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Abstract—Code clones have to be made explicit and be man-
aged in software maintenance. Researchers have developed many
clone detection tools to detect and analyze code clones in software
systems. These tools report code clones as similar code fragments
in source files. However, clone-related maintenance tasks (e.g.,
refactorings) often involve a group of code clones appearing in
larger syntactic context (e.g., code clones in sibling classes or code
clones calling similar methods). Given a list of low-level code-
fragment clones, developers have to manually summarize from
bottom up low-level code clones that are relevant to the syntactic
context of a maintenance task. In this paper, we present a clone
summarization technique to summarize code clones with respect
to their common syntactic context. The clone summarization
allows developers to locate and maintain code clones in a top-
down manner by type hierarchy and usage dependencies. We
have implemented our approach in the Clonepedia tool and
conducted a user study on JHotDraw with 16 developers. Our
results show that Clonepedia users can better locate and refactor
code clones, compared with developers using the CloneDetective
tool.

I. INTRODUCTION

Code clones are identical or similar code fragments in

software systems. They are introduced by copy-paste-modify

practices, implementation of similar requirements, application

of design patterns, or usage patterns of APIs. Previous studies

show that industrial systems have a large number of code

clones [9], [17]. Although whether code clones are harmful or

not is still an open research question, it is agreed on that code

clones must be made explicit so that they can be consistently

managed and maintained.

Many clone detection tools [1], [7], [10], [11], [12], [17]

have been developed. These clone detectors fulfill the devel-

opers’ quest to answer “where code clones are in software
systems?”. Clone detectors can report various types of code
clones with a good precision and recall [8]. Code clones

are usually reported as a list of clone sets of similar code

fragments in source files. To effectively manage and maintain

code clones, this low-level clone report must be examined and

understood in the larger context in which code clones occur.

To help developers understand code clones, researchers

have proposed visualization [23], query-based analysis [29],

and categorization [13] approaches for inspecting detected

code clones. These approaches help developers answer such

questions as “which parts of the system contain more code
clones?” or “which files are most similar to this file?”. These
clone analysis approaches can help developers identify clone-

based reengineering opportunities [2].

Our empirical studies on code clones in several software

systems (JDK, JFreeChart, JEdit, JHotDraw) show that syn-

tactic contexts (e.g., type hierarchy and usage dependencies)

in which clones occur often share high commonalities. For

example, code clones of several clone sets can appear in

subclasses of a specific class, or they can call different

implementations of an interface. Making explicit common

syntactic contexts in which several related code clones occur

can facilitate developers locating and maintaining these related

code clones as a whole. However, existing clone analysis tools

cannot answer the developers’ questions “what code clones are
relevant to a specific syntactic context, such as a type hierarchy
or a usage dependency?”.
In this paper, we present an automatic clone summarization

technique that 1) extract commonalities of syntactic contexts in

which code clones occur as syntactic patterns and 2) cluster

code clones with regard to these patterns for developers to

locate and maintain code clones relevant to certain syntactic

contexts in a top-down manner. Our approach first builds an

ontology model that captures code clones, program elements,

and their relations. Based on this ontology model, our ap-

proach then uses sequence matching and clustering techniques

to cluster code clones by their common syntactic contexts.

Finally, it abstracts commonalities of syntactic contexts in

which code clones occur as syntactic patterns.

We have developed a proof-of-concept tool called Clone-
pedia which has been integrated with Eclipse IDE. The

Clonepedia tool implements a Graphical User Interface (GUI)
to support developers to interactively explore and analyze code

clones by their syntactic patterns. We conducted a user study

involving 16 developers to evaluate our approach and the tool.

The results show that syntactic patterns of code clones enable

developers to more efficiently locate the code clones relevant

to the maintenance tasks and allow developers to make more

informed refactoring decisions on relevant clones, compared

with developers using the CloneDetective tool.
The remainder of the paper is structured as follows. Sec-

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.56

341

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.56

341

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.56

341



tion II presents a motivating example. Section III discusses

our clone summarization approach. Section IV describes our

Clonepedia tool. Section V reports empirical evaluation of

our approach. Section VI reviews related work. Finally, we

conclude and discuss our future plan.

II. MOTIVATING EXAMPLE

Table I shows code snippets of a clone set consisting of

three clone instances in JHotDraw (a Java drawing framework

for developing graphics applications). Manual investigation of

these cloned code fragments reveals that these code clones

share three pieces of syntactic commonalities beyond apparent

code fragment similarity.

1) These code clones reside in the methods init() of three
classes PertProject, NetProject and SVGProject. These
three classes share similar class names and are all

subclasses of the class AbstractProject.
2) These code clones call the constructors of three different

types of factory objects (line 4) PertFactory, NetFactory
and SVGFactory. These three classes share similar class
names and are all subclasses of DefaultDOMFactory.

In our approach, the above syntactic commonalities of clone

instances of a clone set are called intra clone set patterns.
These patterns reveal latent commonalities in the syntactic

context in which several clone instances appear. It is important

to note that such syntactic patterns cannot be directly noticed

by just reading cloned code fragments. Developers have to

explore type hierarchy and call dependencies from each clone

instance, and summarize their syntactic commonalities.

In the similar vein, we can further identify latent syntactic

commonalities across clone sets (i.e., inter clone set patterns
in our approach) based on intra clone set patterns. For exam-

ple, there are 11 more clone sets in JHotDraw whose clone

instances exhibit the same syntactic commonality as the first

syntactic commonality of the clone set shown in Table I. That

is, clone instances of these 11 clone sets reside in in the

methods (e.g. setEditor(), read()) of PertProject, NetProject
and SVGProject, respectively. There are 9 more clone sets

whose clone instances exhibit the same syntactic commonality

as the second one in above list. That is, clone instances of

these 9 clone sets call constructors of different types of factory

objects (i.e., PertFactory, NetFactory and SVGFactory). Inter
clone set patterns group separate clone sets in the low-level

clone report based on common syntactic contexts that these

clone sets share.

