RegMiner: Towards Constructing a Large Regression Dataset
from Code Evolution History

Xuezhi Song’ Yun Lin" Siang Hwee Ng
Fudan University Shanghai Jiao Tong University National University of Singapore
China National University of Singapore Singapore

songxuezhi@fudan.edu.cn China/Singapore sianghwee@u.nus.edu
desliny@nus.edu.sg
Yijian Wu' Xin Peng’ Jin Song Dong
Fudan University Fudan University National University of Singapore
China China Singapore
wuyijian@fudan.edu.cn pengxin@fudan.edu.cn dcsdjs@nus.edu.sg
Hong Mei
Peking University
China
meih@pku.edu.cn

ABSTRACT

Bug datasets lay significant empirical and experimental founda-
tion for various SE/PL researches such as fault localization, soft-
ware testing, and program repair. Current well-known datasets
are constructed manually, which inevitably limits their scalability,
representativeness, and the support for the emerging data-driven
research.

In this work, we propose an approach to automate the process
of harvesting replicable regression bugs from the code evolution
history. We focus on regression bugs, as they (1) manifest how a
bug is introduced and fixed (as non-regression bugs), (2) support
regression bug analysis, and (3) incorporate more specification (i.e.,
both the original passing version and the fixing version) than non-
regression bug dataset for bug analysis. Technically, we address an
information retrieval problem on code evolution history. Given a
code repository, we search for regressions where a test can pass a
regression-fixing commit, fail a regression-inducing commit, and
pass a previous working commit. We address the challenges of
(1) identifying potential regression-fixing commits from the code
evolution history, (2) migrating the test and its code dependencies
over the history, and (3) minimizing the compilation overhead
during the regression search. We build our tool, RegMiner, which
harvested 1035 regressions over 147 projects in 8 weeks, creating
the largest replicable regression dataset within the shortest period,

“Corresponding author
* Also affiliated with Shanghai Key Laboratory of Data Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA °22, July 18-22, 2022, Virtual, South Korea

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9379-9/22/07...$15.00
https://doi.org/10.1145/3533767.3534224

to the best of our knowledge. Our extensive experiments show that
(1) RegMiner can construct the regression dataset with very high
precision and acceptable recall, and (2) the constructed regression
dataset is of high authenticity and diversity. We foresee that a
continuously growing regression dataset opens many data-driven
research opportunities in the SE/PL communities.

CCS CONCEPTS

« Software and its engineering — Software evolution; Main-
taining software; Software testing and debugging.

KEYWORDS

mining code repository, bug collection, regression bug

ACM Reference Format:

Xuezhi Song, Yun Lin, Siang Hwee Ng, Yijian Wu, Xin Peng, Jin Song Dong,
and Hong Mei. 2022. RegMiner: Towards Constructing a Large Regression
Dataset from Code Evolution History. In Proceedings of the 31st ACM SIG-
SOFT International Symposium on Software Testing and Analysis (ISSTA 22),
FJuly 18-22, 2022, Virtual, South Korea. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3533767.3534224

1 INTRODUCTION

Bug datasets are fundamental infrastructure to support various
software engineering researches such as software testing [7, 18, 19,
35, 36, 41, 43, 47], fault localization [9, 16, 29, 37, 38, 67], and bug
repair [6, 13, 31, 46, 54]. The SE/PL community has taken decades to
construct bug datasets such as SIR [12], BugBench [40], Codeflaws
[55], and QuixBugs [34], finally gravitating to the state-of-the-art,
Defects4j [26], which takes seven years to collect over 800 bugs.
While bug datasets like Defects4j [26] and CoREBench [5] have
made significant contribution to the community, there are still
concerns that their sizes are relatively small (and, thus arguably
less representative [52]), regarding (1) their diversity (e.g., bug
types of concurrency, API misuse, non-deterministic, etc.) and (2)
the needs of applying the emerging data-driven and Al techniques

https://doi.org/10.1145/3533767.3534224
https://doi.org/10.1145/3533767.3534224

ISSTA °22, July 18-22, 2022, Virtual, South Korea

in SE tasks [15, 23, 39, 50, 51]. However, comparing to the cost of
labelling an image or a sentence in the Al community, manually
collecting and labelling a bug is far more expensive. It requires
to (1) prepare at least two versions of code project (i.e., a correct
version and a buggy version), (2) set up at least one test case passing
the correct version and failing the buggy version, and (3) isolate
an environment where the bug can be well replicated. Manually
constructed bug datasets [5, 12, 22, 26, 33, 34, 40, 55] naturally limit
its scalability.

Recent works such as BEARS [42], BugSwarm [56], and Bug-
Builder [24] are emerged to automate the construction of bug
datasets. BEARS [42] and BugSwarm [56] collect reproducible bugs
by monitoring the buggy and patched program versions from Con-
tinuous Integration (CI) system. BugBuilder [24] is further designed
to isolate bug-fixing changes in a bug-fixing revision. They can gen-
erally generate a bug dataset similar to Defects4j, with a much
larger size. In such bug datasets, the buggy code is labelled with
their fixes, potentially facilitating various data-driven bug-related
learning tasks.

In this work, we further propose an approach, RegMiner, to
harvest regression bugs from the code repository. Regression bugs
are bugs which make an existing working function fail. Comparing
to general bug analysis (e.g., bug repair and localization) which
helps to derive a passing version from a buggy version, regression
bug analysis helps to derive a passing version from a buggy version
and a previously passing version. Typical regression analysis, such
as delta-debugging [20, 21, 28, 45, 64], reports the failure-inducing
changes from a large number of changes between the buggy and
the previous passing version. The different problem setting makes
Defects4j-like bug dataset hardly be useful for regression analysis.
A large regression bug dataset has the following two benefits.

(1) Fewer Problems of Missing Specifications: Software bugs
are essentially the inconsistencies between the implementation and
its specification. Thus, a bug-related solution such as debugging
and repair can be less reliable without sufficient specification as
the input. In contrast to non-regression bug dataset where each
bug is manifested with a few failing test cases, regression bugs are
additionally equipped with their past passing version which can be
used to cross-validate the violated specification with the (future)
passing version, providing a more informative semantics to explain
why the bug happens.

(2) Scalable Benchmark for Regression Analysis: From the
perspective of benchmark construction, a large regression dataset
can lay a foundation for various regression analysis. Existing re-
gression analysis works (e.g., regression localization) are usually
evaluated with limited number of regressions, given that their col-
lection is highly laborious. Our investigation on 14 research works
from the year of 1999 to 2021 [3, 8, 10, 27, 48, 54, 58, 60-64, 66]
shows that the mean number of evaluated real-world regressions
is 16.7, the median is 12.5, and the maximum is only 40. Moreover,
different benchmarks are used in different work, making it difficult
to compare their performance. A large-scale benchmark can not
only mitigate the issue, but support various systematic empirical
studies on regressions.

In this work, we design RegMiner to automate the regression
harvesting process with zero human intervention. RegMiner can
continuously harvest a large number of replicable regression bugs

Xuezhi Song, Yun Lin, Siang Hwee Ng, Yijian Wu, Xin Peng, Jin Song Dong, and Hong Mei

from code repositories (e.g., Github). Technically, we address an
information retrieval problem in the context of software evolution
history, i.e., retrieving runnable regressions on a code repository.
Our approach takes a set of code repositories as input, and iso-
lates a set of regressions with their running/replicable environment
as output. Specifically, we construct a regression by searching in
code repositories for a regression-fixing commit denoted as rfc,
a regression-inducing commit denoted as ric, a working commit
(before ric) denoted as we, and a test case denoted as ¢ so that ¢
can pass rfc and we, and fail ric. To this end, we first design a mea-
surement to select those bug-fixing commits with more regression
potential. Next, for each such potential regression-fixing commit,
rfc, we further search for a test case t which can pass rfc, fail the
commit before (denoted as rfc-1), and pass a commit further before
rfc-1. Our search process addresses the technical challenges of (1)
identifying relevant code changes in rfc to migrate through the
code evolution history, (2) adopting the library upgrades with the
history, and (3) minimizing the compilation overhead and handling
incompilable revisions.

We evaluate our approach with a close-world and an open-world
experiment. In the close-world experiment, RegMiner achieves 100%
precision and 56% recall on a benchmark consisting of 50 regression
bugs and 50 non-regression bugs. In the open-world experiment, we
run RegMiner on 147 code repositories within 8 weeks. RegMiner
reports 1035 regressions which construct the largest Java regression
dataset to the best of our knowledge. Our ablation study also shows
the effectiveness and efficiency of our technical designs.

In conclusion, we summarize our contributions as follows:

o We propose a fully automated regression mining technique, which
allows us to continuously harvest regressions from a set of code
repositories with zero human intervention.

We build our RegMiner tool with extensive experiments eval-

uating its precision and recall to mine regressions. The results

show that RegMiner is accurate, effective, and efficient to mine
regressions from code repositories.

o We construct a regression dataset with RegMiner within 8 weeks.
We foresee that the size of our regression dataset can keep grow-
ing with time, opening the a number of research opportunities
on bug analysis.

