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Abstract
Time-travelling visualization answers how the pre-
dictions of a deep classifier are formed during the
training. It visualizes in two or three dimensional
space how the classification boundaries and sample
embeddings are evolved during training.
In this work, we propose TimeVis, a novel time-
travelling visualization solution for deep classifiers.
Comparing to the state-of-the-art solution Deep-
VisualInsight (DVI), TimeVis can significantly (1)
reduce visualization errors for rendering samples’
travel across different training epochs, and (2) im-
prove the visualization efficiency. To this end, we
design a technique called temporality spatializa-
tion, which unifies the spatial relation (e.g., neigh-
bouring samples in single epoch) and temporal re-
lation (e.g., one identical sample in neighbouring
training epochs) into one high-dimensional topo-
logical complex. Such spatio-temporal complex
can be used to efficiently train one visualization
model to accurately project and inverse-project any
high and low dimensional data across epochs. Our
extensive experiment shows that, in comparison to
DVI, TimeVis not only is more accurate to preserve
the visualized time-travelling semantics, but also
15X faster in visualization efficiency, achieving a
new state-of-the-art in time-travelling visualization.

1 Introduction
Time-travelling visualization, solution to address how the
deep model predictions are formed during the training, are
emerging as a new branch of explainable AI [Yang et al.,
2022c]. Such visualization demonstrates how the high-
dimensional classification landscape is learned during train-
ing, which can facilitate training-based causal inference on
embedding generation [Mallick et al., 2019], model fitting
[Eaves et al., 1978], and active learning algorithms [Sener
and Savarese, 2017].

Any time-travelling visualization solutions for deep clas-
sifiers are required to fulfill three spatial properties and one
temporal property so as to faithfully reflect the dynamics
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of high-dimensional classification landscape [Yang et al.,
2022c]. Briefly, given a set of high-dimensional represen-
tations trained in epoch et, the three spatial properties are:

• Neighbour preserving property: The neighbours of any
high-dimensional representation should be preserved after
being projected into a visible low-dimensional space.

• Boundary distance preserving property: The relative
distance from any high-dimensional representation to its
closest classification boundary is preserved after being pro-
jected to a visible low-dimensional space.

• Inverse-projection preserving property: After projecting
a high-dimensional representation x into low-dimensional
space as y, we shall inverse-project x back to the high-
dimensional space as x′ such that x and x′ are similar.

Besides, the one temporal property requires:

• Temporal preserving property (continuity): If the neigh-
bours of a high-dimensional representation xt+k (from
epoch t+ k) do not change much from its correspondence
xt (from epoch t), then their low-dimensional projections
yt+k and yt shall be close.

These properties ensure that the “animation” of a model’s
training process can be “played” reflectively (thanks to the
spatial properties) and smoothly (thanks to the temporal prop-
erty) in a visible low-dimensional space.

DeepVisualInsight (DVI), as a state-of-the-art, is further
crystallized for fulfilling these properties [Yang et al., 2022c].
Technically, DVI trains visualization models as auto-encoders
on several loss functions enforcing the properties. However,
the solution has its limit on the visualization scalability and
the faithfulness on the travelling semantics of samples across
different epochs.
Problem 1: Visualization Scalability. Given that the classi-
fication landscape differs one epoch from another, the time-
travelling visualization is generally a record-and-replay tech-
nique to record and visualize the partially-trained classifier
in each epoch. DVI trains one visualization model on each
time step. Hence, the visualization training process can be
prohibitively costly, especially when the number of training
epochs is large. Experiments report that training one visu-
alization model at a normal GPU-workstation takes about
15 minutes [Yang et al., 2022c], which indicates that train-
ing the visualization models for 100 epochs takes around 24



(a) epoch 97 (unexpected
movement of a point)

(b) epoch 98 (unexpected
movement of a point)

(c) epoch 99 (unexpected
movement of a point)

(d) epoch 100 (unexpected
creation of a green territory)

Figure 1: The erroneous visualization perturbation of DVI while the classification semantics remain the same among the epochs: Each color
represents a class, while the white region between the territories represents the classification boundary. Given a sample (i.e., a point), its color
represents its label, and its background color represents its prediction. For example, being located in a territory of “bird” (green territory)
means a sample is predicted as a bird. We show the erroneous fluctuation trajectory of a static sample. The point with yellow edge indicates
the location of current epoch and that of red edge indicates its location of previous epoch.

