CoEdPilot: Recommending Code Edits with Learned Prior Edit Relevance, Project-wise Awareness, and Interactive Nature

Chenyan Liu*
Shanghai Jiao Tong University
Shanghai, China
National University of Singapore
Singapore, Singapore
chenyan@u.nus.edu

Yufan Cai*
Shanghai Jiao Tong University
Shanghai, China
National University of Singapore
Singapore, Singapore
cai_yufan@u.nus.edu

Yun Lin†
Shanghai Jiao Tong University
Shanghai, China
lin_yun@sjtu.edu.cn

Bo Jiang
Bytedance Network Technology
Beijing, China
jiangbo.jacob@bytedance.com

Yuhuan Huang
Shanghai Jiao Tong University
Shanghai, China
hyh00u0@sjtu.edu.cn

Yunrui Pei
Shanghai Jiao Tong University
Shanghai, China
yunruipei@sjtu.edu.cn

Chenyan Liu
Bytedance Network Technology
Beijing, China

dcsdjs@nus.edu.sg

Yun Lin†
Shanghai Jiao Tong University
Shanghai, China
lin_yun@sjtu.edu.cn

Hong Mei
Shanghai Jiao Tong University
Shanghai, China
meih@pku.edu.cn

Ping Yang
Bytedance Network Technology
Beijing, China
yangping.cser@bytedance.com

Jin Song Dong
National University of Singapore
Singapore, Singapore

ABSTRACT

Recent years have seen the development of LLM-based code generation. Compared to generating code in a software project, incremental code edits are empirically observed to be more frequent. The emerging code editing approaches usually formulate the problem as generating an edit based on known relevant prior edits and context. However, practical code edits can be more complicated. First, an editing session can include multiple (ir)relevant edits to the code under edit. Second, the inference of the subsequent edits is non-trivial as the scope of its ripple effect can be the whole project.

In this work, we propose CoEdPilot, an LLM-driven solution to recommend code edits by discriminating the relevant edits, exploring their interactive natures, and estimating its ripple effect in the project. Specifically, CoEdPilot orchestrates multiple neural transformers to identify what and how to edit in the project regarding both edit location and edit content. When a user accomplishes an edit with an optional editing description, an Subsequent Edit Analysis first reports the most relevant files in the project with what types of edits (e.g., keep, insert, and replace) can happen for each line of their code. Next, an Edit-content Generator generates concrete edit options for the lines of code, regarding its relevant prior changes reported by an Edit-dependency Analyzer. Last, both the Subsequent Edit Analysis and the Edit-content Generator capture relevant prior

1 INTRODUCTION

Recent years have seen the success of the application of LM (Language Model) in code generation tasks. LM-based approaches, such as CodeBERT [19], GraphCodeBERT [24], CodeT5 [54], Copilot

ACM Reference Format:

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
Once an edit-triggering event happens (e.g., an edit set of neural transformers infer the most relevant prior edits, and capture the edit interaction ripple effect of an edit as to where the subsequent edits can happen, address the above concerns. We designed CoEdPilot to monitor the whole project [50].

Many transformer-based approaches are proposed to generalize the code generation solutions to code editing solutions, such as Grace [25], CCTS [37], CoditT5 [58], and MODIT [15]. While those approaches are different in representing the edits in deep learning models, they formulate the edit generation problem as a translation problem by (1) taking the input as known relevant prior edits (and their context) and code region (and their context) where the change is known to happen and (2) generating the output as a piece of edited code. We show a model architecture as Figure 1 to capture the general idea of the state-of-the-art solutions, where optional edit description, prior edits and their optional context, and the code under the edit are fed to a language model to output a piece of edited code.

While those solutions have laid an important foundation for code editing tasks, there is still a gap between the solutions and the practical scenarios.

- **Assumption of Relevance of Prior Edits.** In an editing session, existing work usually assumes that all the prior edits of a target edit are relevant. However, it might not be true in practice (see Section 2 for more details). Feeding the model with irrelevant prior edits can introduce noisy input, compromising the accuracy of the generated edits.

