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ABSTRACT

Recent years have seen the development of LLM-based code gen-
eration. Compared to generating code in a software project, incre-
mental code edits are empirically observed to be more frequent. The
emerging code editing approaches usually formulate the problem as
generating an edit based on known relevant prior edits and context.
However, practical code edits can be more complicated. First, an
editing session can include multiple (ir)relevant edits to the code un-
der edit. Second, the inference of the subsequent edits is non-trivial
as the scope of its ripple effect can be the whole project.

In this work, we propose CoEdPilot, an LLM-driven solution to
recommend code edits by discriminating the relevant edits, exploring
their interactive natures, and estimating its ripple effect in the project.
Specifically, CoEdPilot orchestrates multiple neural transformers
to identify what and how to edit in the project regarding both edit
location and edit content. When a user accomplishes an edit with
an optional editing description, an Subsequent Edit Analysis first
reports the most relevant files in the project with what types of
edits (e.g., keep, insert, and replace) can happen for each line of
their code. Next, an Edit-content Generator generates concrete edit
options for the lines of code, regarding its relevant prior changes
reported by an Edit-dependency Analyzer. Last, both the Subsequent
Edit Analysis and the Edit-content Generator capture relevant prior
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edits as feedback to readjust their recommendations. We train our
models by collecting over 180K commits from 471 open-source
projects in 5 programming languages. Our extensive experiments
show that (1) CoEdPilot can well predict the edits (i.e., predicting
edit location with accuracy of 70.8%-85.3%, and the edit content
with exact match rate of 41.8% and BLEU4 score of 60.7); (2)
CoEdPilot can well boost existing edit generators such as GRACE
and CCTS5 on exact match rate by 8.57% points and BLEU4 score
by 18.08. Last, our user study on 18 participants with 3 editing tasks
(1) shows that CoEdPilot can be effective in assisting users to edit
code in comparison with Copilot, and (2) sheds light on the future
improvement of the tool design. The video demonstration of our tool
is available at https://sites.google.com/view/coedpilot/home.
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1 INTRODUCTION

Recent years have seen the success of the application of LM (Lan-
guage Model) in code generation tasks. LM-based approaches, such
as CodeBERT [19], GraphCodeBERT [24], CodeT5 [54], Copilot
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Figure 1: State-of-the-art Code Editing Framework [15] [25]
[33]. The dotted rectangles represent the code before and after
the recommended edits.

[23], and ChatGPT [44], dominate the code generation solutions by
translating users’ description and surrounding code context to new
code. Nevertheless, compared to generating new code, empirical
observation shows that the activities of editing existing code happen
more frequently [31, 32, 40]. Empirical study on the commits in a
large number of open-source projects shows that editing behaviors
take about 70% in the commit history [41].

Many transformer-based approaches are proposed to generalize
the code generation solutions to code editing solutions, such as
Grace [25], CCTS5 [37], CoditT5 [58], and MODIT [15]. While those
approaches are different in representing the edits in deep learning
models, they formulate the edit generation problem as a translation
problem by (1) taking the input as known relevant prior edits (and
their context) and code region (and their context) where the change
is known to happen and (2) generating the output as a piece of
edited code. We show a model architecture as Figure 1 to capture
the general idea of the state-of-the-art solutions, where optional edit
description, prior edits and their optional context, and the code under
the edit are fed to a language model to output a piece of edited code.

While those solutions have laid an important foundation for code
editing tasks, there is still a gap between the solutions and the practi-
cal scenarios.

o Assumption of Relevance of Prior Edits. In an editing session,
existing work usually assumes that all the prior edits of a target
edit are relevant. However, it might not be true in practice (see
Section 2 for more details). Feeding the model with irrelevant
prior edits can introduce noisy input, compromising the accuracy
of the generated edits.

o Assumption of Availability of Subsequent Edit Location. In
addition, it is also non-trivial to know where the edits can happen
because the ripple effect of a prior edit may propagate across the
whole project [50].

o Interactive Nature between Multiple Edits. Lastly, code edits
can interact with each other regarding their syntactic dependency
and semantic relevance. However, existing transformers still lack
of design to capture such interaction.

In this work, we propose, CoEdPilot, an LM-based solution to
address the above concerns. We designed CoEdPilot to monitor the
ripple effect of an edit as to where the subsequent edits can happen,
infer the most relevant prior edits, and capture the edit interaction
more explicitly. To this end, we design CoEdPilot by orchestrating a
set of neural transformers [52] to coherently work with each other.
Once an edit-triggering event happens (e.g., an edit e happens with
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an optional edit description prp), the following components are
activated in an order:

o Two-staged edit location: In the first stage, we scan the whole
project with an Edit-propagating File Locator, which reports a set
of files ¥ where the changes can happen in a coarse-grained way.
In the second stage, with the reported files 7, we apply a sliding
window on those files with our Edit-propagating Line Locator to
report the type of edit (e.g., keep, insert, and replace) for each
line of code in the files. As a result, we can have a set of lines of
code with labelled type of edit, denoted as L, = {lo = (I, )|l €
L, t € {insert, replace}}, where L is the set of lines of code in the
project. L, includes all the lines of code predicted to be inserted
with or replaced with new content.

o Edit content generation: With the reported editing locations £,
we use our trained Edit-content Generator to further generate the
edit content for each location with prediction e; = (I, t), regarding
the editing description prp and a set of selected relevant prior
edits. Specifically, we select a set of relevant prior edits P = {e =
(I, t,cq, cp) } to generate a list of edit options, where / indicates the
editing line of code, t indicates the edit type, c, indicates the code
content after the edit, and ¢;, indicates the code content before
the edit. Note that, ¢, and ¢}, further incorporate user feedback on
the code under the edit, allowing us to adapt the user’s intention
on-the-fly in the editing session.

o Edit-dependency analyzer: For selecting the relevant prior edits,
we train an Edit-dependency Analyzer to parse all the prior edits
and select the most syntactically and semantically relevant ones
for generating the target edit.

