct a correlation analysis with Ymodular

as the dependent variable. In the metrics, N∗
layer is the

number of layers in multi-layer modules and Nlayer is the
total number of layers. The fact that Ymodular = 0 means
that the model has only single-layer modules, while the fact
that Ymodular = 1 means all modules are multiple-layer.
We define the high modularity threshold to be 1/4, which
means that if over 1/4 of layers can be encapsulated, we
think it can be effectively modularized. We further record
the location of multi-modules to study the potential pattern of
module distribution. Besides, to show the impact of the choice
of threshold, we run our experiment with thresholds th =
0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99 (see al-
gorithm 1).

2) Results: Figure 9 shows the correlation analysis results
of MS, DS, TS and Ymodular. The regression slope with the
model size as the variable is positive and largest, while ones

Fig. 10: Module distribution: The x-axis represents the location
of modules in the models and the y-axis represents the module
size (the number of layers in a module). Vertical red and
blue lines reflect boundaries between ResNet stages, where
the feature dimension changes.

Fig. 11: The x-axis represents the threshold of modular algo-
rithm and y-axis represents the degree of modularity.

with the dataset and task are negative and relatively small. This
shows that when the model size changes, it has the greatest
impact on the modularity degree. Each independent variable
has a certain correlation with the degree of modularity, in
which DS and TS are negatively correlated with Ymodular,
but MS positively. Considering all the variables together, a
multivariate retrospective analysis yields a regression equation:
Ymodular = 0.78 ∗MS − 0.10 ∗DS − 0.16 ∗ TS + 0.31 (6)

This equation intuitively shows that Ymodular has the highest
sensitivity to model size, and relatively low sensitivity to
dataset and task size, despite they all have a strong correlation.
Besides, for popular configurations such as ResNet86 and
ResNet110 on CIFAR-10, the high modularity threshold is
exceeded, i.e. above the red line in the figure. In summary, the
network modularity is usually present and particularly evident
with a large model, simple task, and tiny data. In other words,
the more redundant information the model has, the greater
the degree of modularity. Typically, popular configurations can
achieve effective modularity.

As shown in Figure 10, the multiple-layer modules are
mainly found in the later layers of the model, because the fea-
tures extracted later are more refined, and prone to redundant
information due to slow feature transformation. Also, there
are almost all single-layer modules on the boundary, where
the feature dimension changes, usually acting as an interface

layer.
Besides, Figure 11 shows how the degree of modularity

varies with the threshold ths of algorithm 1. The threshold is a
custom tradeoff, which needed to be set larger when we require
a high level of information redundancy within the module, and
vice versa. The threshold refers to the similarity of adjacent
layers, and this similarity will become smaller as the layers are
stacked. Therefore, we choose a threshold of 0.99 to guarantee
a high degree of semantic similarity within modules.

Answer to RQ1: Usually, there is a modular phenomenon
in the layers of the model. Model, dataset and task size
will affect modularity and have a certain linear corre-
lation. The modularization will almost disappear with a
small model, complex task and huge dataset, that is, each
layer is a module representing different semantics.

C. Modularization Semantics Experiment(RQ2)

To answer RQ2, we evaluate the semantic properties of the
module in the following two parts:
• RQ2.1 (Dynamic Semantic): How much can the model

behaviors change if we remove and replicate the layers in
multiple-layer modules?

• RQ2.2 (Static Semantic): How much the prediction can vary
if we use the intra/inter layers for the prediction?
1) Dynamic Semantics Design: We apply intra-module and

inter-module changes on the models. We evaluate how the
model prediction and robustness change when we remove
and duplicate layers in intra-module and inter-module layers.
Furthermore, in order to avoid introducing additional neurons
when modifying the network model, we only add/remove the
layers where the output dimension of their previous layer can
match the input dimension of their following layer.
Intra-module Change. Given a trained model m and its
derived semantic architecture P∗ = {p1, · · · , pk}, where each
pi represents a module consisting of consecutive layers in m,
we change m into its variant m′ by removing or adding layers
in multi-layer module pi as follows.