- **Assumption of Availability of Subsequent Edit Location.** In addition, it is also non-trivial to know where the edits can happen because the ripple effect of a prior edit may propagate across the whole project [50].

- **Interactive Nature between Multiple Edits.** Lastly, code edits can interact with each other regarding their syntactic dependency and semantic relevance. However, existing transformers still lack of design to capture such interaction.

In this work, we propose, CoEdPilot, an LM-based solution to address the above concerns. We designed CoEdPilot to monitor the ripple effect of an edit as to where the subsequent edits can happen, infer the most relevant prior edits, and capture the edit interaction more explicitly. To this end, we design CoEdPilot by orchestrating a set of neural transformers [52] to coherently work with each other. Once an edit-triggering event happens (e.g., an edit 𝜀 happens with an optional edit description prp), the following components are activated in an order:

- **Two-staged edit location:** In the first stage, we scan the whole project with an Edit-propagating File Locator, which reports a set of files 𝐹 where the changes can happen in a coarse-grained way. In the second stage, with the reported files 𝐹, we apply a sliding window on those files with our Edit-propagating Line Locator to report the type of edit (e.g., keep, insert, and replace) for each line of code in the files. As a result, we can have a set of lines of code with labelled type of edit, denoted as 𝐿𝑒 = {𝑙𝑒 = (𝑙, 𝑡)| 𝑙 ∈ 𝐿, 𝑡 ∈ {insert, replace}}, where 𝐿 is the set of lines of code in the project. 𝐿𝑒 includes all the lines of code predicted to be inserted with or replaced with new content.

- **Edit content generation:** With the reported editing locations 𝐿𝑒, we use our trained Edit-content Generator to further generate the edit content for each location with prediction 𝜀𝑒 = (𝑙, 𝑡), regarding the editing description prp and a set of selected relevant prior edits. Specifically, we select a set of relevant prior edits 𝑃 = {𝑒 = (𝑙, 𝑡, 𝑐, 𝑏)} to generate a list of edit options, where 𝑙 indicates the editing line of code, 𝑡 indicates the edit type, 𝑐 indicates the code content after the edit, and 𝑏 indicates the code content before the edit. Note that, 𝑐 and 𝑏 further incorporate user feedback on the code under the edit, allowing us to adapt the user’s intention on-the-fly in the editing session.

- **Edit-dependency analyzer:** For selecting the relevant prior edits, we train an Edit-dependency Analyzer to parse all the prior edits and select the most syntactically and semantically relevant ones for generating the target edit.

Once a new edit 𝜀 is accepted, it serves as a new edit-triggering event to activate the above procedures.

We train our neural models from the collected over 180K commits from 471 open source projects in 5 programming languages. We evaluate our models with extensive experiments. Our extensive experiment shows that (1) CoEdPilot can identify edit locations with an accuracy of 70.8-85.3%; and (2) for each identified edit location, CoEdPilot achieves the exact match rate of 41.8% and the BLEU score of 60.7 for the top-1 recommendation. Our ablation study shows that CoEdPilot, as a code-editing framework, can improve the exact match rate and BLEU score of state-of-the-art edit generators such as Grace and CoditT5 by on average 8.57% and 19.08 respectively. Further, our user study on 18 participants with 3 editing tasks on feature enhancement, refactoring, and bug fixing shows that (1) in comparison to our baseline Copilot, CoEdPilot can be effective in assisting users to edit code by its advantage on the project-wise awareness and the capture of the interaction between relevant edits, and (2) sheds light on the future improvement of the tool design such as distribution-shifting edits from the training dataset.

Overall, we summarize our contributions as follows:

- We propose CoEdPilot, an LM-driven solution to make the state-of-the-art edit generation models more practical by predicting the relevant prior edits, subsequent edit location, and the interactive nature between the edits.

- We design CoEdPilot as a modularized framework, which allows us to plug into any edit-content generators in the community.