hours. Even worse, in order to satisfy the temporal property,
training the visualization models for the classifier at epoch et
requires the availability of the visualization model at epoch
et−1, which limits its paralleling potential.
Problem 2: Faithfulness of Travelling Semantics (Visual-
ization Error). When we project the learned representations
of a sample X = {x1,x2, . . . ,xw} (xi indicates the sam-
ple representation at i-th epoch) to low-dimensional space in
chronological order, their projections Y = {y1,y2, . . . ,yw}
form a travelling trajectory. When we observe the move-
ment of yi to yi+1 on the two-dimensional canvas, it can be
caused by (1) the actual movement from xi to xi+1 in the
high-dimensional space and (2) the visualization perturbation
or errors. We call the movement caused by the latter as the
unfaithful movement of a sample. The visualization model
is trained as V = ⟨ϕ, ψ⟩ where ϕ projects high-dimensional
points to low-dimensional space and ψ inverse-projects low-
dimensional points back to high-dimensional space. DVI
trains the visualization model V = ⟨ϕ, ψ⟩ at epoch i + 1
by retraining from the visualization model at epoch i. The
randomness-inducing retraining process can inevitably incur
unintentional fluctuation to visualize the classification land-
scape. In addition, the temporal loss designed in DVI can
freeze the minority of dynamic samples while the majority
samples do not move in the high-dimensional space. As a re-
sult, the visualized travelling semantics cannot well faithfully
reflect the dynamics in high-dimensional space.

In this work, we propose TimeVis to uniformly address the
above problems by a technique called temporality spatializa-
tion. In comparison to DVI which trains a visualization model
for each partially trained classifier, we train a visualization
model to capture the representation embeddings of all the
classifiers. Specifically, our approach “spatializes” the tem-
poral relations of a sample and its correspondences in other
epochs. In TimeVis, we regard every representation has both
spatial neighbours and temporal neighbours. Technically, we
(1) collect all appeared representation during the training, (2)
construct a spatio-temporal complex to capture both spatial
and temporal relation of the representations in the same high-
dimensional space, and (3) learn the dimensional projection

and inverse-projection based on such complex. To further
improve the visualization scalability, we propose a complex-
reduction technique for the spatio-temporal complex, which
can successfully compress the size of the complex without
compromising much visualization accuracy.

Our experiments on a variety of datasets show that, in com-
parison to DVI, TimeVis can (1) significantly improve the
training scalability (15X faster), (2) largely improve travel-
ling faithfulness, and (3) achieve comparable performance on
the other spatial properties.

In summary, this work makes the following contributions:
• We identify two critical problems limiting the practical ap-

plicability of the emerging time-travelling visualization.
• We propose temporality spatialization to significantly im-

prove the visualization scalability and visualization faith-
fulness of travelling semantics, achieving a new state-of-
the-art in time-travelling visualization.

• We build a tool TimeVis based on our technique to support
its practical use, which is publicly available at [Yang et al.,
2022b] and https://github.com/xianglinyang/TimeVis.

2 Motivation
Figure 1 shows the time-travelling visualization results of
DVI at late training stage when training ResNet18 on the CI-
FAR10 dataset. At late stage, the semantics of the classifier
converge. Generally, the loss, the training accuracy, and the
testing accuracy do not change. Individually, the representa-
tions of almost all the training samples preserve their k near-
est neighbours in those epochs.

However, DVI has two visualization errors which can
cloud the understanding of the classification landscape. First,
a green territory (i.e., the bird class) is created in the mid-
dle, locating near to the red territory (i.e., the cat class) from
epoch 99 to epoch 100. However, the bird samples falling in
this new green territory are no closer to the cat-image samples
in the representation space. Second, we further observe some
erroneous fluctuation of samples on the canvas. The sample
moves back-and-forth during the four epochs as shown in Fig-
ure 1. On the contrary, both its representation and neighbours
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remain the same across the epochs in the high-dimensional
space. The noisy visualization perturbation can misguide the
user to doubt the training stableness, and misunderstand what
exactly happen in the high-dimensional space. Due to space
limit, we also show a “frozen” sample on the canvas by DVI
on [Yang et al., 2022b], where the sample is very dynamic in
the high-dimensional space.