The source code of RegMiner is available at https://github.com/
SongXueZhi/RegMiner. The mined regression dataset and its demon-
stration is available at https://regminer.github.io/.

2 PROBLEM DEFINITION AND
REFORMULATION

Commit and Revision. A code commit can correspond to two
revisions in the code repository, i.e., the revision before the commit
and the revision after (or caused by) the commit. In this work, we
use the terminology commit and its caused revision interchangeably.
Thus, given a commit denoted by ¢, we also use ¢ to denote the
revision caused by c¢. Moreover, we use ¢ — 1 to denote the commit
before c, i.e., the revision caused by the commit ¢ — 1.

Regression. Given a fixed regression in the code repository, we
denote it as reg = (rfc, ric, f), which indicates that the regression
reg consists of a regression-fixing commit rfc, a regression-inducing
commit ric, and a feature f, where (1) f exists in both rfc and ric

https://github.com/SongXueZhi/RegMiner
https://github.com/SongXueZhi/RegMiner
https://regminer.github.io/

RegMiner

and (2) f works in rfc and ric-1 but fails in ric. In addition, we call
the commit ric-1 as the working commit (WC), and the feature f as
the regression feature.

Problem Definition. Formally, given a code repository C as the
a set of commits, we aim to construct a regression set REG =
{reglreg = (rfc,ric, f)} where Vreg € REG, 3f,s.t.rfc € C,ric €
C, rfc > ric, f works in rfc and ric-1, and fails on rfc-1 and ric. The
operator > indicates the chronological partial order between two
commits, and rfc > ric indicates that the commit rfc happens after
the commit ric. The retrieval process of a fixed regression reg is
essentially the process of identifying rfc, ric, and f in the code
commit history.

While it is intuitive to look into a regression regarding its regres-
sion feature, the above definition still provides limited guidance for
practical implementation. Specifically, we still need to answer the
questions (1) how do we represent a regression feature? And more
importantly, (2) how do we know that it is the same feature that
works in one revision rev, in the past and fails in another revision
revy (revy > reup), especially when revy has gone through many
changes from rev,?

Problem Reformulation (for Practical Implementation). In
this work, we estimate a feature with a unit test with an oracle. The
pass or failure of a unit test represents whether the feature works
or fails. Therefore, we reformulate a regression as reg = (rfc, ric, t)
where ¢ is the feature-representing test. Practically, we search for
(1) the test case t and (2) a set of regressions REG = {reg|reg =
rfc, ric, t)} where Vreg € REG, 3t,s.t. rfce C, rice C, rfc>ric, t
passes on rfc and ric-1, and fails on rfc-1 and ric. Moreover, we
conservatively estimate that the feature represented by ¢ in rev,
(i.e., passing revision) is compatible with that in revy (i.e., failing
revision) in practice if:

(1) The methods tested by t in rfc and ric are similar’.

(2) The assertion failures of ¢ in rfc-1 and ric share the same root

causez.

We adopt the conservative estimation because our regression
mining approach generally favours precision over recall. Given
the test ¢ in a regression (rfc, ric, t), we also say that (1) ¢ is the
regression test and (2) t can compatibly pass rfc and ric-1, and fail
rfe-1 and ric.

3 OVERVIEW

We design our approach to mine and construct a regression dataset
as Algorithm 1, which takes as input a set of code repositories and
a similarity threshold to select potential regression-fixing commits.
When searching for the regressions, our approach first collects
the bug-fixing commits including test case addition from the code
repositories (line 3-6). We further confirm a commit ¢ as bug-fixing
if the added test case can pass ¢ and fail ¢ — 1 (line 5-6), which
serves as a prerequisite to search the regression bug. Then we
estimate ¢’s potential as a regression-fixing commit (line 7). With
the quantified regression potential, we can rank the bug-fixing
commits and remove those with less potential (line 10). For each
!In practice, we consider two methods are similar if (1) their method names are the
same and (2) the similarity between code bodies is above a threshold thpoay (e.g.,
0.95).

2We regard they share the same root cause if they share the same error message and
error-occurring location in .

ISSTA °22, July 18-22, 2022, Virtual, South Korea

Algorithm 1: Regression Dataset Construction

Input :A code repository set, repositories; a threshold of regression
potential, thrl7
Output: A regression dataset, regressions

// initialize the regression set
1 regressions = 0

2 for repo € repositories do
// initialize the regression set

3 commits = search_commits_with_test_addition(repo)
4 for ¢ € commits do
// fixing commit confirmation
5 is_fix =confirm_fix(c.test,c,c — 1)
6 if is_fix then
// RFC prediction
7 L estimate_regression_potential(c)
8 else
9 L commits = commits \ {c}
10 commits’ =rank_and_filter(commits, thyp)
1 for ¢ € commits’ do
// search regression with test migration
12 ric, test =search_regression(c.tests, repo)
13 if ric != null then
14 rfc=c
15 reg = (rfe,ric, test)
16 regressions = regressions U {reg}

17 return regressions

potential regression-fixing commit, we search for its regression-
inducing commit ric which satisfies that the test test can compatibly
fail in ric and pass in ric-1 (line 12). Then, we record a regression reg
by rfc, ric, and the relevant test case test. The design of Algorithm 1
needs to overcome the following three challenges.

Challenge 1: Futile Search on Non-regression Bug-fixing
Commits. Searching for a regression across the commit history
is time-consuming, which includes the overhead of project compi-
lation, test case migration, and test case execution. Starting with
a non-regression fixing commit causes the whole search futile. In
this work, we design a novel measurement to quantify the potential
of a bug-fixing commit to be a regression-fixing commit.
Challenge 2: Test Dependency Migration. With a test case and
the potential regression-fixing commit, it is non-trivial to verify
its regression-inducing commit. In practice, the regression can be
induced years ago. The project can undergo radical changes and
depend on different versions of libraries. Without appropriate adap-
tion, we can miss a large number of real regressions.

Challenge 3: Large Overhead to Validate Regression. Starting
from a potential regression-fixing commit, there could be thousands
of commits to check out, recompile, and run. Sequentially checking
out revisions incurs huge runtime overhead, while bi-sect approach
can suspend on some incompilable commits.

4 SEARCH METHODOLOGY

In this section, we introduce how we address the three aforemen-
tioned challenges.

ISSTA °22, July 18-22, 2022, Virtual, South Korea

4.1 Estimating Regression Potential

Let us call the set of code elements implementing the regression
feature as feature code. Assume that we know that (1) a feature f is
fixed in a revision bfc, and (2) the precise set of code elements (e.g.,
methods) sety of feature code, we can estimate the probability of
bfc to be a regression-fixing commit as

P(rfelbfe,setp) =1— (1-p)N (1)

In Equation 1, N is the number of changes applied on set in the
commits before bfc, p is the probability that a change introduces a
bug on the feature f, which we call as regression-inducing proba-
bility. The more changes applied on sety in the history, the more
likely the bfc is a regression-fixing revision.

However, it is non-trivial to precisely infer the program elements
sety purely based on a test case. Including irrelevant elements
in sety can make non-regression fixing revisions have a larger
probability. In contrast, missing important elements in setf can
make real regression-fixing revision have a lower probability. Either
case can make Equation 1 misguide the prediction of regression-
fixing commit.

4.1.1 Feature Code Identification. We measure the relevance of a
method m to a test case t by its uniqueness and similarity to ¢:

rel(m) = min(1.0, test_uniq(m, t) X (1 + sim(m, t))) 2)

In Equation 2, the relevance score rel(m) depends on (1) its
test uniqueness (test_uniq(m,t)), i.e., how unique m is to t and
(2) the textual similarity between m and t (sim(m, t)). We design
test_uniq(m) and sim(m, t) with the range [0, 1]. The min(.) func-
tion in Equation 2 ensures that the relevance score has an upper
bound of 1.0.

Test Uniqueness. To evaluate the test uniqueness of a method m
for test, we design a variant TF-IDF measurement. Assume that
there are N test cases in a project, and each test case has many
methods in its call hierarchy. Thus, we can construct a test-method
matrix Ry, ; where each column represents a test case and each row
represents a method called by at least one test case. Specifically, we
calculate an IDF-like measurement for each r(m, t) in Ry, s as

logy —N— if t covers m
test_uniq(m,t) = r(m,t) = IN Freq(m) ' 3)
0 otherwise
In Equation 3, N represents the number of test cases in the
project, freq(m) represents the number of test cases covering
method m, which ranges from 1 to N. Thus, logn]% is scaled

to the range [0, 1].

Textual Similarity. Moreover, we further introduce a similarity
function between t and m. Specifically, we tokenize the name of
test method into a bag of words with the word “test” removed,
e.g., testCalendarTimeZoneRespected is converted into a bag as
B ={“calendar”, “time”, “zone”, “respected”}. Let the number of to-
kens in the name/body of m which can match any of words in B,

be k, then the sim(test, m) = %, which ranges between 0 and 1.