We denote the original model as m0, the model variant with
k intra-module layers removed as m−k, and that with k intra-
module layers added as m+k. Algorithm 2 shows the order
we use to add and remove layers in the modules. Specifically,
we sequentially parse the multi-layer modules in the semantic
architecture (lines 2-3). For each module, we process its layer
addition or removal from the last layer to its first layer (lines
4-7). Algorithm 2 provides a progressive way of adding and
removing the layers.
Inter-module Change. Given a derived semantic architecture
P∗ = {p1, ..., pk}, we can consider the layers in the single-
layer modules as module interfaces. We remove them to have
inter-model change. Their addition/removal order is the order
they appear in the model.
Semantic Preserving Evaluation. Given the original model
m0 and its variant model m+/−k, we evaluate how the
semantics has been changed regarding the changed model

Algorithm 2: Layer Addition/Removal Order
Input: P∗, a semantic architecture P∗ = {p1, p2, ..., pk}
Output: order(·) : index → order, mapping each layer

index to its order to be removed or added
1 o = 1
2 for i = 1; i <= k; i++ do
3 if pi is multi-layer module then
4 for j = 1; j < |pi|; j ++ do
5 layer = last j layer in pi
6 order(layer) → o
7 o = o+ 1

8 return order(·)

prediction and robustness. We evaluate the model robustness
change by how many adversarial samples for m0 can be
reused to compromise the model m+/−k. Specifically, given
an adversarial attack approach A, we generate N (N =1000
in the study) adversarial samples for m0. If M out of N
adversarial samples can still compromise m+/−k, then we say
that the model robustness change is 1− M

N . In this study, we
use FGSM [26], DeepFool [27], C&W [28], and PGD [29] as
adversarial attack approaches. Note that fine-tuning with few
data is required for VGG19, while the ResNet family does not.

2) Results of Dynamic Semantics: Figure 12 and Figure 13
show how the semantics are preserved for the model variants
under different model architectures (i.e., ResNet-38, ResNet-
110, and VGGNet-19). Given the space limit, we only show
diversified model architectures on the CIFAR-10 dataset. More
details and figures are available at [25]. Overall, the other two
datasets (and with more training trials) share similar effects.
Preserving Model Prediction. In Figure 12, the x-axis
shows the model variants caused by adding or removing k
intra-module layers according to Algorithm 2. For example,
“0” represents the original model, “-3” represents the model
variant by removing 3 layers, and “8” represents the model
variant by adding 8 layers. In the following, we denote a model
by adding k layers as k−model. We can see that, the model
prediction performance on both the training and testing dataset
is largely preserved even if a large number of intra-module
layers are removed. Besides, the same magnitude of variation
indicates that changes within the module will preserve the
model prediction ability, not causing overfitting or underfitting.
Preserving Robustness. Figure 13 shows the performance
of model variants on the adversarial samples compromising
the original model. Note that, the accuracy of 0-model is
the performance of the original model on those adversarial
samples. Except for FGSM, almost all the attacks make the
accuracy of the original model drop to almost 0. We can see
that the adversarial samples of different attack methods have
different semantic preserving effects. Overall, the adversarial
samples from PDG and FGSM can still compromise the model
variants regardless of the number of added/removed layers.
In contrast, there is a “jump” of prediction accuracy from 0-
model to 1-model and -1-model for the adversarial samples
from DeepFool and C&W (see the red and purple lines). Our

(a) ResNet110 (b) Wide-ResNet38 (c) VGGNet19

Fig. 12: Training and testing accuracy by removing and adding intra-module layers.

(a) ResNet110 (b) Wide-ResNet38 (c) VGGNet19

Fig. 13: The demonstration of how the adversarial samples for the original model can further compromise its model variants
by removing/adding intra-module layers.

classification
boundary for m0

classification
boundary for m1

Legend

FGSM

PGD

C&W

DeepFool

Normal

Fig. 14: Different adversarial samples, the distribution of
different adversarial samples is different, which makes some
samples fail to compromise the model variants.