In addition to JHotDraw system, we also studied code clones

in three other open source projects, including JDK, JFreeChart

and JEdit. Our studies suggest that syntactic patterns of

code clones are not unique to JHotDraw. It is a common

phenomenon in all the subject systems we studied.

III. APPROACH

Our approach takes as input system source code and code

clones in the system reported by an existing clone detector,

such as CloneDetective [11]. Clonepedia builds an ontology

model that captures clone sets, clone instances, relevant pro-

gram elements, and various relations among code clones and

program elements. Based on this ontology model, Clonepedia
then abstracts Intra Clone Set Patterns that represent common-
alities of syntactic context in which several clone instances

of a clone set appear. Based on intra clone set patterns,

Clonepedia further abstracts Inter Clone Set Patterns that
represent commonalities of syntactic context in which several

clone sets appear.

A. Building Ontology Model

To mine commonalities of syntactic contexts in which code

clones occur, we first build an ontology model to capture clone

sets, clone instances, program elements, and their relations.

Table II shows the schema of our ontology model. The types

of ontology elements include clone set, clone instance, class,

interface, method, field and variable. The types of ontol-

ogy relations include regular program relations (i.e., extend,

implement, declare, and data type association). In addition,

our ontology schema introduces four clone-specific types of

relations, i.e., contain, reside in, diff use, and common use.
These relations describe location and usage characteristics of

cloned code fragments.

contain and reside in. A clone set contains two or more
clone instances (i.e., cloned code fragments). Each of the clone

instances resides in a method. The reside in relations connect
code clones with type hierarchy (through declaring method,

declaring class, and supertypes) in which they appear.

diff use and common use. We employ our MCIDiff algo-
rithm [18] to build diff use and common use relations between
clone instances and program elements. MCIDiff is designed
to detect common parts and differences across multiple clone

instances. It considers the code fragments of n clone instances
in a clone set as n token sequences. It reports a list of

multisets of corresponding tokens in these clone instances. We

only consider identifier-tokens for diff use and common use
relation because we are only interested in those tokens rep-

resenting program elements. For example, {view, view, view}
and {PertFactory, NetFactory, SVGFactory} are two examples
of the multisets of corresponding tokens that MCIDiff reports
given the code instances shown in Table I (see line 5). If

all the tokens in a multiset are identical (e.g., {view, view,
view}), the multiset is a matched multiset, otherwise, the
multiset is a differential multiset (e.g., {PertFactory, NetFac-
tory, SVGFactory}). We build a common use relation from
the clone instance to the program element that the token in

a matched multiset represents. We build a diff use relation
from the clone instance to the program element that the token

in a differential multiset represents. diff use and common use
relations connect code clones with program elements that code

clones use.

Figure 1 depicts a partial ontology model of JHotDraw.

Each box represents an ontology element while each direct

edge represents a relation between a subject and an object.

For example, CloneSet1 consists of four clone instances (#1-
#4). These four instances reside in the method init() declared
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TABLE I
CODE CLONE EXAMPLE IN JHOTDRAW SYSTEM

� �
0 public PertProject extends AbstractProject{
1 public void i n i t ( ) {
2 super . i n i t ( ) ;
3 . . .
4 view . setDOMFactory(new PertFactory ( ) ) ;
5 undo = new UndoRedoManager( ) ;
6 view . setDrawing(
7 new DefaultDrawing ( ) ) ;
8 . . .
9 }
10 }
�� �

� �
public NetProject extends AbstractProject{
public void i n i t ( ) {
super . i n i t ( ) ;
. . .
view . setDOMFactory(new NetFactory ( ) ) ;
undo = new UndoRedoManager( ) ;
view . setDrawing(
new DefaultDrawing ( ) ) ;

. . .
}
}
�� �

� �
public SVGProject extends AbstractProject{
public void i n i t ( ) {
super . i n i t ( ) ;
. . .
view . setDOMFactory(new SVGFactory( ) ) ;
undo = new UndoRedoManager( ) ;
view . setDrawing(
new SVGDrawing() ) ;

. . .
}
}
�� �

TABLE II
ONTOLOGY SCHEMA

Subject Relation Object
clone set contain clone instance

clone instance reside in method

clone instance diff use method, field, variable,
class, interface

clone instance common use method, field, variable,
class, interface

class extend class

class implement interface

class declared in class

interface extend interface

method declared in class/interface

method has return type class/interface

method has param type class/interface

field declared in class/interface

field has type class/interface

variable has type class/interface
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Fig. 1. Ontology Example

in four different classes, DrawProject, NetProject, PertProject,
and SVGProject, respectively. These four project classes ex-
tend AbstractProject. Furthermore, the four clone instances
in CloneSet1 diff use constructor of four different classes,
DrawFigureFactory, NetFactory, PertFactory, and SVGFac-
tory. These four factory classes extend DefaultDOMFactory.
In fact, our motivating example shown in Table I is derived

from the CloneSet1.

B. Mining Intra Clone Set Patterns

In our ontology model, a path is called a clone path if
it starts from a clone instance node and ends at a node

without any outgoing edges, for example, “clone instance #1
of Cloneset1 reside in init() declared in DrawProject extend
AbstractProject”. Two or more clone instances in a clone

set may be located in similar clone paths, for example the

four clone paths starting from the four clone instances of

CloneSet1 and ending at AbstractProject. We call a clone path
an abstract clone path if some of its nodes are generalized
in terms of their attributes such as name, types and etc.