4.1.2 Code Element Re-identification. To collect historical mod-
ifications on a method, we need to re-identify them in the past
commits. Given a method m in a revision r, if we can find a method

Xuezhi Song, Yun Lin, Siang Hwee Ng, Yijian Wu, Xin Peng, Jin Song Dong, and Hong Mei

m’ in another revision r’ with exact the same signature as m (r’ > r),
we consider m’ as a match of m in r’. If we cannot locate such an
exact match, we track their identity by defining their similarity:

sim(m,m’) = a - sim_signature(m,m’) + B - sim_body(m, m’) (4)

The metrics consist of the signature similarity and the code body
similarity. We consider m and m’ as a match if there similarity is
above a threshold thy,. The similarity metrics are generally defined
regarding method name similarity (the ratio of longest common
subsequence over length of two method names), return types (same
type or not), parameter types (Jaccard coefficient of two parameter
type set), and method bodies (the ratio of longest common subse-
quence over length of two method bodies). Readers can refer to
more details in our anonymous website [2].

4.1.3 Regression Potential Metric. Consequently, given a set of
methods M, each m € M has a relevance score denoted by rel(m)
and a historical change number m.changes. Thus, we quantify the
final probability of a regression-fixing commit as

P(rfclbfe,sety) =1~ l_[(1 - p X rel(m))™-changes (5)
meM
In Equation 5, p is the base empirical regression-inducing probabil-
ity, e.g., 0.01, shared by all the methods.

4.2 Test Migration

Given a test ¢ in a bug-fixing commit bfc, we need to migrate t along
with its code dependency in a revision cjn, under investigation
(bfc > ciny). Typically, we need to overcome two challenges to
avoid compilation errors:

o Identifying migrating dependencies. When we migrate ¢ to
the revision c;ny, the code dependencies of ¢ should be available
in cing.

e Reconciliating migrated code. The migrated test and its de-
pendencies can be adapted to the old libraries.

4.2.1 Identifying Migrating Dependencies. We consider a code ele-
ment as either a class, interface, field, or method. We aim to find
a minimum set of code elements in the bug-fixing revision bfc so
that (1) the revision under investigation c;n, migrated with the test
t can still compile and run, and (2) the migration does not change
the program behaviors of test case t under cjn,. We achieve the
former by parsing the minimum code elements depended by the
regression test, and achieve the latter by identifying and refraining
the migration of code elements with the bug-fixing changes. Fig-
ure 1 shows the workflow of identifying the code elements to be
migrated, which consists of the following steps:

Step 1. Patch Analysis. We compare the revisions bfc (where ¢
passes) and bfc-1 (where ¢ fails) to locate the code elements in bfc
where the fix happens. We denote such set of elements as Ef;y.
Readers can refer to [24] for more details.

Step 2. Dependency Analysis. Still in bfc, we calculate the call
graph rooted at the test case ¢ (denoted as Ey) and the set of covered
elements by running ¢t (denoted as Ec.). We keep the minimum
dependencies in E¢q and Ece.

Step 3. Code Alignment. Given bfc and the revision under in-
vestigation cjpy, we detect how the code are aligned between two
revisions. Thus, we can avoid migrating a code element matchable

RegMiner

1. Patch

Analysis

Fixed
Elements
Depended
Elements
Aligned
Elements

Figure 1: Identifying Dependency to be Migrated

2.
Dependency
Analysis

4. Migration

Migrating
Elements

3. Code
Alignment

in ¢jny. We use Xing and Stroulia’s UMLDIfF algorithm [59] to align
the cross-revision code elements. As a result, we use E;; to denote
the set of the identical elements between two revisions, and E,,,,4 to
denote the set of the modified elements (i.e., the elements matched
in bfc with c¢jn, but with difference).

Step 4. Migration. Finally, the set of migrating elements is calcu-
lated as the missing dependencies Epijss = (EcgUEce) \ (Efix UE;q),
and the changed dependencies Epange = (EcgUEce) N (Epmog\Efix)-
We will reconcile Epig = Emiss U Echange On Ciny- We will elaborate
the reconciliation with more details in Section 4.2.2.

Example. Figure 2 shows simplified class dependency graphs of
a regression-fixing commit bfc and a commit under investigation
Cino in Common Lang project. In Figure 2, we use yellow container
boxes to represent classes (or interfaces), and containee boxes to
represent class members such as method and field. The containment
relations represent that a class/interface declares a method or a field.
A method is a containee box whose name has “()” as suffix, while
fields are containee boxes without the suffix. The black arrows
between the boxes are the call relation between methods and fields.
We represent in green the elements covered by the test case in the
bug-fixing commit.

In addition, the position of each box in bfc and cjp, represents
the alignment relation between two revisions. For example, the
class FastDataFormater in bfc is aligned with the class with the
same name in cjnp. The missing depended elements by ¢ in cjny
is represented by dashed boxes, the modified elements in c;jny is
represented by red boxes, and the elements with code fix in bfc is
represented by boxes with red border.

The workflow to identify the migration of code elements in bfc
as follows.

1. Patch Analysis. In bfc, we first identify the fixes by comparing
bfc and bfc-1to have Ef;, = {FastDateFormater.appendTo()}.
2. Dependency Analysis. Next, the static and dynamic depen-
dency analysis from the test case testCalendarTimezoneRespect-
ed() produce the set Ecy U Ece = { testCalendarTimezoneRes-
pected(),FastDatePrinter.format(),DatePrinter.format(),
FastDateFormater.appendTo(), ... } (i.e., all the green boxes and
the red-bordered box in bfc).

3. Code Alignment. Then, we align two revision bfc and ¢jpy to
know what dependencies of the test case are missing or changed. For
example, we can know the missing dependencies such as FastDate-
Printer.format() and DatePrinter.format(). Also, we know
that the field cDateTimeInstanceCache (in red) is modified and
has a potential to reconcile in c¢jny.

ISSTA °22, July 18-22, 2022, Virtual, South Korea

Algorithm 2: Migration Reconciliation

Output: A migrated revision, ¢

Input :missing dependencies, En;ss; changed dependencies, Ecpanges

revision under investigation, cj,; regression test, test;
’
inov
/ = 7 .
1 Cinp = migrate(Emiss, Cino)
2 if compatible(c; ,test) then

inov’
’
3 Lreturncim

4 else

’ —_ a
5 Clpoo = transform(c;,)
6 if compatible(c}, . test) then

/
7 L returnc;, .
8 else
9 Cinor = migrate(Echanges Cippo» LESE)
10 if compatible(c;,,, . test) then
11 L return ¢},
12 else
7 _ ’
13 Cinwp = transform(c;, .. test)
14 if compatible(c;,,,,, test) then
’

15 L returnc;, .

16 return null

3. Migration. Finally, we calculate the missing dependencies as
Emiss = { testCalendarTimezoneRespected(), FastDatePrin-
ter.format(), DatePrinter.format(), FormatCache.getPatt-
ernForStyle() }, and the changed dependencies as Ecpgnge = {
FormatCache.cDateTimeInstanceCache }. Note that, the code el-
ements with fix (i.e., FastDateFormater.appendTo()) is excluded.

As for Emig = Emiss U Echange, We define transformation rules
to adapt them in cjny.

4.2.2 Reconciliating Migrated Code. We design our reconciliation
heuristics with the following principles:

e Missing Dependencies: The code elements in E,,;ss are copied
directly to c¢jny without modifications. The copied E,,;ss will be
adapted only if their migration incurs compilation errors on ¢;pnq.

e Changed Dependencies: The elements in E¢p4pge are not mi-
grated unless their migration can minimize the compilation errors
caused by the migration.

Algorithm 2 shows our design to reconcile migration, which
takes as input the missing dependencies Ep;ss, the changed de-
pendencies E¢pange, the revision under investigation cino, and the
regression test test; and derives a migrated revision to compatibly
run the regression test. Generally, Algorithm 2 is designed as a
decision tree where each decision node guides the follow-up opera-
tions. Specifically, the decision is on whether the migrated revision
is compilable. In Algorithm 2, the conditions are denoted in line 2,
6, 10, and 14. If the revision under transformation conforms to the
condition, we return it as the revision; otherwise, we proceed to
the next branch until either we can find a revision satisfying the
condition or the migration is aborted (line 16).

In Algorithm 2, we first only migrate missing dependencies Ep;ss
(line 1). If not successful, we proceed to transform the migrated
revision with our pre-defined AST rewriting rules.