investigation shows that, compared to the samples from PDG
and FGSM, that from DeepFool and C&W are more likely
to lie closer to the classification decision boundaries. The
average model confidence score (the difference between the
top-2 prediction before the softmax layer) on the adversarial
samples of DeepFool is 2.38; in contrast, FGSM is 9.4 and
PGD is 25, far larger than that of DeepFool. Figure 14 shows
an illustration. Each deep classifier has its high-dimensional
classification boundary (the solid curve in Figure 14), and its
mutant can be considered as a perturbation of the boundary
(the dashed curve in Figure 14). If some adversarial samples
lie close to the boundary, the boundary perturbation can lead to
the prediction change. Although the impact of deleting/adding
one layer is very small, the boundary samples are sensitive to
the layer change. Hence, DeepFool and C&W (with adversarial
samples generated on the boundary) have larger performance

changes while others have not.
Interface Importance. Figure 15 shows the change of testing
accuracy if we gradually remove inter-module layers, com-
pared to the removal of intra-module layers. For example, for
the ResNet-110 architecture (Figure 15a), the model accuracy
drops from 0.96 to 0.1, with the inter-module layer removal. In
contrast, the model accuracy is still preserved around 0.9. This
shows that the interface is responsible for transforming useful
information. If the interface is broken, the overall information
will be greatly affected.
Finding 1: The intra-module change can essentially preserve
the semantics, regarding both model prediction and model
robustness. However, the inter-module change can cause the
model semantics to change radically.

3) Static Semantics Design: We quantify the static seman-
tics of a layer l by how sufficient the output representation of
l can be used to classify a training dataset linearly. Given a
layer L, and a dataset D, we use DL to represent the set of
output representation of D on L. Specifically, we use a linear
classifier (i.e., we use one linear-layer neural network in this
work) to classify DL and achieve its classification accuracy,
denoted as Acclinear(L). Intuitively, we measure the linear
expressiveness of each layer to distinguish D.
Linear Expressiveness Evaluation. Given an architecture as
P∗ = {p1, p2, ..., pn}, we sample N intra-module layer pair
set Pintra = {(Li,Lj)| Li ∈ pk, Lj ∈ pk, pk ∈ P∗, and
i ̸= j}; and N inter-module layer pair set Pinter = {(Li,Lj)|
Li ∈ pk1

, Lj ∈ pk2
, pk1

, pk2
∈ P∗, k1 ̸= k2, and i ̸= j}.

For each p = (Li,Lj), we calculate the distance of linear ex-
pressiveness by disexp(p) = |Acclinear(Li)−Acclinear(Lj)|.
Then, given a model and its semantic architecture, we compare

(a) ResNet110 (b) Wide-ResNet38 (c) VGGNet19

Fig. 15: Testing accuracy by removing intra-module layers, compared to the testing accuracy by removing inter-module layers

TABLE I: The difference of linear expressiveness of inter-
module layers and intra-module layers

Dataset Wide-ResNet38 ResNet110 VGGNet19
P Intra P Inter P Intra P Inter P Intra P Inter

MNIST 0.044±0.001 0.217±0.006 0.026±0.001 0.161±0.003 0.063±0.001 0.252±0.008
FMNIST 0.017±0.002 0.123±0.008 0.015±0.000 0.104±0.002 0.056±0.002 0.130±0.009
CIFAR-10 0.077±0.001 0.246±0.002 0.012±0.001 0.220±0.000 0.002±0.000 0.201±0.009

the average and standard deviation of the difference in linear
expressiveness of Pintra and Pinter.

4) Results of Static Semantics: Table I shows that the
linear expressiveness of intra-module layers is much more
similar than that of inter-module layers. For the Wide-
ResNet38 trained on MNIST, the average difference of the
linear expressiveness of each intra-module layer is 0.044,
while the average difference of each inter-module layer is
0.217. This shows that the difference score of inter-module
linear expressiveness is nearly five times that of the dif-
ference score of intra-module linear expressiveness. On av-
erage, the difference score of intra-module linear expres-
siveness is 0.056, in contrast to that of inter-module lin-
ear expressiveness is 0.18. For the layers within the mod-
ules, the semantic transformations between them are more
redundant and bring little help to the classification task.
Finding 2: The intra-module representations of a semantic
architecture have similar linear separability. In contrast, the
inter-module representations have more obvious differences.