For example, the abstract clone path “clones reside in init()
declared in *Project extend AbstractProject” indicates that
code clones appear in the method init() of the subclasses of
the AbstractProject class and these subclasses’ names start
with different words but all end with a word Project. We
call an abstract clone path whose generalized clone instance

origins from exactly one clone set as intra clone set pattern.
Clonepedia first clusters these similar clone paths starting

from clone instances in same clone sets. Given a cluster of

similar clone paths, Clonepedia abstracts an abstract clone

path representing commonality of syntactic context in which

several clone instances appear.

a) Clustering similar clone paths: Clonepedia considers
a clone path as a sequence of ontology elements and rela-

tions, and uses absolute Levenshtein distance [16] to measure

distance of two clone paths in terms of a minimum cost to

transform one path into another. It uses hierarchical clustering

technique [19] to cluster clone paths. Clonepedia accepts a
user-specified cost threshold. Only clone paths with distance

below the cost threshold will be considered for clustering.

In our work, we are interested in similar clone paths across

several different clone instances in a clone set. Therefore, we

set distance of two clone paths originated from the same clone

instance at ∞. Furthermore, as discussed in Section III-A,

clone paths starting with reside in, diff use or common use
relations represent different types of connections between

clone instances and syntactic context. Therefore, for two clone

paths starting with different reside in, diff use or common use
relations, we set their distance at∞. As such, Clonepedia will
not attempt to cluster such clone paths.

Given two comparable clone paths, we set transformation

cost between two identical nodes at 0. We set transformation

cost between two identical edges at 0. That is, no trans-

formation is needed for such nodes or edges. Clonepedia
supports three types of sequence transformation operations,

insert, delete, and replace. The cost of inserting or deleting
a node or an edge is set at 1; the cost of replacing an

edge with a node or vice versa is set at ∞; the cost of

replacing one edge with a different-type edge (e.g., extend

versus declared in) is set at ∞; the cost of replacing one
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TABLE III
FACTORS FOR COMPUTING REPLACE COSTS OF SAME-TYPE NODES

Node Type Factors
class name, methods, fields

interface name, methods, fields

method name, return type name, parameters

parameter name, parameter type name

field name, field type name

variable name, variable type name

node with a different-type node (e.g., class versus method)

is also set at ∞; the cost of replacing one node with a same-

type node, for example, replacing class DrawProject with class
NetProject, is computed by a cost function replaceCost() that
returns a value ranging from 0 to 1.

Given two same-type nodes, replaceCost() computes their
replacing cost based on different factors associated with node

type (see Table III). replaceCost() computes replacing costs
of each factor recursively. Recursion stops when computing

replacing cost of two names (i.e., strings). After obtaining

replacing costs of all factors, replaceCost() takes the average
of these replacing costs as replacing cost of the two given

nodes. For example, to compute replacing cost of two classes,

replaceCost() computes replacing cost of their class names,
replacing cost of two sets of methods declared in the two

classes, and replacing cost of two set of fields declared in

the two classes. It then averages three replacing costs as the

replacing cost for the two classes.

To compute replacing cost of two names (e.g., class names),

Clonepedia splits the names into two sequences of words,

using case switching, underscores, dashes as delimiters. It then

computing Levenshtein distance [16] between the two word

sequences. To compute replacing cost of two sets of elements

(e.g. methods declared in two classes), replaceCost() first
computes replacing cost pairwisely between elements of the

two sets. And then, it builds a bipartite graph whose disjointed

nodes represent elements in the two sets respectively. The

edges of bipartite graph represent replacing cost between

an element of one set and an element of the other set.

replaceCost() then computes a minimum weight bipartite

matching [25] to determine an optimal matching between two

sets of elements with minimum replacing costs.

b) Abstracting intra clone set patterns: A cluster of simi-
lar clone paths represents a potential common syntactic context

in which two or more clone instances appear. Clonepedia
extracts this commonality by merging clone paths into an

abstract clone path. Given a cluster of clone paths, the merging

process adopts a progressive sequence alignment strategy. It

starts with two most similar clone paths and then iteratively

compares the current abstract clone path with less similar clone

paths to update the abstract path. The process continues until

all clone paths in a cluster have been processed.

Given two clone paths, they are merged into an abstract

clone path based on their Levenshtein distance transformation

results. The merging process scans the two paths from the

beginning of the paths. For nodes or edges that do not need

transformation, they are copied directly to the abstract path.

For several consecutive nodes or edges that are inserted or

deleted, a placeholder node or edge is added to the abstract

path. For the two nodes that need replace transformation,

for example DrawProject and NetProject in the two clone

paths as shown in Figure 1, Clonepedia merges the two nodes
using the same recursive process as defined in Table III for

replaceCost() computation. For example, it will first merge
the name of class DrawProject and NetProject, and then

recursively merge the methods and fields of the two classes.

The recursive merging is to retain necessary information of

the nodes to be merged, because the resulting abstract path

needs to be compared for mining inter clone set patterns.

To merge two names, Clonepedia splits the names into a
sequence of words, using case switching, underscores, dashes

as delimiters. It then computes a longest common subsequence

between the two word sequences. For those unmatched words,

Clonepedia inserts “*” as placeholders to the proper places in
the longest common subsequence. For the two class names

DrawProject and NetProject, Clonepedia merges them into an

abstract class name *Project.
Given the four clone paths starting from the four clone

instances of CloneSet1 and ending at AbstractProject (see
Figure 1), Clonepedia will generate an abstract clone path

“clones reside in init() declared in *Project extend Abstract-
Project”. This abstract path indicates that clone instances in
CloneSet1 appear in the method init of the subclasses of the
AbstractProject class and these subclasses’ names start with
different words but all end with a word “Project”. This abstract
path reveals common type hierarchy in which the four clone

instances appear.