ISSTA °22, July 18-22, 2022, Virtual, South Korea

Xuezhi Song, Yun Lin, Siang Hwee Ng, Yijian Wu, Xin Peng, Jin Song Dong, and Hong Mei

DatePrinter migrate F ™ ™ DatePrinter _| Legend
; | T o1 |
—_——— Existing Code
4 ‘, § Element :
FastDatePrinter : G " FastDatePrinter _| Covered Code
] e e —— Element :
= - | e e e e
FastDatePrinterTest | | FastDatePrinterTest | n _L — fimﬁ()_ _| |
parseFormat() " —— e | | Test Case I:l
| testC;lendarTi:Ielone | | | | testCalendarTimezone ‘_l | | Element with
espected() || || 0 e wi
peaed? R o | B -
. 7 I
migrate | | | Modified Code
; _________ | Element :
I FastDateFormater | Missing Code ™ — —1
FastDateFormater FormatCache " = | FormatCache Element L1
appendTo() GG ! D | cDateTimelnstanceCache
| = Inheritance
_getZoneDlspIay() 1 €| %
- | | —— ——
getZoneDisplay() | - -
L] getPatternforStyle() 1 migrate —l= bi getPatternforStyle() |
) B it call T
bug-fixing commit, . . L.
9 b?’c commit under investigation, ¢,
Figure 2: Migrating test dependencies to a revision.
The rewriting rules transform the code regarding the different search feedback search feedback
library versions in c¢jny and bfc (line 5). In the transformation rules, __ forward _ backward
we set a list of triggers such as syntax change and library version > o]
. k k P
change. Those rules are generally defined regarding the API changes bfc bfc-1 v+2 vil v vl v-2 init
-) ~
between the versions. Equation 6 shows one of our defined rules, pass fail no-feedback region

in the form of the operational semantics. The precondition (the
numerator) indicates that the JDK versions are different, and an
existing to-be-migrated method (m € Mjy;4) defined in an interface
(m € Mjpy) has an annotation of “@Override” (“@Override” €
m.ANN). The postcondition (the denominator) indicates that we
remove the “@Override” for that method. For example in Figure 2,
when detecting that the supported JDK version in ¢jny is 1.5 while
that in bfc is 1.7, we will remove the “Override” annotation on
format () method in FastDatePrinter3. Readers may refer to [2]
for more details.

JDK _v(ciny) = 1.5,JDK_v(bfc) > 1.5,
Im € Myyp A m € Mmig, “@Override” € mANN
m.ANN — m.ANN \ {“@Override”}

(6)
We proceed to migrate the changed dependencies if the transfor-
mation is not successful (line 8). Different from migrating missing
dependencies, we migrate the changed dependencies as an opti-
mization problem. We aim to migrate and transform the minimum
changed dependencies to derive a compatible revision (line 9 and
13). Specifically, we repetitively overwrite the code elements in cjny
with elements in E¢p,4p,ge to search for a minimum core to satisfy the
conditions. In the example of Figure 2, we will overwrite the field
cDateTimeInstanceCache in c¢jpp with that in bfc for eradicating
the compilation errors. Note that, the static method getPattern-
ForStyle() invoking that field is migrated to c¢jpny, which leads to
the change of the field’s modifier to static.

3In JDK 1.5, the “Override” annotation is not allowed to describe a method implement-
ing the interface

Figure 3: Search feedback revisions forward and backward

4.3 Validation Effort Minimization

Given a bug-fixing commit, we validate it as a regression-fixing
commit by searching for a regression-inducing commit c in the
history where the test case fails ¢ but passes ¢ — 1. A naive search
algorithm can be a binary search algorithm as git bisect implemen-
tation [1]. The binary search algorithm assumes that each revision
provides us with a feedback (such as test case pass or failure), which
guides us to either approach the revision ¢ where ¢ can fail and
¢ — 1 can pass (i.e., regression bug), or the initial revision where ¢
just fails (i.e., non-regression bug).

However, the revisions cannot always be compilable in practice.
Moreover, the test code and its dependencies migrated by RegMiner
can also suffer from incompilability. In such a case, the potential
compilation errors provide less guidance and the test case cannot
be resolved to provide feedback. Therefore, when visiting a revision
with no feedback during the search, we design an approach to either
(1) search for the closest revision with guiding feedback to get rid
of the “no-feedback region” in the history, or (2) quickly abandon
the bug-fixing commit to proceed with the next one.

Skipping No-feedback Region. Figure 3 shows an example where
we visit a no-feedback revision when searching over the code his-
tory. Our approach estimates the no-feedback region with an expo-
nential search algorithm as Algorithm 3. Taking a no-feedback revi-
sion v and a boundary revision as input b (indicating the searched
boundary region cannot be beyond (v, b) or (b, v)), Algorithm 3
returns a revision b, between v and b so that b, can be either (1) a
feedback revision closest to the no-feedback revision v or (2) the

RegMiner

ISSTA °22, July 18-22, 2022, Virtual, South Korea

Algorithm 3: Closest Feedback Revision Search

Algorithm 4: Regression Introduction Search

Input :A no-feedback revision, v; a code repository, repo; a test case,
test; boundary revision b
Output: A boundary revision with feedback, b,

// the search direction is initialized as from v towards b
direction=0> b

-

2 CUrsor = prev =10
// the revision to be returned
3 b,=b
// the search range is within bpas: and bryrure
4 brurure = max(v,b), bpast = min(v,b)
5 step=1
¢ while true do
7 prev = cursor
// move towards the direction with a step size
8 cursor = move(cursor, step, direction, test)
// when we find a revision b, which can first feedback
9 if cursor has feedback and prev has not feedback then

10 b, = update_best(b,, cursor)

11 direction = —direction

12 | step=1

13 else if cursor has feedback and prev has feedback then

14 if cursor is out of boundary (bpast, b furure) then

15 L return b,

16 b, = update_best(b,, cursor)

17 else if cursor has not feedback and prewv has not feedback then
18 if cursor is out of boundary (bpast, b furure) then

19 L return b,

20 else if cursor has not feedback and prev has feedback then
21 cursor = prev

22 | step=1

23 step = step X 2

boundary revision b if no such feedback revision can be found.
Specifically, each time we move on the history, we double the step
size to get rid of the no-feedback region soonest possible (line 21).
When we reach a feedback revision from a non-feedback revision
(line 8-11) or vice versa (line 19-20), we change the search direction
and reset the step size as 1 to fine-tune the region. The boundary re-
vision closest to the initial no-feedback revision v will be preserved
(line 9 and 15). Finally, the optimal b, will be returned if the search
on the history is out of pre-defined scope (line 13 and 17).

Overall Algorithm. Taking as input a revision head and a revision
tail where tail > head, a test case test, and the code repository
repo, Algorithm 4 returns a regression-inducing revision, if exists.
Algorithm 4 is designed based on binary search (line 1-7, 20). How-
ever, if we visit a no-feedback revision during the binary research,
we will search for the no-feedback region supported by Algorithm 3
(line 9 and 10). Based on the reported region, we either (1) skip this
bug-fixing commit (line 11-12, i.e., cannot find a feedback revision
between head and tail), or (2) reset the binary search region to
continue the search.

Input :A revision, head; A revision, tail; a code repository, repo; a
test case, test
Output: A regression-inducing revision, ric
1 0 = repo.get_middle(head, tail, test)
2 while tail > head do

3 if v has feedback then

4 if v can pass then

5 L head = v

6 else

7 L tail = o

s else

9 by = search_feedback_revision(v, repo, test, head)
10 b, = search_feedback_revision(v, repo, test, tail)
1 if head == b||tail == b, then

12 L return null;

13 if by can pass then

14 | head = by;

15 else if by can pass and by can fail then

16 head = bl;

17 tail = by;

18 else if by can fail and by can fail then

19 L tail = by;
20 | o=repo.get middle(head, tail, test)

21 return head + 1

5 EXPERIMENT

We build RegMiner to mine Java regressions, supporting maven
and gradle projects. We evaluate RegMiner with the following re-
search questions, more details of our experiment are available at
our anonymous website [2].

e RQ1 (Close-world Experiment): Can RegMiner accurately and
completely mine regressions from Git repositories?

e RQ2 (Open-world Experiment): Can RegMiner continuously
mine authentic regressions from real-world Git repositories?
How diverse is the regression dataset?

¢ RQ3 (Ablation Study): How does each technical component in
RegMiner contribute to the mining effectiveness and efficiency?

5.1 Close-world Experiment

5.1.1 Experiment Setup. We manually collect 50 regression-fixing
commits and 50 non-regression fixing commits from Github reposi-
tories for the measurement of precision and recall. To avoid bias,
we construct the regression benchmark without any help of Reg-
Miner. Specifically, we search for closed Github issues each of which
uniquely mentions a commit as its solution. Then, we filter those
issues based on its labels and description. We prioritize the issues
with labels as “regression” or “bug”, or with description with the
keyword of “regression”. Then, we confirm the real regressions by
manually checking the evolution history for regression-inducing
commits, and migrating the test cases. As a result, we confirmed
50 regressions from 23 Java projects (see [2] for more details). By
similar means, we identified 50 non-regression bugs.