Once a new edit e’ is accepted, it serves as a new edit-triggering
event to activate the above procedures.

We train our neural models from the collected over 180K com-
mits from 471 open source projects in 5 programming languages.
We evaluate our models with extensive experiments. Our extensive
experiment shows that (1) CoEdPilot can identify edit locations with
an accuracy of 70.8-85.3%; and (2) for each identified edit location,
CoEdPilot achieves the exact match rate of 41.8% and the BLEU
score of 60.7 for the top-1 recommendation. Our ablation study
shows that CoEdPilot, as a code-editing framework, can improve the
exact match rate and BLEU score of state-of-the-art edit generators
such as Grace and CoditT5 by on average 8.57% and 18.08 respec-
tively. Further, our user study on 18 participants with 3 editing tasks
on feature enhancement, refactoring, and bug fixing shows that (1)
in comparison to our baseline Copilot, CoEdPilot can be effective
in assisting users to edit code by its advantage on the project-wise
awareness and the capture of the interaction between relevant edits,
and (2) sheds light on the future improvement of the tool design such
as distribution-shifting edits from the training dataset.

Overall, we summarize our contributions as follows:

e We propose CoEdPilot, an LM-driven solution to make the state-
of-the-art edit generation models more practical by predicting the
relevant prior edits, subsequent edit location, and the interactive
nature between the edits.

o We design CoEdPilot as a modularized framework, which allows
us to plug into any edit-content generators in the community.
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Table 1: The code edits in src/testing/benchmark.go

name = b.name + "/" + name

// ... other

if b.context != nil {

common, name)
}
if l'ok {

return true

Hunk Before Edit After Edit
HI (insert) type benchContext struct { type benchContext struct {
match *matcher
maxLen int // The maxLen int // The largest recor benchmark
name. name.
} }
H2(hm6ﬂ) func runBenchmarksInternal(...) bool { func runBenchmarksInternal (...) bool {
// ... other code ... // ... other code
ctx := &benchContext{ ctx := &benchContext {
match: newMatcher (matchString, =*
matchBenchmarks, "-test.bench"),
extLen: len (benchmarkName ("", maxprocs)), extLen: len (benchmarkName ("", maxprocs)),
} }
// ... other code // ... other code
} }
H3 (replace) func (b %B) runBench(...) bool { func (b *B) runBench(...) bool {
// ... other code // ... other code
if b.level > 0 { benchName, ok := b.name, true

benchName, ok = b.context.match.fullName (&b.

Table 2: The code edits in src/testing/testing.go

Hunk Before Edit

After Edit

H4 (insert) type testContext struct {

mu sync.Mutex

// ... other c

type testContext struct {
match *matcher

mu sync.Mutex

// ... other

HS (replace) func (t *T) run(...) bool {
testName := name
if t.level > 0 {

testName = t.name + "/" + name

// ... other

func (t *T) run(...) bool {

common, name)
if lok {
return true

testName, ok := t.context.match.fullName (&t.

H6 (replace)
testContext {
return &testContext{

startParallel: make (chan bool),

maxParallel: maxParallel,
running: 1, // Set the cou
> main (sequential)

func newTestContext (maxParallel int) *

func newTestContext (maxParallel int, m
*testContext {
return &testContext(

match: m,
startParallel: make (chan bool),
maxParallel: maxParallel,

for running:

e main (sequ

*matcher)

e We implement an open-source CoEdPilot as a VS code plugin,
which adopts a cloud infrastructure and allows the programmers

to try in practice with convenience.

e We conduct extensive experiments (simulation, model-wise eval-
uation, and user study) showing the effectiveness of individual
models as independent model design, model interaction as a whole

system, and UI design as a tool.
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Figure 2: The type of edit propagation in the code-editing exam-
ple showed in Table 1 and Table 2.

Given the space limit, the tool video demonstration, experimental
details, and further discussion are available at [6].

2 MOTIVATING EXAMPLE

Table 1 and Table 2 (implemented by Go programming language)

shows a simplified code-editing example from the commit 00a2

under the project golang/go!. We summarize the programmer’s

editing intention in such a commit as follows.

Original Design. The function under edit is to update the way to

select test cases and benchmark in the golang/go project. The

Go project is delivered with the test ing package where a set of

test cases are used to check the performance on a set of benchmarks

of Go programs. The source file src/testing/testing.go

automates the testing of the project by selecting a subset of required

test cases, and the source file src/testing/benchmark.go

selects a subset of the benchmark of Go programs such as runtime

overhead, memory allocation, lock performance, etc. The old im-

plementation of selecting test cases and benchmarks is by keyword-

based matching the name of benchmark and test suites with a string

(see the hunk of Before Edit of H3 in Table 1 and HS in Table 2).

Editing Intention. In the editing session, the programmer intended

to introduce a regular expression matcher to select the required

benchmark and test cases.

Editing Implementation. To this end, the programmer edits the

benchmark.go and testing.go files as follows:

e H1 (see Table 1): Introduce a variable matcher with pointer
type *matcher in the type benchContext;

o H2 (see Table 1): Introduce a parameter of type matcher when
initializing a reference of benchContext;

o H3 (see Table 1): Replace the keyword-based matching implemen-
tation with regular-expression-based matching implementation;

o H4 (see Table 2): Introduce a variable matcher with pointer
type *matcher in the type testContext;

o HS5 (see Table 2): Replace the keyword-based matching implemen-
tation with regular-expression-based matcher implementation;

o H6 (see Table 2): Introduce a parameter of type mat cher when
initializing a reference of testContext;
While each edit is a simple operation, they are interactive and

relevant as different types of edit propagation as shown in Figure 2.

I'The address can be referred in https:/github.com/golang/go
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Figure 3: Overview of CoEdPilot, consisting of subsequent edit
analysis, edit generation, and prior edit analysis. The analy-
sis is triggered once an edit-trigger event happens. CoEdPilot
orchestrates a set of neural-transformer-based components to
accomplish the editing task

Following the notation in Table 1 and Table 2, weuse T; (i =1, ...,
6) to indicate the hunk in the code example.