C. Mining Inter Clone Set Patterns

We call an abstract clone path whose generalized clone

instance origins from more than one clone sets as inter
clone set pattern. An inter clone set pattern presents common
syntactic contexts in which several clone sets appear. We

mine inter clone set patterns by 1) representing each intra

clone set pattern by its abstract clone path, 2) clustering them

by the similarity between abstract clone paths representing

different intra clone set patterns, and 3) abstracting each cluster

into a new abstract clone path representing inter clone set

patterns. Therefore, mining inter clone set patterns follows

the same steps for mining intra clone set patterns technically.

The difference is that mining intra clone set patterns analyzes

concrete clone paths of clone instances in a clone set, while

mining inter clone set patterns analyzes abstract clone paths

of several clone sets.

Take CloneSet1 and CloneSet2 in Figure 1 as an example.
The CloneSet1 has an abstract clone path “clones reside -
in init() declared in *Project extend AbstractProject”, while
CloneSet2 has an abstract clone path “clones reside in setEdi-
tor() declared in *Project extend AbstractProject”. These two
abstract clone paths can be further clustered together from

which a more general syntactic pattern can be abstracted, i.e.,

“clones reside in *() declared in *Project extend AbstractPro-
ject”. This more general pattern indicates that clones appear in
several methods of the subclasses of the AbstractProject class.
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We call such patterns that several clone sets share inter clone
set patterns. The inter clone set patterns group together several
related clone sets based on their common syntactic contexts.

IV. TOOL SUPPORT

We have implemented our approach in the Clonepedia
tool which has been integrated with Eclipse development

environment. Figure 2 shows a screenshot of our tool. Cur-

rently Clonepedia supports three views for the developer to
explore and analyze code clones in a top-down manner through

syntactic patterns of code clones.

Syntactic Pattern view allows developers to explore syn-

tactic patterns that Clonepedia abstracts in type hierarchies.
Syntactic patterns are organized in three categories, i.e., re-
side in, diff usage, and common usage. Developers can sort
syntactic patterns based on different criteria (e.g., the number

of clone sets sharing a syntactic pattern). They can also search

patterns by names. Double-clicking a syntactic pattern opens

a tab in the detail pane of the Syntactic Pattern view showing
a summary of the selected pattern and the relevant clone sets.

Developers can select a pattern to view the clone sets sharing

this pattern in Clone Set view.
Clone Set view shows a table of selected clone sets. Double-

clicking a clone set opens a tab in the lower pane of the Clone
Set view that provides descriptions about different aspects of

a clone set, as well as links to clone instances and intra/inter

clone set patterns. Clicking a clone instance link opens the

clone instance in a Java editor. Clicking an intra/inter clone

set pattern reveals and shows the selected pattern in Syntactic
Pattern view.
Double-clicking a clone set also shows Code Snippet view.

Code Snippet view shows the MCIDiff ’s differencing results
of the clone instances of the selected clone set. Differences

across the clone instances are highlighted in different colors

and fonts [18]. This allows developers to see and examine

differences across multiple clone instances as a whole.

V. EVALUATION

Our approach to clone summarization aims to help develop-

ers better locate and maintain code clones in software mainte-

nance tasks. To evaluate if our Clonepedia tool achieves this
goal, we conducted a user study to investigate the following

three questions:

• Q1: How do developers use syntactic patterns when they

are available?

• Q2: Can the Clonepedia tool help developers locate

relevant code clones in software maintenance tasks more

easily?

• Q3: Can the Clonepedia tool help developers better

determine what to do with code clones in refactoring

tasks?

A. Experiment Design

We first introduce our experiment design, including baseline

clone analysis tool, subject system, participants, maintenance

tasks, and ground-truth answers.

1) Baseline clone analysis tool: In this study, we compared
our Clonepedia tool with CloneDetective [11]. We chose

CloneDetective as the baseline clone analysis tool for three
reasons. First, CloneDetective has also been integrated with
Eclipse. This allows us to make a fair comparison between

Clonepedia and CloneDetective in the same development en-
vironment. Second, CloneDetective can detect Type I, Type II
and Type III clones. This allows us to evaluate the effec-

tiveness of Clonepedia with different types of code clones.
To make a fair comparison, Clonepedia takes as input clone
sets reported by CloneDetective. Third, CloneDetective is not
just a clone detector. It is also equipped with a Graphical

User Interface, including package explorer, keyword-based

file search, AspectJ-based visualization of code clones across

multiple files, and pairwise code comparison and difference

highlighting. These features represent state-of-the-practice for

exploring and analyzing code clones.

2) Subject system: We used JHotDraw version 7.0.6 as

the subject system. This version contains 368 classes, 3340

methods, and 32435 lines of code. CloneDetective reports 334
clone sets in JHotDraw, among which 184 clone sets contain

two clone instances, 140 contain 3-6 clone instances, the rest

10 contain more than 7 clone instances. These code clones are

scattered in 499 methods of 164 classes.

3) Participants: We recruited 16 participants (15 graduate
students and 1 senior undergraduate student) from the School

of Computer Science in Fudan University. Based on our pre-

experiment survey, two participants worked as professional de-

velopers in industry before they entered the graduate program;

Six students participated in the development of industrial

projects (e.g., internships) during their study. All participants

used Eclipse regularly. Six students described themselves as

above-average Java expertise and two described themselves as

Java experts. None of 16 participants had experience with the

subject system JHotDraw.

We used between-subjects design in this study. The 16

participants were matched in pairs based on their programming

experience and capability and then were randomly allocated

to the experimental group or control group. Group G1 was

the experimental group using Clonepedia. Group G2 was the

control group using CloneDetective.
4) Procedure: The participants were asked to complete

a set of clone-related maintenance tasks described below.