ISSTA °22, July 18-22, 2022, Virtual, South Korea

step 4 step 3 step 2
bfc bfc-1 Te—— \bic_bi'c—_l ______ ——~step 1 init
pass fail NF fail pass NF NF NF

Figure 4: Validation effort minimization may cause the false
negatives, NF represents the revision without feedback.

We apply RegMiner on all the regression and non-regression
fixing commits to measure the precision and recall. Let the num-
ber of true regressions be N (N = 50), the number of reported
regressions be M, and the number of reported true regressions be
K, the precision is %, the recall is % We choose the empirical

regression-inducing probability p as 0.05.

5.1.2 Results. RegMiner achieves 100% precision and 56% recall
in the experiment. Since the number of selected non-regression
fixing commit is small in this experiment, we leave the discussion
on the potential false positives to Section 5.2.2. Next, we discuss the
reasons of false negatives. Our investigation shows that the recall
mainly suffers from three folds: (1) our engineering implementation
has not supported some sophisticated project configurations (16 out
of 22), (2) insufficient AST adaption (see Section 4.2) for test case
migration (5 out of 22), and (3) our validation effort minimization
can sometimes miss the regression-inducing commit (1 out of 22),

Limited Engineering Support and Test Dependency Migration. Our
investigation on the false negatives reveals that the realization of
our methodologies requires more sophisticated implementation
beyond our current engineering support. RegMiner still has its lim-
itation under the scenarios such as the project-build configuration
beyond maven and gradle, specific maven plugin (e.g., maven li-
cense plugin can stop the project building if our migration does not
include licence information in the source code), and the dependency
on GCC to compile the project. Moreover, RegMiner also has its
limitation to handle complicated Java syntax like lamba expressions
or enumerate classes. We will strengthen our engineering support
to generalize RegMiner in more practical scenarios.

Validation Effort Minimization. We observe that, the efficiency
pursued by our VEM (Validation Effort Minimization) technique,
sometimes can scarify the accuracy, leading to the false negatives.
Figure 4 shows an example. In Figure 4, we show the visiting order
of RegMiner on one ground truth regression (univocity-parsers
project with fixing commit e48cdc). In this case, RegMiner visits
non-feedback revisions in all the first four steps. Based on Algo-
rithm 4, RegMiner tries to search for a feedback revision by expo-
nentially increasing the search step size (line 23 in Algorithm 3).
A mitigation is to change the exponential increase to a less radical
increase approach, e.g., increase the moving step by a fix size. Nev-
ertheless, it will incur large overhead as a tradeoff. We leave the
choice to the practitioners in their own applications.

5.2 Open-world Experiment

5.2.1 Experiment Setup. In this experiment, we collect Git repos-
itories from Github and run RegMiner to mine regressions for 8

Xuezhi Song, Yun Lin, Siang Hwee Ng, Yijian Wu, Xin Peng, Jin Song Dong, and Hong Mei

weeks. We evaluate RegMiner regarding the authenticity and the di-
versity of the mined regressions in both quantitative and qualitative
manner.

Quantitative Analysis. We quantitatively estimate how likely
the tested feature in the regression-fixing revision (RFC) exists
in the regression-inducing revision (RIC), based on the rationale
that the feature in RFC is likely to be preserved in RIC if the test
covers similar set of code elements in both revisions. Specifically,
for each mined regression reg = (rfc,ric,t), we run t against
rfe and ric to have their covered method set E, ¢, and Eyic. We
consider mg € E.p. can be aligned with m; € E,;. if UMLDIff
algorithm [59] can match them. Therefore, we measure the feature
coverage similarity in rfc and ric by:

X |Er fe n Ericl
S red) = 1By reh [Eriel)

Qualitative Analysis. We further sample 30 regressions with high
coverage score (>0.9), 30 with medium score (0.4-0.7), and 30 with
low score (<0.1). To facilitate the manual investigation, we build
a tool to visualize and compare revision difference, run test cases
against each revision, and revert changes between revisions. A
screenshot of the tool is available at our website [2]. We recruit
two graduate students (both with over 5 years of Java program-
ming experience) to manually verify each regression based on the
following template questions:

e What is the feature in RFC aims to fix?
e What is the reason of the regression bug?
e Why can the feature work well before RIC?

The two students were asked to write down their answer indepen-
dently. Then, they are further asked to discuss with each other to
reconcile their answers. Given a regression, if they agree that the
feature tested in RFC is different from the feature tested in RIC, we
conclude the regression is a false positive.

Diversity Analysis. We measure the diversity of the regression
dataset by investigating the diversity of (1) topics of used libraries
of the regression and (2) the exception types of each bug. Assume
the regressions are distributed in K library topics*, and reported
with L exception types (e.g., Nul1PointerException), we compare
the diversity between our collected datasets and Defects4j on (1)
the number of library topics and reported exception types, and
(2) the information entropy of bug distribution on the topics and
exception types.

5.2.2 Results. In this experiment, we explore 30,165 commits in
which 6,253 commits are bug-fixing commits. As a result, RegMiner
constructs a regression dataset consisting of 1035 regressions over
the 147 projects within 8 weeks. Among the 1035 mined regres-
sions, over 72% commits incur runtime exceptions when the test is
migrated to a past commit. Nevertheless, RegMiner still manages
to report them with the validation effort minimization technique
(see Section 4.3).

4We follow the topic categories defined in maven central repository (i.e., https://
mvnrepository.com/repos/central), e.g., core utilities, collection, JSON libraries, etc.

https://mvnrepository.com/repos/central
https://mvnrepository.com/repos/central

RegMiner

Ratio of Regression

0.10 . 005 oo
0.04 0.02 - 8 ! 0.02
0.00 -—--&—
o o /\'Q"b (o'°/'\ %’Qg) v’°<? %’0? '»’0?) »’Qw Q’d\/
07 % oV % o7 ¥ 7 Y Y

Coverage Similarity

0.01 0.01

Figure 5: Feature Coverage Similarity Distribution

1 @Test
public void strictAttributeUnescapes() {
3 String html = "<a_href='?foo=bar&mid<=true'>0";
4 Elements els = Jsoup.parse(html).select("a");
5 assertEquals("?foo=bar&mid<=true", els.first().attr("href"));
6 b
}
Listing 1: A regression test for checking whether special

character in HTML can be handled well

Authenticity Results (Quantative Analysis). Figure 5 shows the
distribution of feature coverage similarity of all the mined regres-
sions. We can see that the most regressions have a high feature
coverage similarity (mean is 0.85), indicating that the most regres-
sion features tested in the regression-inducing commit are likely to
be preserved in the regression-fixing commit.

Authenticity Results (Qualitative Analysis). We confirm that 89
out of 90 regressions (each one third for high, medium, and low
coverage similarity score) are authentic. We observe that the au-
thentic regressions with low coverage score are usually caused by
(1) code refactoring and (2) deviated program execution leading to
the coverage of new extra code. As for the latter, the bug leads the
program to execute other branches and, in turn, invoke new code,
causing a large E,j¢ including many utility functions. Nevertheless,
in most cases, the core feature is still within E, fe N Eric.

The false positive is caused by specification change, with low
feature coverage score of 0.043. Listing 1 and Figure 6 show the
reported regression where the feature is to parse a piece of HTML
text into a Java object. Given a piece of HTML text, if it contains a
special character like ‘&’ or “?’ in the value of href property, the
parser should not escape them to generate the Java object. However,
in bfc-1, those characters are escaped, which makes the test case
fail. RegMiner reports the revision bic-1 which makes the test case
pass. However, our manual investigation shows that there is no
escape functionality in bic-1, where only naive string matching is
implemented. Thus, the reported bic accidentally passes the test
case. To fundamentally address the problem, we need to fully extract
the semantics of two executions between bfc and bic. We leave it to
our future work.

ISSTA °22, July 18-22, 2022, Virtual, South Korea

the escape function has not
been implemented yet

unnecessarily escape
special character ?’, ‘&’

bfc bfc-1 bic bic-1
pass fail fail pass

Figure 6: False positive reported by RegMiner

Diversity Analysis. Table 1 shows that the regressions collected
by RegMiner are more diverse than Defects4j regarding the number
of libraries, the involved library topics, and the types of exceptions.
Comparing to Defects4j, regressions in RegMiner use 7.3X libraries,
cover 3.5X topics, and raise 1.2X more types of exceptions. More
details of Venn Diagram to compare the diversity of RegMiner and
Defects4j is available at [2].

Table 1: Diversity Evaluation, H represents the entropy

#Prj Library Diversity Exception Diversity
#Library | #Topic| H | #Exception H
RegMiner | 147 818 110 6.206 56 1.221
Defects4j | 17 122 31 4.709 68 0.883

Overall, our conservative strategy (i.e., the strict conditions to
report a regression regarding test compatibility on the passing and
failing revisions) lead to high precision, at the cost of moderate
recall. In our future work, we will study RegMiner’s improvement
on recall (see Section 6 for more details).

5.3 Ablation Study

5.3.1 Experiment Setup. We disable, replace, and enable the three
components respectively to evaluate their effectiveness.