Answer to RQ2: We demonstrate the effectiveness of
modularization from three properties, prediction, robust-
ness, and linear expressiveness. These properties are
largely preserved inside the multi-layer modules. How-
ever, interface changes bring completely different results,
leading to a significant loss of semantics.

D. Compression Efficiency Experiment(RQ3)

1) Experiment Setup: To answer the RQ3, we select 4
state-of-the-art model compression techniques proposed in the
last two years (i.e., LAMP [30], Global [31], Uniform+ [32]
and ERK [33]) to see whether our DeepArc framework can
speed up the model compression efficiency. Following the
above four works, we use ResNet-101 trained on CIFAR-
10 as the target model. We conduct controlled experiments
according to whether our framework is used for pre-processing

TABLE II: The model compression performance with/without
the acceleration of DeepArc

Compression Method Compression Rate Number of
Iterations Average Model Accuracy

Lamp 13.01% 8 93.24%
Lamp+DeepArc 13.90%(+0.89%) 7(-1) 92.99%(-0.25%)
Glob 13.43% 9 93.77%
Glob+DeepArc 14.53%(+1.10%) 7(-2) 92.65%(-1.12%)
Unif 26.23% 5 91.81%
Unif+DeepArc 27.14%(+1.11%) 5(-0) 92.36%(+0.55%)
Erk 26.23% 5 87.29%
Erk+DeepArc 29.79(+3.56%) 4(-1) 89.11%(+1.82%)

before compression. Specifically, we collect the compression
rate, model accuracy and number of iterations under the
premise of guaranteeing similar prediction accuracy. The three
indicators are as follows, 1) compression rate: the proportion
of compressed parameters 2) number of iterations: the number
of iterations required to complete the compression 3) model
accuracy: the accuracy of the model on testset.

2) Results: Table II shows how DeepArc framework can
help to accelerate model compression efficiency. Given 4
compression techniques, we take our DeepArc framework as
pre-processing, and then give 8 compression results. As shown
in the table, Lamp and Glob benefit from our framework
by reducing the number of iterations required and increasing
the compression ratio while maintaining a minimal loss of
accuracy. The other two methods not only reduce the number
of iterations but improve the accuracy. On average, our frame-
work can reduce the number of iterations from 6.75 to 5.75 by
14.8%, while improving the accuracy and compression ratio a
little, to 0.25% and 1.7%, respectively.

Overall pruning the model in such a statical way incurs little
loss of accuracy, facilitating model compression.

Answer to RQ3: Based on the removal of redundant
information in semantic modules, DeepArc accelerates
model restructure efficiency significantly, while resulting
in models with comparable compression ratios and model
accuracy.

E. Model Re-adaption Experiment(RQ4)

1) Experiment Setup: To answer the RQ4, we design two
tasks to see whether DeepArc can improve the re-training
efficiency with little loss, compared to an entire training.

TABLE III: The model re-adaption performance with/without the acceleration of DeepArc

Re-adaption
Type

Training
Approach

Dropped
Accuracy

WideResNet38 ResNet110 VGGNet19
Trained
Model Size

Original
Accuracy

Retraining
Accuracy

Training
Time (s)

Trained
Model Size

Original
Accuracy

Retraining
Accuracy

Training
Time (s)

Trained
Model Size

Original
Accuracy

Retraining
Accuracy

Training
Time (s)

Model
Enhancement

Fully Training / 56.07M 0.0751 0.9980 294.63 1.73M 0.924 0.9804 95.82 20.03M 0.1505 0.9992 24.17
Modularized
Training / 7.38M 0.9974 158.21 0.13M 0.9595 64.75 9.44M 0.9986 18.29

Model Repair

Fully Training
10% 56.07M 0.8946 1.0000 762.01 1.73M 0.8992 1.0000 466.14 20.03M 0.8971 0.9805 139.50
30% 56.07M 0.6870 0.9787 659.02 1.73M 0.7016 0.9693 464.43 20.03M 0.6687 0.9677 137.47
50% 56.07M 0.4860 0.9999 710.53 1.73M 0.512 1.0000 471.12 20.03M 0.4850 0.9811 145.90