We gave a tutorial of Clonepedia and CloneDetective to the
two groups three hours before the experiment and asked the

participants to familiarize themselves with important concepts

that the tools introduce as well as tool features. Participants

were required to run a full-screen recorder while they were

working on the tasks. The recorded task videos allows us to

time the completion of the tasks and also observe and analyze

the participants’ behaviors in detail.

5) Maintenance tasks: We designed a maintenance scenario
to simulate the maintenance of code clones reported in our

industrial study [28]. This scenario consists of a set of clone

location and refactoring tasks on JHotDraw.

Maintenance scenario: You are a new team member of
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Fig. 2. The Screenshot of Clonepedia

JHotDraw project. You take over John’s code who already left
the JHotDraw project. John’s change logs indicate that he did
copy-paste-modify many times in his work, for example, when
he developed application-model classes (i.e., subclasses of the
class DefaultApplicationModel), and DOM-related features
(i.e., code using implementations of the DOMInput interface).
Your manager asks you to examine code clones in John’s code
and determine whether they can be refactored and how.
Clone Location Task: Participants were asked to locate

code clones based on the above hints gathered from John’s

change logs. These clone location tasks examine how fast

and accurate a participant can locate relevant code clones

he is interested in. Participants were asked to complete task

1.1 within 10 minutes and task 1.2 within 15 minutes. They

were asked to write down the IDs of clone sets (clone data

is generated by CloneDetective and shared by both tools) that
they deemed relevant to these tasks.

• Task 1.1 Please locate code clones in subclasses of the
class DefaultApplicationModel.

• Task 1.2 Please locate code clones using different imple-
mentations of the DOMInput interface.

Refactoring tasks: Participants were given seven clone sets
identified in the ground truth of clone location tasks (see

Section V-A6). These seven clone sets differ in the number of

clone instances and their complexity (see Table IX). The com-

plexity of these clone sets was determined by experts based

on whether potential refactorings require mainly localized

information inside clones or more global information beyond

clones (e.g, type hierarchy or usage dependency information).

Three clone sets were considerd as high complexity (H), three

as medium (M), and one as low (L).

There was no time limitation for participants to complete

refactoring tasks. They were asked to decide whether the given

clone sets can be refactored, if so what refactorings can be

applied, and what has to be done (e.g., reconcile naming

TABLE IV
SCORING CRITERIA FOR REFACTORING REASONS AND DETAILS

Score Criteria
0 Irrelevant, wrong or non-sensible reason
1 General or vague reason
2 Partly specific and right reason
3 Specific and right reason

inconsistencies) before clones can be refactored. Participants

were asked to write down their refactoring decisions and why

they reached such decisions as detailed as possible.

6) Ground-truth answers: To evaluate the performance of
participants, we need to build ground-truth answers for the

tasks. To that end, we invited two experts to complete the

above clone location tasks and refactoring tasks. One expert

is a Ph.D student in our lab who has used JHotDraw in his

work for about one year. The other expert is a senior software

architect from Alcatel who has nine years industrial experience

and is an expert on software clones and related maintenance

issues. The experts did not have time limits for completing the

tasks. After they completed the tasks, the two experts together

examined and combined their task results to produce ground-

truth answers for the tasks.

The experts also documented the reasons for their refactor-

ing decisions and what has to be done before clones can be

refactored. After the experiment, we asked the two experts to

mark the participants’ task results. We asked them to check

two items: proposed refactorings and supporting reasons (i.e.,

refactoring reasons), and things to do before applying the

proposed refactorings (i.e., refactoring details). For each item,

a score from 0 to 3 (see Table IV) will be given to quantify

the quality of refactoring decisions. To avoid experimenter

expectancy effects, the two experts did not know which group

a participant belongs when they graded the participant’s task

results.
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TABLE V
USAGE STATISTICS OF Clonepedia AND ECLIPSE FEATURES

Task Type Task
Syntactic Pattern View Clone Set View Code Snippet View Eclipse Feature

search explore detail pane clone set table clone insts synt pattern snippet editor type hierarchy search

Clone
Location

Task 1.1 1.00 3.13 1.00 8.50 9.63 0.000 3.00 7.00 1.00 0.00
Task 1.2 1.00 5.63 2.25 11.5 12.00 1.13 9.75 11.13 2.00 0.38

Refactoring

#1 (H) 0.00 0.25 0.13 1.63 3.88 1.75 3.13 3.00 0.38 0.00
#2 (M) 0.00 0.00 0.00 1.25 2.00 1.13 2.75 2.38 0.00 0.00
#3 (L) 0.00 0.00 0.13 1.38 1.38 0.50 1.38 1.25 0.00 0.00
#4 (H) 0.00 0.00 0.13 1.63 2.00 1.25 2.25 2.00 0.38 0.00
#5 (M) 0.13 0.13 0.00 2.50 2.00 1.25 3.25 3.00 0.13 0.00
#6 (H) 0.00 0.13 0.26 3.25 2.88 0.50 2.75 1.88 0.00 0.00
#7 (M) 0.00 0.00 0.13 4.88 1.75 0.63 2.75 1.88 0.00 0.00

B. Results: Using Clone Summarization (Q1)

By analyzing screen-recorded task videos, we obtained the

average number of times that the Clonepedia users used

Clonepedia features (see Section IV) and Eclipse features

(such as Java Editor, Type Hierarchy, Text Search) during their

tasks. Table V summarizes our analysis results. We observed

that participants used Clonepedia in a different way when tasks
vary in nature and complexity.