¢ Syntactic Propagation: Syntactic propagation indicates that an
edit e; incurs a compilation error in the project, which further
mandates another edit e; to fix the error. For example, hunk H1
happens so as to cause a compilation error on the location of hunk
H2 for missing an initialized parameter. In Figure 2, the fact that
H1 and H2 point to each other indicates that the edit propagation
caused by program syntax is mutual.

¢ Semantic Propagation: Semantic propagation indicates that an
edit e; is propagated to e; because e; and e; are applied to similar
functionalities. In Figure 2, for the example of the editing pair
(H1, H4) and (H3, HS), an edit can propagate to the other edit in
the pair.

o Logical Propagation: Logical propagation indicates that an edit
e; lays a foundation for another edit e; to accomplish a task. In
Figure 2, H1 does not necessarily cause a compilation error at H3,
however, H1 introduces a variable mat cher so that the matching
implementation is updated at H3.

Thus, we can see that (1) the edits are interactive with each
other in a different way, (2) only a limited number of prior edits is
relevant and informative to contribute to an edit, and (3) the edit can
propagate to any possible files in the project. However, despite that
the existing state-of-the-art solutions such as GRACE [25], CCT5
[37], MODIT [15] and CoditT5 [58] lay an important foundation
(see the summary their model architecture in Figure 1), they are
still far from accomplishing the edit recommendation tasks in the
aforementioned practice.

3 APPROACH

Figure 3 shows an overview of our CoEdPilot design, which takes
a set of prior edits and an optional edit prompt, and generates the
output as a list of subsequent editing locations and their editing
options. Overall, the CoEdPilot architecture consists of subsequent
edit analysis, prior edit analysis, and edit generation.
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e Subsequent Edit Analysis takes a set of selected prior code edits
and an optional editing prompt to estimate the subsequent edits in
the project. In this work, we adopt a two-stage estimation. The first
stage estimates the relevant source files, with Edit-propagating
File Locator, for where the subsequent edits can happen in a
coarse-grained (and lighted) way. The second stage further applies
a fine-grained detector (i.e., Edit-propagating Line Locator) to
predict the editing type of each line of code in those files.

o Prior Edit Analysis takes the editing locations and selects the
most relevant prior edits with Edit-dependency Analyzer, regard-
ing their potential of syntactic, semantic, and logical edit propaga-
tion to a target edit location.

o Edit Generation generates the concrete edit options for each edit
location with predicted editing type of insert and replace, regard-
ing the selected prior edits. Note that, once the user confirms a
recommended edit option by (1) either accepting our recommen-
dation or (2) input his or her own edit, it will be included as a
new prior edit. Further, the newly applied edit serves as a new
edit-triggering event to launch a new round of editing recommen-
dations.

3.1 Subsequent Edit Analysis

Problem Statement. We consider the problem of finding the subse-
quent edits with an edit and its optional user prompt as a problem of
edit propagation. Thus, we rephrase the problem as follows. Given a
project be a set of files P, the user’s editing prompt be prp, the latest
edit e = (¢p, cq) Where ¢y, is the code before edit, and ¢, is the code
after edit, we aim to locate a subset of files F C P, where each f € F
specifies the subsequent edits by attaching each line of code with an
editing type as keep, insert, or replace.
Challenge. As mentioned above, the edits can interact with each
other regarding the syntactic dependency and semantic relevance. As
for analyzing syntactic dependencies, we usually need to parse the
whole compilable project to build the program dependency graph
[20] to track the data, control, and call dependencies. However,
the graph construction for large projects could be time-consuming.
Further, the implementation of syntactic graph construction [8, 51]
and semantic relevance [7, 18, 30] are usually language-dependent.
Therefore, we use the neural models for estimating both the syntactic
dependency and semantic relevance between two pieces of source
code in a more runtime-efficient and language-independent way.

In this work, we adopt a two-stage localization solution, i.e., file
localization in a coarse-grained way and line of code localization in
a fine-grained way.

3.1.1 Propagation File Localization. Technically, we select a
subset F C F where F’ = {f|sub.q;(f,€) > thg, f € F}, where
subeqy (., .) is a likelihood estimation function for the file f which
can be co-edited given the input edit e. Further, thg,, is a threshold
to estimate its likelihood.

We estimate the propagation likelihood regarding two factors,
i.e., (1) the estimated dependency of the file f on e, and (2) the
semantic similarity between some code in f and e. Namely, we
design Equation 1 as follows.

subgg; (f,e) = a1 -dep(e, f) + az - sem(e, ) + € (1)
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<from>
type benchContext struct {
match *matcher
maxLen int // The largest recorded benchmark name

}

<to>

ctx := &benchContext{

match: newMatcher(..}

extlen: len(benchmarkName("", maxprocs)),

Figure 4: An example of input of our transformer for learning
the dependency.

In Equation 1, we let each coefficient @; > 0. We quantize
each factor (estimated dependency dep(e, f) and semantic similarity
sem(e, f)) as a score between 0 and 1 as follows.