Modularized
Training

10% 7.82M 0.8940 0.9999 611.22 0.11M 0.8999 0.9999 312.07 1.77M 0.8974 0.9661 89.22
30% 7.43M 0.6873 0.9998 602.27 0.13M 0.7011 0.9992 309.16 4.49M 0.6685 0.9281 91.43
50% 5.54M 0.4864 0.9884 593.41 0.15M 0.5120 0.9764 305.55 4.72M 0.4850 0.9410 95.01

Model Enhancement Task. In this experiment, we use four
adversarial attacks, i.e., DeepFool [27], C&W [28], FGSM
[26], and PGD [29] to generate 1000 adversarial samples.
We compare the retraining accuracy and efficiency between
our modularized training approach and traditional approach.
Both aim to force the original model to perform well on those
adversarial samples.
Model Repair Task. In this experiment, given a trained model
m, we mutate m by progressively replacing its model weights
with random values until its training accuracy drops by about
10%, 30%, and 50%. For each mutation configuration (i.e., a
model architecture, a dataset, and a dropping accuracy rate),
we generate 3 model mutants. For each model mutant, we
compare DeepArc with traditional model retraining regarding
the retraining accuracy and efficiency.

2) Results: Table III shows how the modularized training
technique in DeepArc framework helps to accomplish the
model enhancement task (a.k.a., adversarial training task) and
the model repair tasks. Note that the models are trained on
CIFAR-10, more details are available at [25].
Model Enhancement Task. As shown in Table III, modular-
ized training of ResNet110 reduces trained model size from
1.73M to 0.13M, and decreases training time by about 32.4%
with 2.1% accuracy loss. Across all the models, modularized
training can reduce training time by 41.8% on average with
comparative accuracy. Overall, compared to fully training the
whole model, DeepArc allows us to achieve comparable model
enhancement performance by only training a small subset of
neural layers.
Model Repair Task. In the model repair task, DeepArc
achieves a similar performance boost as in model enhancement
task. We can also see that, even trained with a localized mod-
ular, DeepArc allows us to successfully achieve on average
0.976 training accuracy and reduce training time by 23.9%.

Answer to RQ4: In summary, (1) model re-adaption
tasks are not necessary to retrain the whole model, and
(2) localized/modularized training can boost the training
efficiency with little accuracy loss.

F. Threats to Validity

External Validity. Threats to external validity arise from
that our experiments is conducted on three model architectures
and three datasets. To mitigate the risk, we included three most
popular model architectures in the computer vision domain.

These models including fully connected layers, convolutional
layers, residual blocks, etc., are therefore already widely
representative for DNNs. In the future, we will conduct
more thorough studies to evaluate whether the effectiveness
of DeepArc can be generalized to more diversified model
architecture such as Transformer and BERT in NLP domains.

Internal Validity. Threats to internal validity may arise
from the randomness of model training. To mitigate this threat,
we prepared 10 seeds to retrain the models for the experiment.

IV. DISCUSSION

We have shown that the semantic architecture of DeepArc
is designed to inform (1) the number of actual transformation
operations in the network, (2) a hint to statically remove or
add model layers without radically changing model semantics,
and (3) modularized layers that can be compressed by model
restructure and attributed by model re-adaption tasks, just like
a function in the functional program that can be attributed by
bug-fixing and feature-enhancement tasks.

Nevertheless, the modularization in this work is still in
the grain of transformation operations. While it is useful for
tasks like refactoring and performance enhancement, it is not
sufficient for module reuse, in comparison with the software
modules in the traditional system. In practice, there are still
many problems to be solved in reuse tasks. For example,
The existing methods for reuse [13], [14] aim to extract sub-
networks, which change the model structure in a significant
way. In this work, the module interfaces of the semantic
architecture are mainly used for encapsulation and localized
retraining. In future work, we will explore how to extract
human-readable interfaces, so that we can facilitate module-
level model reuse.