1) Clone location tasks: Syntactic Pattern view was fre-

quently used to locate clones. Our video analysis shows

that participants usually started their clone location tasks by

searching relevant syntactic patterns with keywords in task

descriptions. This allows them to quickly focus on a small

number of patterns that may be relevant to their tasks. Clone-
pedia presents syntactic patterns using a concise label, but
this pattern label seems not sufficient for clearly understanding

what a syntactic pattern means. This can be partially due to

the learning curve of the concept of syntactic pattern. As a

result, the participants had to check the details of syntactic

patterns in the detail pane to understand syntactic patterns.

Once the participants found a plausible pattern, they usually

inspected relevant clone sets in the clone set table of Clone
Set view and explored the clone instances of the clone sets.

Furthermore, they also frequently used Code Snippet view to

investigate common parts and differences of the clone in-

stances. They also frequently used Eclipse features (especially

Java Editor) to investigate and validate the relevance of code

clones (e.g., reading the code).

2) Clone refactoring tasks: The usage statistics of Clone-
pedia and Eclipse features in refactoring tasks show distinct

characteristics than those in the clone location tasks.

Table V shows that when the participants investigated a

given clone set they mainly used Clone Set view and Java

editor. Furthermore, “synt pattern column” shows that syn-

tactic patterns provided in the lower pane of Clone Set view
were inspected more frequently than syntactic patterns in

Syntactic Pattern view. This is because the participants’ goal
in refactoring task is to determine what they can do with a

specific clone set. Therefore, they are more interested in the

patterns relevant to the clone set under refactoring.

Our results also show that the complexity of a given clone

set affects the usage of Clonepedia features. The complexity
of a clone set is indicated in H/M/L (see Table IX for details).

If program structures of code clones are simple, e.g., all cloned

code fragments are the same and located in the same class,

most participants did not further investigate syntactic patterns,

for example in Task#3. However, when program structures of

code clones become complicated (e.g., in Task#1), participants

began resorting to syntactic patterns to better understand the

syntactic context in which clones appear. That is why the

frequencies of investigating syntactic patterns in Clone Set
view vary.

C. Results: Locating Relevant Clones More Easily (Q2)

We evaluated the participants’ performance in clone lo-

cation tasks by comparing precision, recall, F-measure and

completion time of the experimental group (G1) and control

group (G2). Given a clone location task, let Sa be the set

of relevant clone sets in our ground-truth answer. Let Sr be
the set of clone sets reported by a participant. Precision, P ,
represents the percentage of correctly reported clone sets, i.e.,

P = |Sr
⋂
Sa|/|Sr|. Recall, R, is the percentage of relevant

clone sets reported, i.e., R = |Sr
⋂
Sa|/|Sa|. The F-measure is

computed as F = (1+b2)/(1/P+b2/R) to reflect a weighted
average of the precision and recall. In our study, we set b to 2,
which means recall is considered four times as important as

precision. That is, we consider that finding missing relevant

clone sets is more difficult than removing irrelevant clone sets.

We introduced the following null and alternative hypotheses

to evaluate the difference of the two groups’ performance.

• H0: The primary null hypothesis is that there is no

significant difference between the performance of the two

groups.

• H1: An alternative hypothesis to H0 is that there is

significant difference between the performance of the two

groups.

Table VI and Table VII present the participants’ perfor-

mance (in terms of each participant’s average precision, recall,

F-measure, and completion time) in the two clone location

tasks. Overall, the Clonepedia users achieved better precision,
recall, and F-measure in these two tasks. The Clonepedia users
completed the tasks faster than Clone-Detective users.

We used Wilcoxon’s matched-pairs signed-ranked tests to

evaluate the null hypothesis H0 in terms of precision, recall,

F-measure, and task completion time at a 0.05 level of

significance. Table VIII shows the results of these four tests.

Based on the results we reject the null hypothesis H0 for all

the performance metrics, i.e., Recall, Precision, F-measure,

and task completion time. Therefore, we accept the alternative

hypothesis H1 for all the performance metrics, i.e., there is
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TABLE VI
PERFORMANCE OF Clonepedia GROUP

Participant Precision Recall F-Measure Time(s)

P1 1.000 1.000 1.000 329.000

P2 1.000 0.909 0.926 405.000

P3 0.938 1.000 0.987 447.500

P4 1.000 1.000 1.000 229.000

P5 1.000 0.955 0.963 270.000

P6 1.000 1.000 1.000 285.000

P7 1.000 0.883 0.904 425.000

P8 1.000 0.701 0.746 276.500

Average 0.992 0.931 0.941 370.875

Std.Dev. 0.021 0.097 0.081 107.051

TABLE VII
PERFORMANCE OF CloneDetective GROUP

Participant Precision Recall F-Measure Time(s)

P9 0.928 0.416 0.467 546.500

P10 1.000 0.603 0.655 611.000

P11 0.875 0.487 0.534 736.000

P12 0.333 0.364 0.357 738.000

P13 1.000 0.532 0.587 463.000

P14 1.000 0.377 0.430 640.500

P15 0.600 0.325 0.357 592.500

P16 0.300 0.273 0.277 696.000

Average 0.755 0.422 0.458 627.938

Std.Dev. 0.281 0.104 0.120 89.415

significant difference between the precision, recall F-measure,

and task completion time of the Clonepedia users and the
CloneDetective users in the two clone location tasks.
As the Clonepedia users achieved better precision, recall,

F-measure and completed the tasks in shorter time than the

CloneDetective users, our results show that the Clonepe-
dia users achieved significant better performance than the

CloneDetective users in the two clone location tasks.