Estimated Dependency. Given an edit e = (cp, c4) and a source
file f, we develop a dependency inference function dep(e, f) to
quantize the likelihood that f depends on e. Technically, we use a
transformer (e.g., CodeT5 and CodeBERT) as our base model to
learn the dependency between the source code. We follow the design
of GRACE [25] by constructing the input of a transformer-based
language model as shown in Figure 4. Specifically, we use the tags
<from> and <to> as the separator between two pieces of source
code. Those tags play a role as instruction tuning. Then we add
one dense layer to have two output neurons activated with sigmoid
function, i.e., (1) the former code depends on the latter code and (2)
the latter code depends on the former code. Given a pair of source
code c1, cg, their labelled dependencies are y; and y2 (y; = 1 or
0 is for whether ¢; depends on c; and y2 = 1 or 0 is for whether
¢z depends c1), and their estimated dependency are y; and i3, we
design the loss function as Equation 2:

loss(c1, ¢2) = —(y1 X log(g1) + (1 = y1) x log(1 — 4j1)+

2
v % log(si2) + (1 - y2) X log(1 - 1)) @

In this work, we use Jin et al.’s dependency analyzer [28, 29] to
construct the training dataset. Limited by the input length, we split
a file f into k smaller segments as segy, .., segy. Further, we choose
¢p, (the code before the edit) of the latest edit as the target code c;q;.
Then we estimate the likelihood of the dependency between c;qr
and each code segment. For convenience, we use the symbol of the
second output neuron ¢ to denote the likelihood of the latter code to
depend on the former code, dep(e, f) = max(y2(ctqr, segi)). That
is, we adopt one-directional dependency to infer the edit propagation.
Further, we select the max(.) function as we favour the recall over
the precision in this stage. By replacing the analyzer tool [28, 29]
with a neural network, we reduce the runtime overhead of analyzing
a pair of code snippets from ~70 seconds to ~0.01 second.

Semantic Similarity and Prompt Relevance. We capture the se-
mantic similarity of code-to-code by neural embedding in a universal
way. The rationale is that we believe a pretrained neural network
such as CodeT5 and CodeBERT can capture both the syntactic and
semantic similarity. Therefore, still considering the limit of input
length of a transformer, we split a source file f into k segments as
segi, ..., Segk, Crar = Cp Where ¢, is the code before the edit, and
emd(.) as the representation of a piece of code or a prompt extracted
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</edit>

<edit> (€

</edit>
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Figure 5: Overview of fine-grained edit location architecture. We
formulate the edit location problem as a MLM (Mask Language
Modelling) problem to predict the edit type of each LoC (Line
of Code).

from the transformer, we can have:
sem(e, f) = max(cos(emd(ctqr), emd(seg;))) 3)

By this means, with given hyperparameters a1, a2, €, and thg,p,
we have a set of reported source files in a coarse-grained way. These
coefficients, intercept and thresholds are available at [6].

3.1.2 Propagation Line Localization. Given the located source
files with the propagation potential, we apply a sliding window
across each file to identify the editing type of each line of source
code. As shown in Figure 5, we fine-tune a base transformer model
as a MLM (Mask Language Modeling) [17] problem by instruction
tuning [47]. Overall, the input of the transformer consists of the tar-
get code inside the window, the user prompt, and the relevant prior
edits (see more details in Section 3.2). For each input component, we
introduce instructions (or tags) such as code-window, prompt,
prior—edits and edit as the separators for the model to learn
the input structure. For each line of the code, we additionally intro-
duce an operator as follows:

o keep: the operator type indicates that a line should not be changed,
symbolled as <K>.

e insert: the operator type indicates that there shall be some code
inserted after the line, symbolled as <I>.

e replace: the operator type indicates that the line should be re-
placed by either an empty line (i.e., delete) or a few different lines
(update), symbolled as <R>.

These edit operators are masked with a special token <MASK> in
input. Therefore, we apply MLLM task on the operators to train the
model to recover them. The prompt is collected from the commit
message from the code commit histories. Further, we introduce the
details of selecting the prior edits in Section 3.2 and Section 3.4.
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Figure 6: Overview of edit generator, which generates the edit
content for a fine-grained edit location.

3.2 Prior Edit Analysis

Problem Statement. Given a set of prior edits Ep = {ep,, ..., €p;. }
where e; = (cp,, ¢q;), and the target code ¢y, , we quantize the like-
lihood of the influence of ey, to ¢, between 0 and 1. Specifically,
we denote the estimation function as rel(.,.) : Ep X C — (0,1),
where C is the set of pieces of code, i.e., rel(e;, cp,,.) € (0,1).

We quantize the relevance of prior edits by their syntactic depen-
dency and semantic similarity by Equation 4:

rel(ep;, cp,,. ) = FCN(dep(ep;, cp,,, ). sem(ep;, cp,,, )s

locsim(ep;s Cpy,, )

“

Further, in Equation 4, FCN is a multi-layer fully connected
network, the dependency estimation function dep(., .) for estimating
the dependency from cc,,, to the code before the edit of ep, and
the semantic relevance function sem(., .) is defined in Section 3.1.1.
Function locs;p, evaluates the proximity between ey, and cp,  as:

Hoctep)octevra)l i 14 ey, ¢y, ) < k

1 —

focsim(€py bar) {O otherwise
&)
In Equation 5, we use a sliding window of size k to define whether
the location difference of ep, and cp, . is small (i.e., ld(ep;, cp,,.) <
k). If it is, we estimate the proximity as Equation 5. Otherwise,
the function locsim (., .) is 0. Finally, we define a threshold thy,; to
identify the set of relevant prior edits E,.; = {ep|rel(ep,cp, ) >

thpri}~

3.3 Edit Generation

Figure 6 shows the overall model architecture to generate edit content
on one edit location and selected prior edits. Similar to the design of
the location of edit lines, the edit generation model takes as input a
code-window under the edit, the user’s prompt, and relevant prior
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edits. The prompt and the prior edits share similar tags for the model
to capture the structure.

In contrast, the code window describes a hunk consists of consec-
utive lines of the same edit type (replace and insert) with a few lines
of type keep as its context. Specifically, each line is attached with
a tag <K> for the edit type of keep; and with a tag <I> or <R> for
the edit type of insert and replace respectively. Further, the output
predicts the edit content of the edit location. We train the transformer
with classical cross-entropy loss [1]. On the runtime, we use Beam
Search [21] to generate k edit options ranked with their confidence.
Last but not least, the user can either accept or modify upon our
recommended edits, the new edit will be kept as a new prior edit as
user feedback, to further facilitate the whole editing session.

3.4 Model Training

Overall, we have the following neural models to train, i.e., an Edit-
dependency Analyzer (see Section 3.1.1), an Edit-propagating Line
Locator (see Section 3.1.2), and an Edit-content Generator (see
Section 3.3).