Regression Potential. Given that the number of regression fixing
commits is N (N =1035), we randomly select another N bug fix-
ing commits. Then, we let RegMiner generate regression potential
metric for each fixing commit, comparing the metrics distribution
of the two groups. Moreover, we further evaluate our regression
potential metrics by investigating the effectiveness of its rank on
the regression-fixing commits. Specifically, given N regression-
fixing commits and aN (@ > 1) non-regression fixing commits,
we evaluate how many regression-fixing commits RegMiner can
report by looking the first k% reported commits. We let « > 1
because that non-regression fixing commits are usually more than
regression-fixing commits. We choose « = 2 in this study.

Test Dependency Migration and Validation Effort Minimization. In
this study, we disable and simplify the capability of test dependency
migration and validation effort minimization separately.

e Disabled Test Dependency Migration (RegMiner _rpys):
We have RegMiner _rpys for RegMiner with test dependency
migration disabled. In RegMiner _rpys, we copy the identified
test case into the target revision without dependency analysis.

e Simplified Validation Effort Minimization (RegMiner
“VEMaubisec): We have RegMiner _y paripisec for RegMiner with
validation effort minimization simplified. In RegMiner _y gar+pisecs

ISSTA °22, July 18-22, 2022, Virtual, South Korea

o

&l
S

R R R S
S S S S S

—RegMiner —Random

Figure 7: Effectiveness of regression potential metrics to se-
lect fixing commits with regression potential. We choose
a = 2 i.e., the total number of fixing commits is 3X N (N=1035)
in which the number of regression-fixing commits is N.

we search for regressions by using git-bisect strategy [1]. More-
over, if RegMiner _y gajipisec Visits a revision cjn, without any
feedback, we conservatively estimate a failure feedback on cjpp.

o Disabled TDM and Simplified VEM (RegMiner _pys + bisec):

We have RegMiner _7pys + bisec) for RegMiner with test depen-
dency migration disabled and search for regression with git-bisect
strategy.

Disabled TDM and Simplified VEM (RegMiner _rpas +
gitblame): We have RegMiner _rpys + gitblame for RegMiner
with test dependency migration disabled and search for regres-
sion with git-blame strategy on the difference between rfc and
rfc-1. We consider the strategy on a regression successful if (1)
git-blame can report ric and (2) the test migration from rfc to ric

is successful.

We compare RegMiner with the aforementioned variants on the
datasets in both close-world and open-world experiments. Given
the open-world experiment takes 8 weeks in this study, we replicate
the experiment with the following simplification. Given RegMiner
reports N regressions in the open-world experiment (N =1035 in
this study), we randomly sample 2 X N bug-fixing commits, and
run RegMiner, RegMiner _rpys, and RegMiner _ygp on the 3 X N
bug fixing commits to observe their performance.

5.3.2 Results.

Regression Potential Estimation. We evaluate the regression po-
tential scores on the 1035 regression-fixing commits and 1035 ran-
domly chosen bug-fixing commits. Overall, the regression-fixing
group has an average of 0.51 and median of 0.43; in contrast, the
bug-fixing group has an average of 0.38 and median of 0.30. We
apply unpaired two-samples Wilcoxon test on two groups and have
the p-value smaller than 107, indicating that the regression-fixing
group is significantly different from the bug-fixing group. In ad-
dition, Figure 7 shows the effectiveness of RegMiner to select the
regression-fixing commits. Overall, the first 20% ranked commits
can include over 50% regression-fixing commits (the blue curve in
Figure 7), outperforming random selection (the orange curve in
Figure 7). Thus, we conclude that our regression potential metric is
effective.

Xuezhi Song, Yun Lin, Siang Hwee Ng, Yijian Wu, Xin Peng, Jin Song Dong, and Hong Mei

Test Dependency Migration and Validation Effort Minimization.
Table 2 shows the overall regression retrieval performance. Overall,
comparing to the baselines, our solution shows its effectiveness.
While achieving the leading performance, we also find that the
variants such as RegMiner _y gaf4pisec SOmetimes can report the
regressions missed by RegMiner. It is because different search strat-
egy makes different tradeoffs, leading to different search results.
In addition, simplified variants such as RegMiner _7parypisec and
RegMiner —rparigitblame incur less runtime overhead, but have
large degradation on recall.

Table 2: The overall performance of regression retrieval

Close-world Open-world

Approach Experiment Experiment
Prec | Rec | Time (h) | #Reg | Time (h)

RegMiner 1.0 |0.56 4.29 1035 135.38
RegMiner—7pas 1.0 |032] 221 604 | 64.29
RegMiner_y gatrbiser 10 |047| 274 629 | 73.84
RegMiner_7patsbiser 1.0 |0.04] 038 114 | 16.65
RegMiner_rpatrgicblame | 1.0 | 020 | 0.85 311 | 27.40

5.4 Threats to Validity

One internal threat is the precision (100%) reported in our close-
world experiment, which is only reported on 50 regressions and
50 non-regression bugs. Given the small number of regressions, it
may not be sufficient to conclude that the precision can be applied
to the open-world experiment. To mitigate the issue, we further
manually sample 90 regressions in the open-world experiment, to
complement the precision evaluation. One external threat lies in
that our implementation is based on Java projects, further studies
on other popular programming language such as Python and C++
are still needed to generalize our findings.

6 DISCUSSION

Our experiments have shown that RegMiner can successfully con-
struct a runnable regression dataset, with its size continuously
growing, showing good potential as a research infrastructure to
support various software engineering studies. In this section, we
discuss the follow-up work regarding (1) improving the mining
effectiveness, (2) realizing the potential of this infrastructure, and
(3) its alternative applications.

6.1 Mining Effective (Recall) Improvement

We can improve the mining effectiveness by (1) on-the-fly rewriting
rule generation, (2) regression test case selection, and (3) multiple-
test migration.

On-the-fly Rule Generation. RegMiner uses manually defined
AST-rewriting rules to reduce the compilation errors induced by
test-case migration. In the future work, we will investigate how
to derive semantic-preserving rules on-the-fly by comparing the
different versions of library used in two commits.

Regression Test Selection. RegMiner only uses the test case cre-
ated in the regression-fixing commit, assuming that regressions are
fixed along with a complementary regression test. The conserva-
tive strategy may miss some regressions with their regression tests

RegMiner

which have been created before the fixing-commit. We will expand
the scope of regression-test detection to improve the recall.
Multiple-test Migration. Migrating N (N > 1) test cases poten-
tially allows us to find multiple regressions by a single search. The
challenge lies in how to deal with different feedbacks of different
tests when searching for the regression-inducing commit. We will
design a more optimal solution to maximize the “reward” of the
search.

6.2 Dataset Quality

Since we intend to build a large dataset to evaluate various software
testing, debugging, and repair research work, the dataset quality
is important. Despite the chance of false positives is small, the
open-world experiment still reveals such a possibility. Moreover,
despite existing techniques such as delta-debugging [57, 64] can
help RegMiner to isolate failure-inducing changes, the human effort
to verify and annotate the changes is almost inevitable with the
existing software engineering techniques.

Therefore, we call for and foresee a crowdsourcing platform for
researchers and volunteers to contribute, with the shared RegMiner
facility. The following questions need to be answered:

(1) Social Aspect: how to design a crowdsourcing system to in-
volve the researchers in the community?

(2) Tool Support: how to design an intuitive bug/regression anno-
tation tool to confirm the bug with minimum effort?

(3) Technical Design: how to improve existing software engineer-
ing techniques to recommend failure-inducing more precisely?

We designed a regression annotation prototype as the first step
towards this direction (see [2]). The demonstration are available at
https://regminer.github.io/.

6.3 Potential Beneficiary

RegMiner is intended for the researchers in the PL/SE community,
which allows them to flexibly search for different types of bugs/re-
gressions for their study. Nevertheless, we foresee that RegMiner
can also be used by practitioners in software industry to build
project-specific benchmark. Industrial practitioners can use Reg-
Miner to (1) understand what project functionalities are more likely
to introduce regression bugs, (2) who are more likely to introduce
regression, and (3) collect reusable regression patches for future
fix recommendation and reference. The first and second applica-
tion can help project managers to make organizational decision,
and the third application is useful for software developers to avoid
reinventing wheels.

7 RELATED WORK

7.1 Bug Dataset Construction

Researchers have proposed many bug datasets in the community.
Hutchins et. al [22] construct the first real-world bug dataset. Do,
Elbaum, and Rothermel [12] further construct the SIR dataset. Fol-
lowing their work, various datasets are constructed from program-
ming assignments and competitions (e.g., Marmoset [53] QuixBugs
[34], IntroClass [32], Codeflaws [55], etc.), open source projects
(e.g., DbgBench [6], Defects4j [26], Bugs]S [17], Bugs.jar [49], etc.),
and runtime continuous integration scenarios (e.g., BEARS [42] and

ISSTA °22, July 18-22, 2022, Virtual, South Korea

BugSwarm [56]). The most relevant dataset CoREBench [5], which
is a regression dataset of 70 C/C++ regressions.