D. Results: Better Refactoring Decision (Q3)

We evaluated the participants’ performance in seven refac-

toring tasks using refactoring reason scores and refactoring

details scores. Table IX summarizes the results. The first row

shows task id. Each task involves one clone set. The second

row shows the number of clone instances in the corresponding

clone set. The third and forth rows show ground-truth answers

and task complexity judged by experts. “Y” indicates clones

can be refactored, while “N” indicates clones cannot be

refactored. “H”, “M” and “L” represents high, medium and low

complexity. The fifth and sixth rows summarize the number of

participants that made correct decisions on whether clones can

be refactored. The seventh to tenth rows summarize average

refactoring reason and details scores of the two study groups.

Regarding whether clones can be refactored or not, most

of the participants made correct decisions in 5 out of 7

tasks, except for CloneDetective group in Task#2 and both
groups in Task#4. Our analysis of the CloneDetective users’
Task#2 videos did not suggest a clear reason for their worse

performance in this task. It seems that the performance of

CloneDetective users certain randomness, because they often
did not fully explore information needed for making a rational

refactoring decision. In fact, a challenge for CloneDetective
users was that they often did not know what they did not know.

As a result, their decisions may depend on their intuition. This

is also evident in their lower scores for refactoring reasons

and details. Intuition-based decisions may result in their worse

TABLE IX
EXPERIMENTAL RESULTS FOR CLONE REFACTORING TASKS

TaskID #1 #2 #3 #4 #5 #6 #7
Ins.No 4 4 3 6 4 6 3
Refact Y Y Y N Y Y Y
Comp H M L H M H M

Refactor
or not

G1 7 7 8 0 7 8 6
G2 6 4 7 2 5 8 7

Refactoring
reason

G1 2.50 2.38 2.88 0.00 2.25 2.00 2.63
G2 1.13 1.38 2.38 0.38 1.00 1.63 2.00

Refactoring
details

G1 2.25 2.13 2.38 0.00 2.00 1.63 2.25
G2 1.38 1.63 2.00 0.25 1.38 0.63 1.63

performance in Task#2.

Task#4 involves 6 clone instances. The cloned code frag-

ments use different fields (e.g., rectangle, ellipse, roundrect)
in the same program context. The type of these fields are

inner class Double declared in different classes such as Rectan-
gle2D, Ellipse2D. Clonepedia summarized this commonality
as a diff usage pattern. This pattern makes the Clonepedia
users propose to replace separate Double with one class for
reducing code duplication. However, these Double classes are
JDK classes that cannot be modified by the JHotDraw users.

We will enhance the implementation of Clonepedia to make it
explicit whether code elements are from source code or from

imported libraries. For CloneDetective users, the high usage
complexity results in their worse performance, even though

they spent doubled time on the task.

For the rest five refactoring tasks, refactoring reason and

details scores of the two groups are clearly different. The

CloneDetective users usually provided vague or general ex-
planations for their decisions, for example, “clones can be

refactored because the code is very similar” or “clones cannot

be refactored because refactoring them seems too trouble-

some”. In contrast, the Clonepedia users can often offer more
specific reasons and details for their refactoring decisions. This

is because Clonepedia summarizes relevant syntactic patterns
which provide concrete “hints” leading its users to further

investigation of relevant program elements and structures.

Finally, the score gap between the two groups varies by task

complexity. For simpler tasks (e.g., Task#3 involving small

number of clone instances from a single file), the score gap

is small. However, for more complex tasks the Clonepedia
users exhibited better performance than the CloneDetective
users by providing higher-quality reasons and details within

shorter time (e.g., in Task#6). Such a phenomenon implies

that complexity of refactoring task can be reduced by syntactic

patterns provided by Clonepedia.

E. Discussion

Clonepedia allows developers to locate and maintain code
clones in a way different from existing clone analysis tools.

We discussed insights we obtained in our user study.

1) Top-down exploration of code clones: CloneDetective
provides rich features for analyzing code clones. However,

CloneDetective provides little help in locating code clones

relevant to a syntactic context. Our analysis of task videos

reveals that the CloneDetective users had to manually collect
necessary syntactic information by intensively using Eclipse

IDE features (e.g., Type Hierarchy, Call Hierarchy). They then
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TABLE VIII
RESULTS OF WILCOXON’S TEST OF HYPOTHESES, FOR THE VARIABLE RECALL, PRECISION, F-MEASURE AND COMPLETION TIME. MEASUREMENTS

ARE REPORTED IN THE FOLLOWING COLUMNS: MINIMUM VALUE, MAXIMUM VALUE, MEDIAN, MEANS (μ), VARIANCE (σ2), DEGREES OF FREEDOM
(DF), PEARSON CORRELATION COEFFICIENT (PC), Z STATISTICS (Z) AND STATISTICAL SIGNIFICANCE (p)

H Var Approach Samples Min Max Median μ σ2 DF PC Z p Decision

H0

Precision
Clonepedia 8 0.938 1.000 1.000 0.992 4.272E-04 7

-0.147 -2.203 0.043 RejectCloneDetective 8 0.300 1.000 0.901 0.776 0.064 7

Recall
Clonepedia 8 0.701 1.000 0.977 0.931 0.009 7

0.560 -2.521 0.012 RejectCloneDetective 8 0.273 0.604 0.451 0.446 0.012 7

F-measure
Clonepedia 8 0.746 1.000 0.975 0.941 0.007 7

0.615 -2.521 0.012 RejectCloneDetective 8 0.278 0.656 0.501 0.482 0.014 7

Time
Clonepedia 8 229.000 447.500 307.000 333.375 5881.797 7

0.049 -2.521 0.012 RejectCloneDetective 8 463.000 738.000 625.500 627.813 7998.00 7

had to use the collected syntactic information to search for

code clones potentially relevant to the syntactic context under

investigation. This analysis process requires many context

switchings in order to interrelate scattered information. As

such, the performance of CloneDetective users became sen-
sitive to the complexity of tasks. Their performance degraded

as task complexity increases.