3 Problem Definition
Given a dataset D = {s1, s2, ..., sn} in d dimensional space
(n is the dataset size), a set of classes C = {c1, c2, ..., cm}
(m is the number of class size), we have a sequence of w
deep classifiers f1(·), f2(·), . . . , fw(·) taken in chronologi-
cal order, where each f t : Rd → Rm is a learned clas-
sifier at the training epoch et. We assume that each deep
classifier f t(·) can be decomposed into a feature function
gt : Rd → Rr and a prediction function ht : Rr → Rm

(i.e., f t = ht ◦ gt) with r being the dimension of the repre-
sentation space. Thus, we can derive a set of sample repre-
sentations Xt = {xt

1,x
t
2, . . . ,x

t
n} for each epoch t, where

xt
i = gt(si) ∈ Rr. Note that we use superscript and subscript

to denote different time steps and different samples respec-
tively. The learned representations of a sample si in different
time steps are denoted as Xi = {x1

i ,x
2
i , . . . ,x

w
i }.

We aim for a visualization model V = ⟨ϕ, ψ⟩ where
ϕ : Rr → Rl and ψ : Rl → Rr (l ∈ {2, 3} is the di-
mension of the visible low-dimensional space). Given a vi-
sualization solution V = ⟨ϕ, ψ⟩, we (1) visualize each high-
dimensional representation xt

i as yt
i = ϕ(xt

i) in a visible low-
dimensional space; and (2) paint any point y ∈ Rl in can-
vas by c = argmaxc∈C h

t(ψ(y)) to form classification land-
scape. Moreover, unconfident area (i.e., decision boundaries)
is colored as white. In addition, we require that V = ⟨ϕ, ψ⟩ to
satisfy the three spatial properties (i.e., neighbour preserving
property, boundary preserving property, and inverse-project
preserving property) and one temporal property [Yang et al.,
2022c].

4 Methodology
Overview Figure 2 shows an overview of our TimeVis so-
lution. In the high-dimension space, we consider a super-
set of representations X = X1 ∪ X2 ∪ ... ∪ Xw. For each
sample xti ∈ X , we define its k spatial neighbours and k
temporal neighbours. An example of temporal neighbour of
xti can be xt+1

i or xt−1
i , i.e., the identical self in the next or

previous epoch. By this means, the temporal information is
“spatialized”. In contrast to the spatial neighbours, temporal
neighbours can capture the dynamics of a sample in high-
dimensional space across the epochs. Moreover, the temporal
and spatial neighbours are now comparable, which allows us
to further capture the relationship of different samples under
different epochs.

Based on the defined neighbouring relation, we build a
unified spatio-temporal complex for X. Naturally, we only
need one visualization model V = ⟨ϕ, ψ⟩ to project be-
tween x ∈ X ⊂ Rr and y ∈ Y ⊂ Rl. Note that the
same location y in low-dimensional space may have differ-
ent color (i.e., prediction) in different epoch t according to
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x

y

x’

visualization 
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space

epochi epochi+1epochi-1

Figure 2: Overview: the solid lines represent spatial neighbour rela-
tions, the dashed lines represent temporal neighbour relations. Each
color represents the point identity across epochs. A unified visual-
ization model can project any samples to the low-dimensional space.

c = argmaxc∈C h
t(ψ(y)). In this work, we use the auto-

encoder architecture to implement V . Since the temporal re-
lation has been spatialized, the auto-encoder just needs to be
trained based loss functions corresponding to the three spatial
properties (see Appendix A [Yang et al., 2022a]).