We first train the Edit-dependency Analyzer by collecting the
dependency of source code by running Jin et al.’s dependency analy-
sis tool [28, 29] on the open-source projects. Note that, our neural
dependency analyzer is expected to predict the dependency between
arbitrary two pieces of code without the awareness of their program-
ming language. Then, we train the Edit-propagating Line Locator
and an Edit-content Generator in an interactive manner. We collect
the commits from the open source projects as the training dataset
(see Section 5). For each commit, we take one hunk as an individual
edit, then we train our models by estimating the random order of
both intra-file edits and inter-file edits. The rationale is that we do
not know the sequence of files being edited and that of the edited
locations within a file. Therefore, we do not make any editing partial
order assumption on those edits.

Further, given a set of prior edits, we normalize their relevance
into a probability distribution X. For example, assume that we have
three prior edits with the relevance to an edit and a prompt (i.e., the

editing description) as 0.7, 0.3, 0.6, then we normalize their relevance

= 0.7 0.3 0.6 _
t0 X = {§7503506> 97703506 0.770°3506 ) = 10-437,0.187,0.375} to

sample the prior edits during the training.

4 TOOL DESIGN

Figure 7 shows a screenshot of our CoEdPilot tool as a Visual Studio
Code extension [2], which consists of functions designed according
to our approach (see Figure 3). We introduce the basic functions and
GUI (see Figure 7) as follows. A detailed video is available at [6].

o Triggering the Edit Recommendation: When the users edit the
code, they can trigger the edit recommendation with a shortcut
(or right-click the editor) to request edit locations. Then, an Edit
Description Input @ can be shown for them to input their optional
description of the edit.

e Subsequent Edit Recommendation: Then, CoEdPilot shows an
Edit Location View @ where the edit locations are organized in
terms of edit files as their parent nodes and edit lines as their
child nodes. The users can click a child node to highlight the
corresponding location in the code editor, where a line with edit
type of insert is in green and a line with that of replace is in red.
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e Edit Option Recommendation: Next, the users can further re-
quest the edit option in each edit location, as shown in Editable
Difference View @ in Figure 7 where how the code before and after
the edit is simulated. Users can use the Edit Operation Button ®
to browse, accept and ignore the edit options. The accepted edit
(and their follow-up modification) will be recorded as prior edits
for next recommendation.

o Cloud Service: Last, we follow the design of Copilot to deploy
CoEdPilot on the cloud so that the user request (e.g., for edit
location and edit generation) and their response are communicated
between the server and the client. Users can check the network
connection by Query State ® as in Figure 7.

S EXPERIMENT

We evaluate CoEdPilot with the following research questions:

¢ RQ1 (Locating Propagating Files, see Section 3.1.1): Can Co-
EdPilot locate the edit-propagating source files?

o RQ2 (Locating Propagating Lines, see Section 3.1.2): Given
the located source files, can CoEdPilot locate the edit-propagating
lines of code?

¢ RQ3 (Edit Generation, see Section 3.3): Given edit location,
what is the performance of generating edit options?

¢ RQ4 (Prior Edit Relevance, see Section 3.1.2): Can CoEdPilot
select the relevant prior edits accurately?

o RQS5 (Performance Boost for State-of-the-arts): Whether the
framework of CoEdPilot further boost the performance of the
state-of-the-art solutions?

Note that, CoEdPilot serves more as a complementary framework
to enhance the state-of-the-art edit generator by locating subsequent
edits and capturing relevant prior edits. Thus, in RQS5, we briefly
compare our edit generation model with the state-of-the-arts, fol-
lowed by how we can boost their performance.

5.1 Benchmark Construction

To evaluate the performance of CoEdPilot, we construct a benchmark
of 5 programming languages (i.e., JavaScript, Java, Go, Python, and
TypeScript) from 471 open-source projects. Upon construction, we
select the top 100 projects from GitHub according to the number of
their stars. For each programming language, we remove the projects
with educational purposes (e.g., tutorial) or non-English commit
messages. For each project, we select commits with the following
criteria? in our dataset:

e A commit shall include at least three hunks;

e A commit shall include hunks with the number of changed lines
of code less than 15 (considering the length limit of our model);

e The commit message shall be an English message with a token
length over 5;

e The commit shall not contain the automatically generated source
files (e.g., the Java files with @auto keywords) or non-source
files (e.g., .bak, .log, and .pyc files)

2In this work, we provide our definition of good quality, but we encourage the practi-
tioners to adjust the definition according to their practical scenarios.
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Figure 7: The screenshot of CoEdPilot tool, implemented as a Visual Studio Code extension.

Table 3: Benchmark of CoEdPilot on 471 open source projects on
5 programming languages. For the columns of ‘Train’, ‘Valid’,
‘Test’ dataset, we show the number of their training samples.

Language Model Train Valid Test #Proj #Com #File #Hunk
File location 22K 3K 6K
JavaScript Line location 382K 54K 109K 93
Edit generation 460K 65K 130K
File location 68K 10K 20K
Java Line location 335K 47K 95K 89 24K 72K 556K
Edit generation 389K 55K 111K
File location 46K 7K 14K
Go Line location 695K 99K 198K 98 50K 88K 1174K
Edit generation 822K 117K 234K
File location 60K 9K 17K
Python Line location 327K 46K 93K 91
edit generation 389K 55K 111K
File location 65K 9K 17K
TypeScript Line location 480K 68K 137K 100 39K 76K 817K
Edit generation 572K 81K 163K

34K 34K 658K

33K 42K 555K

As aresult, we have the dataset as shown in Table 3, with an average
commit filter rate of 6.89%. Further, we train our dependency ana-
lyzer on 49 sampled projects of different programming languages
with 77K positive pairs and 24K randomly sampled negative pairs.