V. RELATED WORK

A. Software Architecture Recovery

Researchers have investigated the software architecture re-
covery for decades. The solutions are generally based on
clustering, where the similarity measurement is defined based
on concerns, code hierarchy or information entropy, which
include Comprehension-Driven Clustering (ACDC) [34], Ar-
chitecture Recovery using Concerns (ARC) [35], Bunch [36],
scaLable InforMation BOttleneck (LIMBO) [37], Weighted
Combined Algorithm (WCA) [38], and Zone-Based Recov-
ery (ZBR) [39]. Based on the recovered code architecture,
programmers and architects can have a broader overview and

deeper insight into the software system. For example, Wong
et al. use a design structure matrix (i.e., DSM) [40] to extract
the architecture and suggest potential design violations.

Unlike traditional software systems, the deep learning net-
work is simpler in architecture (i.e., a sequence of transforma-
tion operations) while much harder to interpret. Our DeepArc
framework takes the first step towards the modularity of the
network layers. Moreover, the usefulness of our recovered
modularity is not limited to comprehension, it can also fa-
cilitate model restructuring and model re-adaption tasks.

B. Modularity of Neural Network

The research on the modularity of the neural network
model remains relatively under-explored. Although there are
many DNN-related works that introduces the concept of
modules [41]–[46] in the AI community, these mainly focus
on formulating some specific functional DNN components
for better interpretability in some specific domains. There
are emerging works in the SE community to decompose a
neural network for improving the model reusability. Pan et al.
propose to decompose a multi-classification model into a set
of binary classification models for fully connected networks
[13] and convolutional networks [14]. These works extract
the same number of multiple sub-networks as categories,
by removing and modifying nodes and edges in the neural
network. However, these binary classifiers are not conducive
to acceleration of training and inference due to the discrete
nature of the sub-networks, which is especially costly for
tasks with a particularly large number of categories. Besides,
these techniques can provide limited support if we need
to restructure the model while preserving its behaviors or
improving performance with the minimum modifications. Our
modular approach operates directly on model layers, scaling
the depth of the network without affecting the acceleration.
Yet, the approach is designed to tune the network itself rather
than extract new networks, and hence it can help with the
maintenance of the model itself.

VI. CONCLUSION AND FUTURE WORK

In this work, we started a first attempt to encapsulate a
monolithic DNN into several consecutive modules and inves-
tigate whether it can be beneficial. We propose the framework
DeepArc which allows us to extract the semantic architecture
of a DNN, facilitating applications such as model restructure
and enhancement tasks. We show that the architecture has
some properties, largely preserving the fitting, robustness and
linear separability. Besides, the tasks like model compression,
enhancement, and repair can largely benefit from the modu-
larity of network layers. In the future, we will further explore
whether DeepArc framework can help modular reuse.

ACKNOWLEDGMENT

This research is supported in part by the National Na-
ture Science Foundation of China (grant No.61832014,
No.61972373), the Basic Research Program of Jiangsu
Province, China (BK20201192), the Minister of Education,

Singapore (T1-251RES1901, T2EP20120-0019, MOET32020-
0004), NUS-NCS Joint Laboratory for Cyber Security, Singa-
pore, the National Research Foundation, Singapore, and Cyber
Security Agency of Singapore under its National Cybersecurity
Research and Development Programme (Award No. NRF-
NCR TAU 2021-0002) and A*STAR, CISCO Systems (USA)
Pte. Ltd and National University of Singapore under its Cisco-
NUS Accelerated Digital Economy Corporate Laboratory
(Award I21001E0002). Dr. Xue’s research is also supported
by CAS Pioneer Hundred Talents Program.

REFERENCES

[1] K. Madala, D. Gaither, R. Nielsen, and H. Do, “Automated identification
of component state transition model elements from requirements,”
in 2017 IEEE 25th international requirements engineering conference
workshops (REW). IEEE, 2017, pp. 386–392.

[2] A. Joulin and T. Mikolov, “Inferring algorithmic patterns with stack-
augmented recurrent nets,” Advances in neural information processing
systems, vol. 28, 2015.

[3] H. Tong, B. Liu, and S. Wang, “Software defect prediction using stacked
denoising autoencoders and two-stage ensemble learning,” Information
and Software Technology, vol. 96, pp. 94–111, 2018.