4.1 Spatio-temporal Complex
Spatial Neighbours Given Xt and a distance metric de-
fined on Xt, d(·) : Rr×Rr → R≥0 (e.g., Euclidean
distance), we define xti’s k spatial neighbours NS

k (xi) =
argminJ⊂Xt\{xt

i},|J |=k

∑
xt
j∈J d(x

t
j ,x

t
i) as its k spatial

neighbours.
Temporal Neighbours Given a superset X = X1 ∪ X2 ∪
· · · ∪ Xn and a distance metric defined on X, d(·). For a
given xt

i ∈ Xi, we denote its k nearest temporal neighbours
as NT

k (xt
i) = argminJ⊂Xi\{xt

i},|J |=k

∑
xt′
i ∈J d(x

t′

i ,x
t
i).

Given an embedding xti ∈ Xi, we use a temporal sliding
window with size W to describe its temporal spectrum. In
other words, we find its k temporal neighbours NT

k (xti) from

the set X ′
i = {max(1, xt−

W
2

i ), . . . , xti, . . . , min(N, xt+
W
2

i }).
Here, W is an even positive integer, the threshold k and W
are the user-defined values.
Spatio-temporal Complex Given the universal superset
X = X1 ∪ X2 ∪ · · · ∪ XT , we build the spatio-temporal
complex as a graph Gst = ⟨X,Es ∪ Et⟩ where
• the spatial relation set is Es = {(xt

i,x
t
j)|xt

i,x
t
j ∈

Xt, (xt
i ∈ NS

k (x
t
j) or xt

j ∈ NS
k (x

t
i))}

• the temporal relation set is Et = {(xtl
i ,x

tm
i )|xtl

i ,x
tm
i ∈

X, (xtl
i ∈ NT

k (xtm
i ) or xtm

i ∈ NT
k (xtl

i ))}.

For any e = (xtl
i ,x

tm
j ) (e ∈ Es ∪ Et), we assign its edge

weight as the similarity pitl jtm on the manifold M (See Ap-
pendix B for the definition).

Following the training process as in [Yang et al., 2022c] to
synthesize boundary points based on the spatial points, train



Algorithm 1 Spatial-temporal Complex Construction
Input : a sequence of T spatial complex,

⟨X1, Es1⟩, ⟨X2, Es2⟩, . . . , ⟨XT , EsT ⟩, window size, W
Output: reduced spatial-temporal complex, G′

st

1 for each epoch t ∈ [1, T ] do
2 Xt′, E′

st = reduce(Xt, Est)

3 E′
t ← ∅

4 for each epoch t ∈ [1, T ] do
5 E′

t = E′
t ∪ construct_temporal_relation(Xt′,W )

6 return G′
st = ⟨X1′ ∪ · · · ∪XT ′

, E′
s1 ∪ · · · ∪ E′

sT ∪ E′
t⟩

our auto-encoder as the visualization model, we sample the
edges in Gst, project the edge ends (i.e., data samples) to
low-dimensional space, and tune the model regarding the loss
functions corresponding to the three spatial properties.

4.2 Complex Reduction
It is prohibitively expensive to train a visualization model on
the super large spatio-temporal complex when epoch number
w and dataset size n are large. The dataset size n is usually
much larger than epoch number w (i.e., n≫ w), meaning the
training barrier lies in n.

A spatial-temporal complex Gst can also be written as
Gst = ⟨X1∪X2∪ · · · ∪Xw, (Es1 ∪Es2 ∪ · · · ∪Esw)∪Et⟩,
where each Est (t ∈ [1, w]) represents the spatial neigh-
bouring relations in epoch et, and Et represents the tempo-
ral neighbouring relations among epochs [1, w]. We denote
Gt = ⟨Xt, Est⟩ as a spatial complex at epoch et. From
the perspective of complex construction, reducing the size of
each Xt can efficiently leads to the size reduction of Est and
Et. It in turn reduces the training cost. In his work, we sim-
plify the complex construction as Algorithm 1. Namely, we
reduce each spatial complex regarding the complex structure
and reduction size (line 1-2). Then, we build up temporal
relations between reduced spatial complex (line 3-5).
Spatial Complex Reduction Given a spatial complex
Gs = ⟨X,E⟩, we aim to reduce it to G′

s = ⟨X ′, E′⟩ so that
(1)Gs andG′

s can share as much spatial topological structure
as possible and (2) ||X| − |X ′|| can be maximized. The for-
mer ensures the representativeness ofG′

s forGs, and the latter
ensures the efficiency of the follow-up complex construction
and model training. In this work, we estimate the topological
similarity between Gs and G′

s by their persistent homology.
For self-containment, we provide a brief explanation of per-
sistent homology. Readers can refer to [Chazal et al., 2015;
Moor et al., 2020] for more details.