5.2 Experiment Setup

5.2.1 RQ1 (Propagating-file Location). We extract a commit
with k hunks as a set, denoted as H, located in m source files, to
construct k training samples. In each sample, we select one hunk

h € H as the target hunk. Assume that the m’ files with other hunks
as the ground-truth positive files, and we randomly select n (n > m)
files not in the commit as negative files. If CoEdPilot reports g files
as positive and h out of g files are true positive, we measure the
precision of file location as g and the recall of the file location as %
5.22 RQ2 (Propagating-line Location). We parse a commit
with k hunks as a set, denoted as H, located in m files to construct k
training samples as follows. Each time, we select one out of k hunks,
i.e., h € H, as the target edit to be predicted. We select relevant prior
edits from H \ {h} with CoEdPilot. Then we apply a sliding window
of size s across the m files for CoEdPilot to report the hunk h. We
apply the above procedure for k times, each of which we select a
different target edit.

We measure the average accuracy, precision, and recall in the k
times as follows. In each time, for the m lines of code not in the
prior edits, we measure the accuracy as %, where n is the number of
lines with edit type predicted accurately. Further, we compute the
precision and recall for each of the three labels individually. Assume
for each edit type, there are [ positive lines of code and CoEdPilot
reports ¢ lines of code as positive and d out of ¢ lines are the true
positive, thus we have the precision as % and the recall as %. Given
the imbalance in sample sizes across these labels, we employ the
macro-averaging method to calculate the final precision and recall.

5.2.3 RQ3 (Edit Generation). Given a commit with the set of
hunks as H, we then choose one hunk £ as the target edit, and have
H’ = H \ {h}, as the prior edits. We use Beam Search to generate
the top-1, top-3, top-5, and top-10 edit options for each edit location.
For each configuration, we measure its performance with (1) the
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exact match rate (EMR) for a commit (i.e., an edit session) and (2)
the BLEU4 score [45] of the generated edit content. Specifically,
assume that we generate the edit content exactly the same as the
ground truth edit for m out of k times, the exact match rate is %
Further, we calculate the highest BLEU4 score from all k times’
predictions.

5.2.4 RQ4 (Prior Edit Prediction). We compare training the edit
locating models and the edit generation models with selective prior
edits (by our Edit-dependency Analyzer) and random prior edits.
We compare their performance as mentioned in Section 5.2.2 and
Section 5.2.3.

5.2.5 RQ5 (Performance Boost). We design the experiment as
follows. We select the state-of-the-art solutions, i.e., GRACE [25],
CCTS5 [37], and CoditT5 [58], as the baselines, observe the boosting
effect of CoEdPilot. CoPilot [23] is neglected for its programming
API is yet published at the time of this work.

e Rough Edit Location We provide the baselines with rough lo-
cation as a general hunk area to observe their performance in
generating edits.

o Precise Edit Location We equip baselines with our edit location
model so that they are fed with specific lines to further observe
their performance.

‘We measure the performance of edit generation as in Section 5.2.5.
Given the space limit, we provide more experimental details (e.g.,
hyperparameters, hardware configuration, etc.) in our websites [6].

5.3 Results

5.3.1 RQ1 and RQ2 (Propagating-file Location & Line). Ta-
ble 4 shows the overall performance of CoEdPilot to detect the
edit locations regarding different granularity (i.e., file-level and line-
level). We achieve a average precision of 79.52% and a recall of
72.93% to locate the edit file, and the precision of on average 86.97%
and the recall of 84.82% to locate the edit lines. We observe that the
performance of CoEdPilot lies in identifying the edit pattern (e.g.,
the commit 4bf1c in Golang/Go project (see an example at [10]),
which demonstrates the concrete example). Further, the average run-
time overhead to infer a file takes 1.6s. We probe into the commits
and summarize the reasons for false positives and false negatives as
follows:

Reason 1: Noisy Samples in the Training Dataset. As for inferring
the location of subsequent edits, we find that the quality of the
dataset is of vital importance. Despite that we have set a number of
criteria to filter out some commits, we still observe that noisy training
samples might introduce negative effects. One of the observations
is that some programmers can submit some irrelevant changes files
(as well as the edits) in a single commit, which makes CoEdPilot
challenging to report some edit locations. Further, we find that quite
a number of edits are about code comments and documentation (e.g.,
the commit 3£442 in golang/go project [9]), which may not be
well captured by CoEdPilot.

Nevertheless, cleaning the whole dataset regarding the edit rele-
vance is a non-trivial work, which is iterative and interactive between
human observation/interpretation and automatic inference. Thus, we
leave the solution in our future work.
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Table 4: The accuracy of propagating-file & line location

Programming File Location Line Location
Language Precision Recall Accuracy Precision Recall
JavaScript 81.52%  7121%  94.89% 86.62%  83.88%
Python 70.84%  73.40%  94.48% 85.03%  82.64%
Java 85.28% 75.67% 95.37% 87.99% 85.99%
Go 80.10%  72.12%  95.79% 88.99%  87.32%
TypeScript 79.84%  72.25%  95.23% 86.21%  84.25%
Average 79.52%  72.93%  95.15% 86.97%  84.82%
Table 5: The performance of edit generation
ﬁ;ﬁiﬁi‘;:"“g Metric  Top-1  Top-3  Top-5 Top-10
Javascript BLEU4  60.70 69.71 71.37 73.02
EMR 41.83% 47.50% 49.31% 50.99%
Python BLEU4 57.59 65.65 67.47 69.11
EMR 3348% 3852% 4041% 42.09%
Java BLEU4  60.54 68.35 70.11 71.73
EMR  40.69% 46.87% 48.78% 50.51%
Go BLEU4 6537 71.96 73.47 74.98
EMR 4894% 55.09% 57.18% 59.16%
. BLEU4 61.75 70.31 71.99 73.68
Typescript

EMR 41.58% 46.86% 48.57% 50.65%

Table 6: Relevance of prior edits on edit location & generation

Edit-propagating Edit-content

Prior Edit .
line locator generator

Relevance

Accuracy Precision Recall EMR BLEU-4
Selective o) 090, 86.62%  83.88% 4183%  60.70
Prior Edits
Random g, oo 8173%  7237% 1887%  46.56
Prior Edits

Reason 2: Informativeness of Edit Inference. Further, we observe
that some false negatives are caused by single-directed interaction.
For example, an addition of method call implies an addition of
importing a relevant library declaring the method, however, the im-
plication does not hold in the other way (see example at [11]). When
some interactions between the edits are not causal, the inference
becomes more challenging.