Those bug datasets are constructed manually, which naturally
affects the scalability and representativeness of the bug dataset.
Dallmeier and Zimmermann [11] make the first attempt to con-
struct bug dataset in a semi-automatic way, via analyzing bug issues
and their commits. Zhao et. al [68] further propose to replicate bugs
based on Android bug reports. Recently, BEARS [42] and BugSwarm
[56] are proposed to construct the bug dataset by collecting the
buggy and the patched version on Continuous Integration system.
Following their work, Jiang et. al [25] further propose BugBuilder
to construct dataset by isolating the bug-relevant changes. Reg-
Miner is different in that we target for a regression bug dataset, and
address new technical challenges such as regression-fixing com-
mit prediction, test dependency migration, and validation effort
minimization.

7.2 Regression Research

Regression research includes regression fault localization [8, 20, 21,
28,45, 57, 58, 60, 64, 65], regression testing [4, 14, 30, 44], and regres-
sion explanation [58, 60]. Zeller [64] pioneers the delta debugging
algorithm, which is followed by a number of variants in specific
scenarios [20, 21, 28, 45]. The most recent delta-debugging variant
is proposed by Wang et. al [57], as probabilistic delta debugging, to
further lower the algorithm complexity while improve the accuracy.
Tan and Roychoudhury [54] propose a regression bug repair tech-
nique by searching over the regression revision through predefined
code transformation rules. As for regression explanation, Wang et.
al [58] propose a state-of-the-art regression explanation technique
by proposing a novel alignment slicing algorithm on the execution
traces of the regression version and past working version. However,
researchers usually either prepare their own dataset with limited
size or inject mutated regressions which are less representative for
the real-world regressions.

Our RegMiner solution can largely mitigate the challenges, lay-
ing foundation for the future regression analysis and motivating
both empirical and experimental facilities for the follow-up regres-
sion research.

8 CONCLUSION

In this work, we propose RegMiner which can automatically con-
struct regression dataset. We address the challenges of predicting
regression-fixing commits, migrating test and its dependencies,
and minimizing the regression validation effort. Our close-world
experiment shows that RegMiner achieves acceptable recall. Our
open-world experiment shows that RegMiner has constructed an
authentic and diverse regression dataset within a short time.

ACKNOWLEDGEMENT

We sincerely thank anonymous reviewers for their comments to
improve this work. This research is supported in part by the Min-
ister of Education, Singapore (T2EP20120-0019, T1-251RES1901,
MOET32020-0004), A*STAR, CISCO Systems (USA) Pte. Ltd and
National University of Singapore under its Cisco-NUS Accelerated
Digital Economy Corporate Laboratory (Award 121001E0002), and
National Natural Science Foundation of China (62172099).

https://regminer.github.io/

ISSTA °22, July 18-22, 2022, Virtual, South Korea

REFERENCES

(1]

[10]

—
—

[12]

[13

[14]

[16

[17]

(18]

[19]

[20

[21

[22]

[23

[24

[25

[n. d.]. Git-bisect Webiste. https://git-scm.com/docs/git-bisect. Accessed:
2022-01-28.

[n. d.]. RegMiner Webiste. https://sites.google.com/view/regminer/home. Ac-
cessed: 2022-01-28.

Cyrille Artho. 2011. Iterative delta debugging. International Journal on Software
Tools for Technology Transfer 13, 3 (2011), 223-246.

Antonia Bertolino, Antonio Guerriero, Breno Miranda, Roberto Pietrantuono,
and Stefano Russo. 2020. Learning-to-rank vs ranking-to-learn: strategies for
regression testing in continuous integration. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. 1-12.

Marcel Bohme and Abhik Roychoudhury. 2014. Corebench: Studying complexity
of regression errors. In Proceedings of the 2014 international symposium on software
testing and analysis. 105-115.

Marcel Bohme, Ezekiel O Soremekun, Sudipta Chattopadhyay, Emamurho
Ugherughe, and Andreas Zeller. 2017. Where is the bug and how is it fixed? an
experiment with practitioners. In Proceedings of the 2017 11th joint meeting on
foundations of software engineering. 117-128.

Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. 2002. Korat:
Automated testing based on Java predicates. ACM SIGSOFT Software Engineering
Notes 27, 4 (2002), 123-133.

Robert Brummayer and Armin Biere. 2009. Fuzzing and delta-debugging SMT
solvers. In Proceedings of the 7th International Workshop on Satisfiability Modulo
Theories. 1-5.

Holger Cleve and Andreas Zeller. 2005. Locating causes of program failures. In
Proceedings. 27th International Conference on Software Engineering, 2005. ICSE
2005. IEEE, 342-351.

Dekel Cohen and Amiram Yehudai. 2015. Localization of real world regression
Bugs using single execution. arXiv preprint arXiv:1505.01286 (2015).

Valentin Dallmeier and Thomas Zimmermann. 2007. Extraction of bug local-
ization benchmarks from history. In Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering. 433-436.
Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. 2005. Supporting con-
trolled experimentation with testing techniques: An infrastructure and its poten-
tial impact. Empirical Software Engineering 10, 4 (2005), 405-435.

Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues. 2009.
A genetic programming approach to automated software repair. In Proceedings
of the 11th Annual conference on Genetic and evolutionary computation. 947-954.
Patrice Godefroid, Daniel Lehmann, and Marina Polishchuk. 2020. Differen-
tial regression testing for REST APIs. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 312-323.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcodebert:
Pre-training code representations with data flow. arXiv preprint arXiv:2009.08366
(2020).

Neelam Gupta, Haifeng He, Xiangyu Zhang, and Rajiv Gupta. 2005. Locating
faulty code using failure-inducing chops. In Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering. 263-272.

Péter Gyimesi, Béla Vancsics, Andrea Stocco, Davood Mazinanian, Arpad
Beszédes, Rudolf Ferenc, and Ali Mesbah. 2019. BugsJS: a benchmark of JavaScript
bugs. In 2019 12th IEEE Conference on Software Testing, Validation and Verification
(ICST). IEEE, 90-101.

Mark Harman and Phil McMinn. 2009. A theoretical and empirical study of
search-based testing: Local, global, and hybrid search. IEEE Transactions on
Software Engineering 36, 2 (2009), 226-247.

Mark Harman, Phil McMinn, Jerffeson Teixeira De Souza, and Shin Yoo. 2010.
Search based software engineering: Techniques, taxonomy, tutorial. In Empirical
software engineering and verification. Springer, 1-59.

Renata Hodovan and Akos Kiss. 2016. Modernizing hierarchical delta debugging.
In Proceedings of the 7th International Workshop on Automating Test Case Design,
Selection, and Evaluation. 31-37.

Renata Hodovén, Akos Kiss, and Tibor Gyimothy. 2017. Coarse hierarchical delta
debugging. In 2017 IEEE international conference on software maintenance and
evolution (ICSME). IEEE, 194-203.

Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. 1994. Ex-
periments on the effectiveness of dataflow-and control-flow-based test adequacy
criteria. In Proceedings of 16th International conference on Software engineering.
IEEE, 191-200.

Vinoj Jayasundara, Nghi Duy Quoc Bui, Lingxiao Jiang, and David Lo. 2019.
TreeCaps: Tree-Structured Capsule Networks for Program Source Code Process-
ing. arXiv preprint arXiv:1910.12306 (2019).

Yanjie Jiang, Hui Liu, Nan Niu, Lu Zhang, and Yamin Hu. 2021. Extracting Concise
Bug-Fixing Patches from Human-Written Patches in Version Control Systems.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, 686-698.

Yanjie Jiang, Hui Liu, Nan Niu, Lu Zhang, and Yamin Hu. 2021. Extracting Concise
Bug-Fixing Patches from Human-Written Patches in Version Control Systems.

Xuezhi Song, Yun Lin, Siang Hwee Ng, Yijian Wu, Xin Peng, Jin Song Dong, and Hong Mei

Iy
2

[27

(28]

[20

[30

&
=

[32

[33

[34

[35

[36

[37

[40

[41

[42

[43]

[44

[45

[46

In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, 686-698.

René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4]: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis. 437-440.
Alireza Khalilian, Ahmad Baraani-Dastjerdi, and Bahman Zamani. 2021. CGen-
Prog: Adaptation of cartesian genetic programming with migration and opposite
guesses for automatic repair of software regression faults. Expert Systems with
Applications 169 (2021), 114503.

Akos Kiss, Renata Hodovan, and Tibor Gyiméthy. 2018. HDDr: a recursive
variant of the hierarchical delta debugging algorithm. In Proceedings of the 9th
ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection,
and Evaluation. 16-22.

Andrew Ko and Brad Myers. 2008. Debugging reinvented. In 2008 ACM/IEEE
30th International Conference on Software Engineering. IEEE, 301-310.

Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. 2017. Measuring the
cost of regression testing in practice: A study of Java projects using continuous
integration. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. 821-830.

Xuan Bach D Le, David Lo, and Claire Le Goues. 2016. History driven program
repair. In 2016 IEEE 23rd international conference on software analysis, evolution,
and reengineering (SANER), Vol. 1. IEEE, 213-224.

Claire Le Goues, Neal Holtschulte, Edward K Smith, Yuriy Brun, Premkumar
Devanbu, Stephanie Forrest, and Westley Weimer. 2015. The ManyBugs and
IntroClass benchmarks for automated repair of C programs. IEEE Transactions
on Software Engineering 41, 12 (2015), 1236-1256.

Yunkai Liang, Yun Lin, Xuezhi Song, Jun Sun, Zhiyong Feng, and Jin Song Dong.
2022. gDefect4DL: A Dataset of General Real-World Deep Learning Program
Defects. (2022).

Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. 2017.
QuixBugs: A multi-lingual program repair benchmark set based on the Quixey
Challenge. In Proceedings Companion of the 2017 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and Applications: Software for
Humanity. 55-56.

Yun Lin, You Sheng Ong, Jun Sun, Gordon Fraser, and Jin Song Dong. 2021.
Graph-based seed object synthesis for search-based unit testing. In Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1068—1080.

Yun Lin, Jun Sun, Gordon Fraser, Ziheng Xiu, Ting Liu, and Jin Song Dong. 2020.
Recovering fitness gradients for interprocedural Boolean flags in search-based
testing. In Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis. 440-451.

Yun Lin, Jun Sun, Lyly Tran, Guangdong Bai, Haijun Wang, and Jinsong Dong.
2018. Break the dead end of dynamic slicing: Localizing data and control omission
bug. In Proceedings of the 33rd ACM/IEEE international conference on automated
software engineering. 509-519.

Yun Lin, Jun Sun, Yinxing Xue, Yang Liu, and Jinsong Dong. 2017. Feedback-
based debugging. In 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE, 393-403.

Zhongxin Liu, Xin Xia, Christoph Treude, David Lo, and Shanping Li. 2019. Auto-
matic generation of pull request descriptions. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 176-188.

Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou. 2005.
Bugbench: Benchmarks for evaluating bug detection tools. In Workshop on the
evaluation of software defect detection tools, Vol. 5. Chicago, Illinois.

Kasper Luckow, Marko Dimjasevi¢, Dimitra Giannakopoulou, Falk Howar, Malte
Isberner, Temesghen Kahsai, Zvonimir Rakamari¢, and Vishwanath Raman. 2016.
JD art: a dynamic symbolic analysis framework. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. Springer, 442—
459.

Fernanda Madeiral, Simon Urli, Marcelo Maia, and Martin Monperrus. 2019.
Bears: An extensible java bug benchmark for automatic program repair studies.
In 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 468-478.

Phil McMinn. 2004. Search-based software test data generation: a survey. Software
testing, Verification and reliability 14, 2 (2004), 105-156.

Gianluca Mezzetti, Anders Moller, and Martin Toldam Torp. 2018. Type regres-
sion testing to detect breaking changes in Node. js libraries. In 32nd European
Conference on Object-Oriented Programming (ECOOP 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

Ghassan Misherghi and Zhendong Su. 2006. HDD: Hierarchical delta debugging.
In Proceedings of the 28th international conference on Software engineering. 142—
151.

Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. Semfix: Program repair via semantic analysis. In 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 772-781.

https://git-scm.com/docs/git-bisect
https://sites.google.com/view/regminer/home

RegMiner

[47] Tai D Nguyen, Long H Pham, Jun Sun, Yun Lin, and Quang Tran Minh. 2020.

sfuzz: An efficient adaptive fuzzer for solidity smart contracts. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering. 778-788.
Fabrizio Pastore, Leonardo Mariani, and Alberto Goffi. 2013. RADAR: a tool for
debugging regression problems in C/C++ software. In 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 1335-1338.

Ripon K Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul R Prasad.
2018. Bugs.jar: a large-scale, diverse dataset of real-world java bugs. In Proceedings
of the 15th International Conference on Mining Software Repositories. 10-13.
Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray, and Suman
Jana. 2019. Neuzz: Efficient fuzzing with neural program smoothing. In 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 803-817.

Eui Chul Shin, Illia Polosukhin, and Dawn Song. 2018. Improving neural pro-
gram synthesis with inferred execution traces. Advances in Neural Information
Processing Systems 31 (2018), 8917-8926.

Victor Sobreira, Thomas Durieux, Fernanda Madeiral, Martin Monperrus, and
Marcelo de Almeida Maia. 2018. Dissection of a bug dataset: Anatomy of 395
patches from defects4j. In 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 130-140.

Jaime Spacco, Jaymie Strecker, David Hovemeyer, and William Pugh. 2005. Soft-
ware repository mining with Marmoset: An automated programming project
snapshot and testing system. In Proceedings of the 2005 international workshop on
Mining software repositories. 1-5.

Shin Hwei Tan and Abhik Roychoudhury. 2015. relifix: Automated repair of
software regressions. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 1. IEEE, 471-482.

Shin Hwei Tan, Jooyong Yi, Sergey Mechtaev, Abhik Roychoudhury, et al. 2017.
Codeflaws: a programming competition benchmark for evaluating automated
program repair tools. In 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C). IEEE, 180-182.

David A Tomassi, Naji Dmeiri, Yichen Wang, Antara Bhowmick, Yen-Chuan
Liu, Premkumar T Devanbu, Bogdan Vasilescu, and Cindy Rubio-Gonzélez. 2019.
Bugswarm: Mining and continuously growing a dataset of reproducible failures
and fixes. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 339-349.

Guancheng Wang, Ruobing Shen, Junjie Chen, Yingfei Xiong, and Lu Zhang.
2021. Probabilistic Delta debugging. In Proceedings of the 29th ACM Joint Meeting

ISSTA °22, July 18-22, 2022, Virtual, South Korea

on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 881-892.

Haijun Wang, Yun Lin, Zijiang Yang, Jun Sun, Yang Liu, Jin Song Dong, Qinghua
Zheng, and Ting Liu. 2019. Explaining regressions via alignment slicing and
mending. IEEE Transactions on Software Engineering (2019).

Zhenchang Xing and Eleni Stroulia. 2005. UMLDIff: an algorithm for object-
oriented design differencing. In Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering. 54-65.

Qiuping Yi, Zijiang Yang, Jian Liu, Chen Zhao, and Chao Wang. 2015. A synergis-
tic analysis method for explaining failed regression tests. In 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, Vol. 1. IEEE, 257-267.
Kai Yu and Mengxiang Lin. 2012. Towards practical debugging for regression
faults. In 2012 IEEE Fifth International Conference on Software Testing, Verification
and Validation. IEEE, 487-490.

Kai Yu, Mengxiang Lin, Jin Chen, and Xiangyu Zhang. 2012. Practical isolation
of failure-inducing changes for debugging regression faults. In Proceedings of
the 27th IEEE/ACM International Conference on Automated Software Engineering.
20-29.

Kai Yu, Mengxiang Lin, Jin Chen, and Xiangyu Zhang. 2012. Towards automated
debugging in software evolution: Evaluating delta debugging on real regression
bugs from the developers’ perspectives. Journal of Systems and Software 85, 10
(2012), 2305-2317.

Andreas Zeller. 1999. Yesterday, my program worked. Today, it does not. Why?
ACM SIGSOFT Software engineering notes 24, 6 (1999), 253-267.

Andreas Zeller. 2002. Isolating cause-effect chains from computer programs.
ACM SIGSOFT Software Engineering Notes 27, 6 (2002), 1-10.

Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2012. Faulttracer: a
change impact and regression fault analysis tool for evolving java programs. In
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering. 1-4.

Yao Zhang, Xiaofei Xie, Yi Li, Yun Lin, Sen Chen, Yang Liu, and Xiaohong Li.
2022. Demystifying Performance Regressions in String Solvers. IEEE Transactions
on Software Engineering (2022).

Yu Zhao, Kye Miller, Tingting Yu, Wei Zheng, and Minchao Pu. 2019. Automati-
cally Extracting Bug Reproducing Steps from Android Bug Reports. In Interna-
tional Conference on Software and Systems Reuse. Springer, 100-111.

	Abstract
	1 Introduction
	2 Problem Definition and Reformulation
	3 Overview
	4 Search Methodology
	4.1 Estimating Regression Potential
	4.2 Test Migration
	4.3 Validation Effort Minimization

	5 Experiment
	5.1 Close-world Experiment
	5.2 Open-world Experiment
	5.3 Ablation Study
	5.4 Threats to Validity

	6 Discussion
	6.1 Mining Effective (Recall) Improvement
	6.2 Dataset Quality
	6.3 Potential Beneficiary

	7 Related Work
	7.1 Bug Dataset Construction
	7.2 Regression Research

	8 Conclusion
	References