Persistent homology is a concept from topological data
analysis (TDA) which describes the topological features on
a given point set X where the distance of any pair of points
can be evaluated. In topology, a simplice represents a high-
dimensional topological structure such as point, triangle,
tetrahedrons, etc. A simplicial complex K consists of a set
of simplices. Let KX be the universal set consisting of all the
simplices on X, a filtration is a family of simplicial complexes
on KX regarding a distance-based condition C so that:
1. Given a distance a, C can be used to slice a subset of sim-

plices Ka ⊂ KX . For example, line segments (1-simplix

Algorithm 2 Greedy Down-sampling Algorithm
Input : a initial sampling size s, a coverage threshold thc, a pre-

defined radius r, a representation set X
Output: a subset X ′

1 X ′ = random_sample(X, s)
2 Xc = coverage(X ′, X, r)

3 while |Xc|
|X| < thc do

4 x′ = k_center_greedy(X \Xc)
5 X ′ = X ′ ∪ {x′}
6 Xc = coverage(X ′, X, r)

7 return X ′

in hyperspace) of length l ≤ a can be selected to Ka.

2. For any a ≤ b, Ka ⊆ Kb.

Specifically, a filtration F = {Ka ⊂ KX : a ∈ R≥0}. Given
Ka ∈ F , we can derive topological features (e.g., holes)
based on its simplices. For example, a topological hole can be
constructed by connecting a set of simplices where each sim-
plice x ∈ Ka. Therefore, on X, a topological feature π can
appear at distance abirth and disappear at a distance adeath,
denoted as life(π) = (abirth, adeath). We define persistent
homology on X to track the life span of all the topological
features on X. Persistent diagram is a representation of per-
sistent homology where the life span of topological features
are represented as dots/lines in a plane.

Given two compact subsetsX andX ′ from the same metric
space X, the bottleneck distance db(DX ,DX′) of their persis-
tent diagrams DX and DX′ is proved to satisfy the following
constraint [Chazal et al., 2016; Chazal et al., 2014]:

db(DX ,DX′) ≤ 2dH(X,X ′) (1)

The Hausdorff distance dH betweenX andX ′ from the same
metric space (X, d) is:

dH = max{max
x∈X

min
x′∈X′

d(x,x′), max
x′∈X′

min
x∈X

d(x,x′)} (2)

Hence, Hausdorff distance dH(X,X ′) serves as a upper
bound for db(DX ,DX′). Therefore, we can transform the
spatial complex reduction problem to a search problem to find
X ′ ⊂ X such that (1) dH(X,X ′) is minimized and (2) ||X|−
|X ′|| is maximized. In this work, we design a greedy down-
sampling algorithm similar to the k center problem [Farahani
and Hekmatfar, 2009] to address the issue.

Greedy Down-sampling Algorithm Given radius r, we
denote B(x, r) as the ball centered at x with radius r where
x ∈ X. We reduce the problem as the search problem for X ′

where |X ′| is minimized so that
⋃

x′
i∈X′ B(x′

i, r) can cover
X , which is known to be an NP-hard. Hence, we design
a greedy down-sampling algorithm to achieve a sub-optimal
subset X ′ as Algorithm 2.

In Algorithm 2, we first randomly sample s datapoints
from X as the initial X ′ (line 1). Then, we calculate the
coverage set Xc ⊂ X where each x ∈ Xc is covered by⋃

x′∈X′ B(x′, r). Next, we keep adding into X ′ new data-
point from X \ Xc with k-center-greedy algorithm [Gonza-
lez, 1985] (i.e., selecting the datapoint with largest coverage),



until
⋃

x′∈X′ B(x′, r) can cover X regarding user-defined
threshold thc. The threshold thc < 1 is set because of the
sensitivity of Hausdorff distance to outliers, especially when
the input dataset contains noises. Finally, we can achieve a
minimized possible X ′ most topologically similar to X .