5.3.2 RQ3and RQ4 (Edit Generation & Prior Edit Prediction).
Table 5 shows the overall performance of edit generation with Top-k
candidates. Further, Table 6 shows the relevance of prior edits in
locating the subsequent edits and edit content generation. We can
see that (1) CoEdPilot achieves good performance in generating
the edit options, and (2) the selective prior edits play a vital role
in enhancing the performance. An example can be referred to [11],
where CoEdPilot is good at capturing the edit pattern (via syntactic
dependency or semantic relevance). The random prior edits can
break the pattern, which introduces additional edit chaos during the
recommendation. Further, we find that the mis-prediction of the edit
options shares similar reasons introduced in Section 5.3.1.

5.3.3 RQ5 (Performance Boost). In Table 7, we compare Co-
EdPilot with three baselines, i.e., GRACE, CCTS5, and CoditT5, in
generating top-1 edit option. As described in Section 5.2.5, the fine-
tuned baselines are fed with the hunk-level location (i.e., the lines
included in a hunk) to predict the edited code. We can see that the
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Table 7: Performance Boost with CoEdPilot

Approach EMR BLEU4
CoEdPilot (Line Locator + Edit Generator) 29.96 78.58
CoditT5 7.42 69.01
GRACE 2.73 38.36
CCT5 14.19 75.37
GRACE + Line Locator 18.61 71.61
CCTS5 + Line Locator 15.45 78.27

Table 8: Runtime Estimation of CoEdPilot
Edit-content

File locator Line locator

Step (s/ file) (s/ file) (ff‘;:z;tlg;)
Prepare Input 0.0064 0.3976 0.0683
Model Inference 0.1008 0.0878 0.3972
Total 0.1072 0.4854 0.4655

performance gap between CoEdPilot and the baselines are large. The
reason lies in that the edit locator can largely help the edit generator
to generate edits in a far more precise position.

Given that CoEdPilot is an extensible and integrable framework,
we replace our edit generation model with the fine-tuned baselines,
observing that the performance of both GRACE and CCTS5 is boosted
significantly. Note that, CoditT5 can predict location as CoEdPilot,
we do not equip it with our locator. In comparison to CoditT5, we
observe that our two-stage model has the advantage of utilizing more
input length given the limit of existing base models such as CodeTS5.

6 USER STUDY

To further evaluate how the programmers can use CoEdPilot as a
tool in practice, we design a user study to evaluate its functionalities
as described in Section 4.

Baseline. To evaluate whether the design of CoEdPilot can well
support practical code edits, we choose Copilot [23] as a baseline
for its wide popularity for generating code. We omit the full manual
editing mode in this study because (1) Copilot is supported by pow-
erful GPT-3.5 Turbo, which is shown to improve the programming
productivity by 27% - 57% [42], and (2) the limitation of budget and
overhead.

Participant. We recruit 18 participants from three universities in
China and Singapore, including both undergraduate and graduate
students. We conduct a pre-study (including a test) based on their
programming experience. Their demographic analysis is available
at [6]. We divide them into two equivalent groups based on their ex-
perience. The experimental group uses CoEdPilot while the control
group uses Copilot in the study.

Code Edit Tasks. To ensure that the participants can focus on editing
with a light-weighted overhead of comprehension, we extract a
simplified version from three real-world commits. The tasks are
selected as follows:

o Bug Fix (Task 1): We show a bug as mistakenly used range (arr)
for range (len (arr)) in the project. We ask the participants
to find and fix multiple such mistaken uses across the project.

o Refactoring (Task 2): We ask the participants to extract three
pieces of duplicated code into a new function.
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Table 9: Overall performance of EG (Experimental Group) and
CG (Control Group):The completion time is in seconds.

EG Taskl Task2 Task3 | CG Taskl Task2 Task3
P1 221 515 1196 | P10 339 696 1287
P2 897 389 279 | P11 360 776 1563
P3 366 487 216 | P12 480 483 545
P4 160 529 963 | P13 522 724 1770
P5 230 301 756 | P14 277 395 838
P6 364 473 617 | P15 181 446 930
P7 329 688 588 | P16 337 720 825
P8 840 780 1020 | P17 151 666 1515
P9 290 638 1050 | P18 266 722 1563
Average 410.78 533.33 742.78 | Average 323.67 625.33 1070.33

o Feature Enhancement (Task 3): We ask the participants to intro-
duce a scale capability to normalize the input vectors for existing
class classifiers, which requires multiple edit propagation.

Study Setup. We conducted a warm-up session with a tutorial for
both CoEdPilot and Copilot, followed by a practice task, to famil-
iarize them with the tools. For each task, we allocate each partici-
pant with 30 minutes to accomplish. We prepare the test cases for
each edit task for them to validate their edits. The test cases are
designed to guarantee that all the participants can confirm their ac-
complishing edits. During the study, we ask the participants to run
a video-recorder so that we can conduct the post-mortem analysis.
Finally, we measure their performance regarding (1) whether they
can successfully accomplish the tasks (i.e., all the test cases passed)
and (2) their efficiency in accomplishing the tasks.

Results. Table 9 shows the participants’ performance to accomplish
the code-editing tasks, with the following observation:

e Task 1: EG underperforms CG in Task 1 on average completion
time without statistical significance (the p-value in Wilcoxon
Signed Rank test is 0.33 and the effect size is -0.08).

o Task 2: EG outperforms CG in Task 2 on average completion time
without statistical significance (the p-value in Wilcoxon Signed
Rank test is 0.07 > 0.05 and the effect size is 0.60).

o Task 3: In contrast, EG outperforms CG in Task 3 on the comple-
tion time with statistical significance (the p-value is 0.003 < 0.05
and the effect size is 0.96).