Clonepedia enables a different analysis process by catego-
rizing and presenting code clones in terms of their syntactic

patterns. The Clonepedia users usually started with the syntac-
tic patterns relevant to the maintenance tasks, and then zoomed

into a set of potentially relevant clone sets or instances. These

clone sets often cross-cut several source files.

Our results show that the Clonepedia users still needed

to use Eclipse IDE features (e.g., type hierarchy). However,

they used these IDE features to further investigate or confirm

patterns that Clonepedia summarizes, or to further confirm
the relevance of code clones under investigation. This is

completely different from the use of Eclipse IDE features

by the CloneDetective users. The CloneDetective users had
to resort to these IDE features in order to gather syntactic

information for exploring code clones. With Clonepedia, such
syntactic information has been automatically summarized and

is readily available for use. As such, Clonepedia users can
locate relevant code clones in a more organized way, which

resulted in stable precision, recall and task completion time in

different tasks.

2) Informed maintenance decisions on code clones: In

addition to support top-down exploration of code clones,

Clonepedia also provides three levels of information for devel-
opers to make informed decisions (e.g., refactoring strategies)

in clone-related maintenance tasks.

At system level, inter clone set patterns group related

clone sets by their common syntactic contexts. They provide

developers with a good overview about related clone sets, in

terms of how they are present in different type hierarchies and

how they use similar or different program elements.

At clone set level, intra clone set patterns summarize com-
mon syntactic contexts in which clone instances occur. These

patterns remind developers of investigating important syntactic

information so that they can make more informed maintenance

decisions, for example whether to apply refactoring at method

level or class level.

At clone instance level, differences across multiple clone
instances of a clone set are detected and highlighted using our

clone differening algorithm MCIDiff [18]. These differences
help developers understand variation points across clone in-

stances. Understanding these variation points can lead to more

detailed decisions on concrete refactorings.

F. Threats to Validity

In this user study, there are four major threats. First, the

differences in the capabilities of the two groups of participants

may threaten our assumption of the “equivalence” of two

groups. To address this threat, we had tried our best to allocate

participants with comparable capabilities into different groups

based on our pre-study survey and evaluation. Second, refac-

toring decision scores are subject to human bias. To reduce this

bias, we asked two experts to cross-check their scores and

reach consensus. To avoid experimenter expectancy effects,

the two experts blindly scored the results of the study groups.

Third, both groups may have insufficient training of the tools

used in the study. We believe this factor has much greater

impact on Clonepedia users due to syntactic pattern concept
introduced and more complex UI. Even in such a disadvantage

situation, Clonepedia users still significantly outperformed

those using CloneDetective. Forth, code clones used in this
study are from one Java software and may not represent all

possible cases in real-world clone-related maintenance tasks.

Further studies with more clones, tasks, and subject systems

are required to generalize our findings.

VI. RELATED WORK

Clone Detection: Researchers have proposed many clone
detection tools to detect code clones in software system.

Baker et al. [1] proposed to detect code clones using string

matching algorithm. Kamiya et al. developed CCFinder [12]

and Juergens et al. [11] developed CloneDetective. Both tools
support token-based clone detection. Mayrand et al. [20]

proposed code metrics based detection technique. CloneDR [7]

analyze and compare Abstract Syntax Tree (AST) for clone

detection. Komondoor and Horwitz [15] developed a technique

to detect code clones by Program Dependency Graph (PDG)

isomorphism. DECKARD [10] detects clones using locality

sensitive indexing. A comprehensive survey of code clone

research can be found in [24]. Our approach does not make

specific assumption about clone detectors. It can work with

various types of clones reported by different clone detectors.

Code Clone Analysis and Management: Balazinska et al. [2]
proposed an approach to measure reengineering opportunities

of cloned code by combining difference parts of code clones
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with AST. Based on this work, they proposed an approach to

automatically refactor code clones by applying design patterns

[3][4]. Kapser et al. [13] proposed to filter false positive

clones reported by clone detectors by categorizing code clones.

Their work does not analyze detailed syntactic contexts in

which clone occur. Basit and Jarzabek [5][6] proposed a data

mining approach to cluster simple token-based code clones

by applying frequent item set mining. Their approach does

not examine syntactic context of code clones. Our recent

work [21] used graph mining technique to discover logical

clones that represent common business and programming

rules in a software system. Different from these approaches,

Clonepedia mines common syntactic context in which code
clones occur.
Data Summarization: Faced with large amount of software

data, researchers have proposed summarization techniques to

transform raw data into a more concise form. Miryung and

Notkin [14] proposed to infer systematic structural changes

as logic rules. Rastkar et al. [22] presented a technique to

summarize crosscutting concerns in software system when de-

velopers search code base. Sridhara et al [26][27] proposed to

summarize high-level action of a Java method by investigating

its signature and method body. Different from existing work,

Clonepedia summarizes a large amount of code clones by

abstracting their common syntactic contexts and categorizing

code clones by their syntactic patterns.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented a clone summarization approach and

the tool Clonepedia. Clonepedia abstracts syntactic patterns
of code clones. The patterns allow developers to locate and

maintain code clones relevant to certain syntactic context.

Compared with state-of-the-practice, syntactic patterns of code

clones enable a different analysis process of code clones in

clone-related maintenance tasks. Our user study shows that

the Clonepedia users were able to effectively use syntactic
patterns to locate and refactor code clones with higher quality

and shorter time, compared with the CloneDetective users.
Clonepedia provides a solid infrastructure for our research

on practical use of code clones in software maintenance.

Based on Clonepedia’s summarization, we will investigate
several practical applications of code clones, including on-the-

fly clone detection and refactoring recommendation, simulta-

neous editing of multiple clone instances, clone-based code

generation and auto-completion.
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