Radius Selection Note that, Algorithm 2 requires a pre-
defined radius, which is adaptive according to the distribution
of Xt in the high-dimensional space. Intuitively, the radius
should be large when the representations are uniformly dis-
tributed in the space (with a larger X ′ for X , e.g., in the early
training stage). In contrast, the radius can be smaller when
the representations are densely clustered in the space (with
a smaller X ′ for X , e.g., in the late training stage). We use
Equation 3 to calculate the radius given the distribution ofXt.

rt =
r0

( ctc0 )
α · ( dt

d0
)β

(3)

In Equation 3, we first choose a reference epoch e0, then
calculate the maximum l2 norm of all representations c0 as a
normalization term, and its intrinsic dimension [Facco et al.,
2017] d0 as a measurement of representation diversity. Then,
we adjust the radius under epoch et with Equation 3. Here,
r0, α, and β are user-defined thresholds.

5 Experiment
We evaluate TimeVis with the following research questions.
More details are at TimeVis website [Yang et al., 2022b]

• RQ1: Whether TimeVis can faithfully reflect the travelling
semantics in the high-dimensional space?

• RQ2: How scalable is TimeVis?

• RQ3: Being more temporally reflective and computation-
ally scalable, whether and how TimeVis need to compro-
mise other spatial properties?

Baseline, Datasets, and Subject Model We choose DVI as
our baseline as it is the only time-travelling visualization tool
designed to support all spatial and temporal properties. To
have a fair comparison, we follow the experiment settings of
DVI on selecting datasets and subject models. Specifically,
we train ResNet18 on three datasets: CIFAR-10, MNIST,
Fashion-MNIST. The high-dimensional representations are
extracted from the global average pooling layer (GAP). We
visualize all the training epochs of the classifiers on CIFAR-
10, MNIST and Fashion-MNIST, i.e., 160, 20, and 50.

Visualization Property Measurement We follow the de-
fined spatial and temporal measurements in [Yang et al.,
2022c]. Specifically, (1) nnpv(k) for the k spatial neigh-
bour preserving measurement; (2) boundarypv(k) for the
k boundary neighbour preserving measurement; (3) recpv
for prediction-preserving measurement after a representa-
tion is reconstructed from low-dimensional space; and (4)
temppv(k) for temporal-preserving measurement of two con-
secutive epochs.

Note that, TimeVis is designed for addressing the accumu-
lated visualization error suffered by DVI, but the temporal-
preserving measurement temppv(k) only evaluates temporal
continuity between two consecutive epochs. Therefore, we

Begin Mid End
0

2

4
MNIST

Begin Mid End

FMNIST

Begin Mid End

CIFAR-10
DVI-Train DVI-Test TimeVis-Train TimeVis-Test

Figure 3: k NN Temporal Neighbour Preserving (k=5)

define two more measurements tempg and templ to evaluate
how the travelling semantics of each high-dimensional repre-
sentation are preserved in the low-dimensional space across
multiple training epochs. First, we evaluate how many k
nearest temporal neighbours of a representation xt

i can be
preserved in the low-dimensional space; Formally, we define
templ(i, t, k) as:

templ(i, t, k) =

∑T
t′=1 I(xt′

i ∈ NT
k (xt

i) ∧ yt′

i ∈ NT
k (yt

i))

k
where I is the indicating function evaluated to either 0 or 1.
Second, we evaluate the correlation of two rankings for any
xt
i. One ranks its temporal neighbours by distance, denoted as
r(xt

i); the other ranks its the temporal neighbours of its corre-
spondence yt

i’in low-dimensional space by distance, denoted
as r(yt

i). Then the tempg is defined as:

tempg(i, t) = corr(r(xt
i), r(y

t
i))

We use Euclidean distance as d(·) and Kendall’s τ as corre-
lation measurement. Higher tempg(i, t) indicates better pre-
served semantics, and vice versa.
Runtime Configuration We let TimeVis and DVI share
the same auto-encoder architecture, i.e., (r, r2 ,

r
2 ,

r
2 ,

r
2 , 2) and

(2, r2 ,
r
2 ,

r
2 ,

r
2 , r) given the feature space dimension as r. We

choose W as the epoch length. More configuration details
can be referred in the Appendix E [Yang et al., 2022a].
Results (RQ1): Preserving travelling semantics Figure 3
shows that TimeVis improves the travelling semantics in dif-
ferent stages. The Mann-Whitney significance testing on
templ(i, t, k) shows that p-value is smaller than 10−5. Fig-
ure 4 further shows how temporal correlation tempg(i, t) of
two approaches changes along the training. Overall, TimeVis
outperforms DVI, especially in the late training stages.