Why CG outperforms EG in Task 1? In Task 1 (i.e., fixing a dupli-
cated bug), we observe that CoEdPilot users (EG group) still suffer
from the learning curve of the new tool for running the function of
predicting edit location and edit content. Further, some participants
(P2 and P8) were still building their trust in our recommendations
such as edit location and edit content, despite that they are accurate.
As aresult, they spend more time confirming our results. We deem
this a common problem for any new tool deployed on either user
study or production line. In contrast, given that the edit pattern in
the task is simple, some Copilot user (e.g., P17) tries to search the
expression across the project. In the other words, they address their
need of edit location with keyword-based search in Task 1.

Why EG outperforms CG in Task 2 but without statistical sig-
nificance? In Task 2 (i.e., refactoring by method extraction), the
CoEdPilot users become more experienced in adapting our tool by
switching between different functions such as location prediction,
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edit generation, edit option selection, etc. The accurate edit loca-
tion can largely mitigate the efforts in finding the cross-file code
duplication for the new function. Compared to the CG participants
with manually summarized edit patterns, the EG group is gradually
outperforming the CG group (the p-value 0.07 is closer to 0.05).
How EG outperforms CG in Task 3? Task 3 (i.e., enhance the
model training with scale function) is the most difficult task, where
the editing pattern cannot be captured by keyword search. For exam-
ple, one edit to insert a scale parameter is associated with another
edit to insert a follow-up decision logics with the scale variable.
In such a scenario, EG outperforms CG in general.

Nevertheless, we observe that the performance of the participants
varies, some accomplish the task in less than 5 minutes (e.g., P2)
while some take a longer time (e.g., P1, P8, and P9). We investigate
their tool logs and videos, finding that some participants modify
the edit content with their own interpretation, which leads to the
buggy code. Taking the buggy edit as the prior edits, CoEdPilot can
generate confusing edits afterwards. Only by running the test cases
to validate the results, the participants can realize they produce a bug
during the editing. Human mistakes in such an interaction-based tool
are a long-standing problem, we will address the issue in our future
work. Further, the CoEdPilot group accepts recommended 69.3%
edit options, among which they modify 31.6% generated edits. For
the space limit, more statistics of user behaviors in the study are
available at [6].

7 THREAT TO VALIDITY

Several aspects of the user study may impair its validity:

Internal Validity: In this study, the experiment group may face a
steeper learning curve, while the control group is already acquainted
with CoPilot. This learning disparity could lead to observed differ-
ences in the test that are attributed to learning effects rather than the
actual performance of the extension.

External validity: The edit tasks are simplified versions of code
derived from actual commits and equipped with comprehensive
instructions. This modification might deviate from the real editing
scenario. Moreover, as edit tasks exclusively focus on Python in this
study, such specificity choice could confound the interpretation of
the plugin’s effectiveness.

Statistical Validity: Due to the limitation of time and resources, we
recruited 18 participants in the study. The relatively small size may
not provide sufficient statistical power to detect genuine differences
in the effectiveness of the extension. Consequently, the generaliz-
ability and robustness of the study findings might be compromised.

8 RELATED WORK

Code Generation. Code generation is long standing software en-
gineering task [13, 35, 48, 55, 56], which starts from sequence-
based and tree-based approaches [39, 49], and gravitates towards
pre-trained language models, such as BERT [17], GPT [12], TS
[26, 46], CodeBERT [19], GraphCodeBERT [24], DietCodeBERT
[60], CodeTS5 [54], CodeT5+ [53], CodeT [16], and Incoder [22]. Re-
cently, StarCoder [34] is trained with over 8 programming languages,
Git commits, GitHub issues, and Jupyter notebooks. It outperforms
existing open Code LLMs on popular programming benchmarks and
matches or surpasses closed models such as code-cushman-001 from

ISSTA 24, September 16—20, 2024, Vienna, Austria

OpenAl (the original Codex [43] model). Meanwhile, our approach
uniquely generates incremental edits, rather than new code.

Code Edit Generation. Among the work to edit code [14, 15, 27,
36, 38, 58, 59, 61], Codit [14] is the first to introduce tree-based
neural networks for predicting the edits. Following their tree model
structure, Recoder [61] introduces another abstract syntax tree (AST)
reader along with the code reader to outperform the Codit model.
Further, CURE [27] introduces the pre-training models for automatic
program repair. CoditTS5 [58] pre-train a CodeT5 [54] base model
with the input including natural language comments and edit code
hunk and the output including an edit plan. The current state-of-the-
art transformer-based model is GRACE [25], which trains a prompt-
ing large language model [57] with a designed prompt to include
the associated code update. Overwatch [59] symbolically analyzes
edit sequence patterns by formulating them into rules based on prior
program transformations. Our solution, CoEdPilot, is complemen-
tary to the majority of the transformer-based code-edit generation
model. In addition to exploring the interactive nature of code edits,
we further learn to capture the relevant prior edits and subsequent
edit location.

9 CONCLUSION

In this work, we introduce CoEdPilot, an end-to-end framework to
interactively generate code edits by orchestrating a set of neural
transformers as components, regarding prior edit analysis, subse-
quent edit analysis, and edit generation. Our extensive experiments
show that CoEdPilot is able to predict the edit location and generate
edit options in an effective way. Further, the framework is comple-
mentary to a set of state-of-the-art edit generators to boost their
performance. Our user study shows that CoEdPilot as a VS-code
plugin is effective in assisting programmers in practice. In the fu-
ture, we will improve the quality of the training dataset for a more
effective model and address the potential mistaken human feedback
in tool design.

10 DATA AVAILABILITY

Our models and datasets are published in our HuggingFace website
[5], both source code and VS-Code extension are available in our
GitHub website [3, 4].
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