[4] Y. Pang, X. Xue, and H. Wang, “Predicting vulnerable software com-
ponents through deep neural network,” in Proceedings of the 2017
International Conference on Deep Learning Technologies, 2017, pp. 6–
10.

[5] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, “Large-scale malware clas-
sification using random projections and neural networks,” in 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing.
IEEE, 2013, pp. 3422–3426.

[6] X. Li, H. Jiang, Z. Ren, G. Li, and J. Zhang, “Deep learning in software
engineering,” arXiv preprint arXiv:1805.04825, 2018.

[7] K.-T. Yang, “Artificial neural networks (anns): a new paradigm for
thermal science and engineering,” Journal of heat transfer, vol. 130,
no. 9, 2008.

[8] D. Fohr, O. Mella, and I. Illina, “New paradigm in speech recognition:
deep neural networks,” in IEEE international conference on information
systems and economic intelligence, 2017.

[9] S. C. Hoi, D. Sahoo, J. Lu, and P. Zhao, “Online learning: A compre-
hensive survey,” Neurocomputing, vol. 459, pp. 249–289, 2021.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[12] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[13] R. Pan and H. Rajan, “On decomposing a deep neural network into
modules,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 889–900.

[14] ——, “Decomposing convolutional neural networks into reusable and re-
placeable modules,” in Proceedings of the 44th International Conference
on Software Engineering, 2022, pp. 524–535.

[15] S. Kornblith, M. Norouzi, H. Lee, and G. Hinton, “Similarity of
neural network representations revisited,” in International Conference
on Machine Learning. PMLR, 2019, pp. 3519–3529.

[16] J. S. Rosenfeld, J. Frankle, M. Carbin, and N. Shavit, “On the pre-
dictability of pruning across scales,” in International Conference on
Machine Learning. PMLR, 2021, pp. 9075–9083.

[17] J. Diffenderfer and B. Kailkhura, “Multi-prize lottery ticket hypothe-
sis: Finding accurate binary neural networks by pruning a randomly
weighted network,” arXiv preprint arXiv:2103.09377, 2021.

[18] J. Lee, S. Park, S. Mo, S. Ahn, and J. Shin, “Layer-adaptive sparsity for
the magnitude-based pruning,” arXiv preprint arXiv:2010.07611, 2020.

[19] J. Frankle, G. K. Dziugaite, D. M. Roy, and M. Carbin, “Pruning neural
networks at initialization: Why are we missing the mark?” arXiv preprint
arXiv:2009.08576, 2020.

[20] S. Hayou, J.-F. Ton, A. Doucet, and Y. W. Teh, “Robust pruning at
initialization,” arXiv preprint arXiv:2002.08797, 2020.

[21] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[23] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[24] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[25] N.A, “Deeparc,” https://sites.google.com/view/deep-arc/, 2022, [Online;
accessed 18-Mar-2022].

[26] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[27] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2574–2582.

[28] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 ieee symposium on security and privacy (sp). IEEE,
2017, pp. 39–57.

[29] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[30] J. Lee, S. Park, S. Mo, S. Ahn, and J. Shin, “Layer-adaptive sparsity for
the magnitude-based pruning,” arXiv preprint arXiv:2010.07611, 2020.

[31] A. Morcos, H. Yu, M. Paganini, and Y. Tian, “One ticket to win them all:
generalizing lottery ticket initializations across datasets and optimizers,”
Advances in neural information processing systems, vol. 32, 2019.

[32] T. Gale, E. Elsen, and S. Hooker, “The state of sparsity in deep neural
networks,” arXiv preprint arXiv:1902.09574, 2019.

[33] U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen, “Rigging
the lottery: Making all tickets winners,” in International Conference on
Machine Learning. PMLR, 2020, pp. 2943–2952.