Solution CIFAR-10 MNIST FMNIST

TimeVis
CC 2572.812 315.457 724.044

training 1462.170 235.887 657.353
overall 4034.987 551.344 1381.397

DVI overall 50212.400 9563.142 22985.150

Table 1: Visualization Training Overhead (in seconds), CC stands
for complex construction

Results (RQ2): Visualization scalability Table 1 shows
that, the visualization cost of DVI is ∼15X than TimeVis.
Comparing to training the visualization model for each
recorded classifier, TimeVis only needs to train the visual-
ization model for once.



2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9
co

rr

method
TimeVis
DVI

type
Train
Test

(a) MNIST

0 10 20 30 40 50
epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
rr

method
TimeVis
DVI

type
Train
Test

(b) FMNIST

0 20 40 60 80 100 120 140 160
epoch

0.4

0.5

0.6

0.7

0.8

co
rr

method
TimeVis
DVI

type
Train
Test

(c) CIFAR-10

Figure 4: Temporal neighbours ranking correlation

Solution CIFAR-10 MNIST FMNIST
train test train test train test

TimeVis -0.268 -0.267 -0.542 -0.543 -0.162 -0.164

DVI -0.240 -0.238 -0.470 -0.470 -0.318 -0.316

Table 2: Temporal property
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Figure 5: k NN Neighbour Preserving (k=15)

Results (RQ3): Potential compromise Figure 5, Figure 6,
Figure 7, and Table 2 compare the performance between
TimeVis and DVI. We can see that they are comparable in the
measurements of neighbour preserving and prediction pre-
serving rate. However, DVI outperforms TimeVis regarding
boundary neighbour preserving rate. To improve the perfor-
mance, we will enhance TimeVis by improving the integra-
tion of the boundary points into the spatio-temporal complex
in the future work.

6 Related Work
Visual Explanation of Deep Models Many research works
have been proposed to provide a visual explanation to deep
models, including activation maps [Alsallakh et al., 2021;
Zeiler and Fergus, 2014] and attribution methods [Adebayo
et al., 2018]. Particularly, integral gradients [Sundararajan et
al., 2017] and average causal effect (ACE) [Chattopadhyay et
al., 2019] are the pioneering work in the area. TimeVis fo-
cuses on visualizing the training dynamics, which is comple-
mentary to those tool to under the behaviors of deep models.
Dimension Reduction Dimension reduction methods are
widely used for visualizing the high-dimensional feature
vectors. Existing techniques can be divided into paramet-
ric ones(e.g., topological autoencoder [Moor et al., 2020],
VAE-SNE [Graving and Couzin, 2020], and parametric
UMAP [Sainburg et al., 2021]) and non-parametric ones such
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Figure 6: k Boundary Neighbour Preserving (k=15)
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Figure 7: Prediction Preserving Rate

as UMAP [McInnes et al., 2020].
They are the pioneering work to derive time-travelling vi-

sualization. Comparing to those techniques on visualizing
a “snapshot”, time-travelling visualization generates “anima-
tion” to understand the model training process.
Time-travelling visualization DVI [Yang et al., 2022c]
first proposes the four spatial and temporal properties for
any time-traveling visualization methods and trains an auto-
encoder to fulfill all the properties. However, DVI still suffers
from large visualization cost and accumulative visualization
error. TimeVis addresses the above two problems.

7 Conclusion

We propose TimeVis, a temporality-spatialization based time-
travelling visualization approach. TimeVis constructs a
spatio-temporal complex which captures the spatial and tem-
poral neighbours of any high-dimensional samples. TimeVis
improves state-of-the-art solution DVI both in training effi-
ciency and visualization faithfulness. Feedback-based solu-
tions such as [Lin et al., 2017] will be designed to improve
tool usability.
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