[34] V. Tzerpos and R. C. Holt, “ACDC: an algorithm for comprehension-
driven clustering,” in Proceedings of the Seventh Working Conference
on Reverse Engineering, WCRE’00, Brisbane, Australia, November
23-25, 2000. IEEE Computer Society, 2000, pp. 258–267. [Online].
Available: https://doi.org/10.1109/WCRE.2000.891477

[35] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Y. Cai,
“Enhancing architectural recovery using concerns,” in 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE
2011), Lawrence, KS, USA, November 6-10, 2011, P. Alexander,
C. S. Pasareanu, and J. G. Hosking, Eds. IEEE Computer Society,
2011, pp. 552–555. [Online]. Available: https://doi.org/10.1109/ASE.
2011.6100123

[36] B. S. Mitchell and S. Mancoridis, “On the automatic modularization
of software systems using the bunch tool,” IEEE Trans. Software
Eng., vol. 32, no. 3, pp. 193–208, 2006. [Online]. Available:
https://doi.org/10.1109/TSE.2006.31

[37] P. Andritsos and V. Tzerpos, “Information-theoretic software clustering,”
IEEE Trans. Software Eng., vol. 31, no. 2, pp. 150–165, 2005. [Online].
Available: https://doi.org/10.1109/TSE.2005.25

[38] O. Maqbool and H. A. Babri, “Hierarchical clustering for software
architecture recovery,” IEEE Trans. Software Eng., vol. 33, no. 11, pp.
759–780, 2007. [Online]. Available: https://doi.org/10.1109/TSE.2007.
70732

[39] A. Corazza, S. D. Martino, V. Maggio, and G. Scanniello, “Investigating
the use of lexical information for software system clustering,” in 15th
European Conference on Software Maintenance and Reengineering,
CSMR 2011, 1-4 March 2011, Oldenburg, Germany, T. Mens,
Y. Kanellopoulos, and A. Winter, Eds. IEEE Computer Society, 2011,
pp. 35–44. [Online]. Available: https://doi.org/10.1109/CSMR.2011.8

[40] S. Wong, Y. Cai, M. Kim, and M. Dalton, “Detecting software modu-
larity violations,” in Proceedings of the 33rd International Conference
on Software Engineering, 2011, pp. 411–420.

[41] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein, “Neural module
networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 39–48.

[42] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between
capsules,” Advances in neural information processing systems, vol. 30,
2017.

[43] R. Hu, J. Andreas, M. Rohrbach, T. Darrell, and K. Saenko, “Learning
to reason: End-to-end module networks for visual question answering,”
in Proceedings of the IEEE international conference on computer vision,
2017, pp. 804–813.

[44] B. Ghazi, R. Panigrahy, and J. Wang, “Recursive sketches for modu-
lar deep learning,” in International Conference on Machine Learning.
PMLR, 2019, pp. 2211–2220.

[45] G. E. Hinton, Z. Ghahramani, and Y. W. Teh, “Learning to parse images,”
Advances in neural information processing systems, vol. 12, 1999.

[46] R. Atefinia and M. Ahmadi, “Network intrusion detection using
multi-architectural modular deep neural network,” The Journal of
Supercomputing, vol. 77, no. 4, pp. 3571–3593, 2021.

https://sites.google.com/view/deep-arc/
https://doi.org/10.1109/WCRE.2000.891477
https://doi.org/10.1109/ASE.2011.6100123
https://doi.org/10.1109/ASE.2011.6100123
https://doi.org/10.1109/TSE.2006.31
https://doi.org/10.1109/TSE.2005.25
https://doi.org/10.1109/TSE.2007.70732
https://doi.org/10.1109/TSE.2007.70732
https://doi.org/10.1109/CSMR.2011.8

	Introduction
	DeepArc Framework
	Semantic Architecture
	Model Restructure
	Model Re-adaption
	Critical Module Location
	Modularized Training

	Evaluation
	Dataset Setup
	Model Architectures and Datasets

	Modularization Prevalence Experiment (RQ1)
	Experiment Setup
	Results

	Modularization Semantics Experiment(RQ2)
	Dynamic Semantics Design
	Results of Dynamic Semantics
	Static Semantics Design
	Results of Static Semantics

	Compression Efficiency Experiment(RQ3)
	Experiment Setup
	Results

	Model Re-adaption Experiment(RQ4)
	Experiment Setup
	Results

	Threats to Validity

	Discussion
	Related Work
	Software Architecture Recovery
	Modularity of Neural Network

	Conclusion and Future Work
	References