Figure 1: State-of-the-art Code Editing Framework [15] [25] [33]. The dotted rectangles represent the code before and after the recommended edits.
Table 1: The code edits in src/testing/benchmark.go

<table>
<thead>
<tr>
<th>Hunk</th>
<th>Before Edit</th>
<th>After Edit</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1 (insert)</td>
<td><code>type benchContext struct {</code></td>
<td><code>type benchContext struct {</code></td>
</tr>
<tr>
<td></td>
<td><code> maxLen int // The largest recorded benchmark</code></td>
<td><code> maxLen int // The largest recorded benchmark</code></td>
</tr>
<tr>
<td></td>
<td>name. }</td>
<td>name. }</td>
</tr>
<tr>
<td>H2 (insert)</td>
<td><code>func runBenchmarksInternal(...) bool {</code></td>
<td><code>func runBenchmarksInternal(...) bool {</code></td>
</tr>
<tr>
<td></td>
<td><code> // ... other code ...</code></td>
<td><code> // ... other code ...</code></td>
</tr>
<tr>
<td></td>
<td><code> ctx := &benchContext{</code></td>
<td><code> ctx := &benchContext{</code></td>
</tr>
<tr>
<td></td>
<td><code> extLen: len(benchmarkName("", maxprocs)),</code></td>
<td><code> extLen: len(benchmarkName("", maxprocs)),</code></td>
</tr>
<tr>
<td></td>
<td><code> // ... other code ...</code></td>
<td><code> // ... other code ...</code></td>
</tr>
<tr>
<td>H3 (replace)</td>
<td><code>func (b *B) runBench(...) bool {</code></td>
<td><code>func (b *B) runBench(...) bool {</code></td>
</tr>
<tr>
<td></td>
<td><code> // ... other code ...</code></td>
<td><code> // ... other code ...</code></td>
</tr>
<tr>
<td></td>
<td><code> if b.level > 0 {</code></td>
<td><code> if b.level > 0 {</code></td>
</tr>
<tr>
<td></td>
<td><code> name = b.name + "/" + name</code></td>
<td><code> benchName, ok := b.name, true</code></td>
</tr>
<tr>
<td></td>
<td><code> if b.context != nil {</code></td>
<td><code> if b.context != nil {</code></td>
</tr>
<tr>
<td></td>
<td>` benchName, ok := b.context.match.fullName(&b.</td>
<td>` benchName, ok := b.context.match.fullName(&b.</td>
</tr>
<tr>
<td></td>
<td><code> common, name)</code></td>
<td><code> common, name)</code></td>
</tr>
<tr>
<td></td>
<td><code> if !ok {</code></td>
<td><code> if !ok {</code></td>
</tr>
<tr>
<td></td>
<td><code> return true</code></td>
<td><code> return true</code></td>
</tr>
<tr>
<td></td>
<td><code> // ... other code ...</code></td>
<td><code> // ... other code ...</code></td>
</tr>
</tbody>
</table>

Table 2: The code edits in src/testing/testing.go

<table>
<thead>
<tr>
<th>Hunk</th>
<th>Before Edit</th>
<th>After Edit</th>
</tr>
</thead>
<tbody>
<tr>
<td>H4 (insert)</td>
<td><code>type testContext struct {</code></td>
<td><code>type testContext struct {</code></td>
</tr>
<tr>
<td></td>
<td><code> mu sync.Mutex</code></td>
<td><code> mu sync.Mutex</code></td>
</tr>
<tr>
<td></td>
<td><code> // ... other code ...</code></td>
<td><code> // ... other code ...</code></td>
</tr>
<tr>
<td>H5 (replace)</td>
<td><code>func (t *T) run(...) bool {</code></td>
<td><code>func (t *T) run(...) bool {</code></td>
</tr>
<tr>
<td></td>
<td><code> testName := name</code></td>
<td>` testName := t.context.match.fullName(&t.</td>
</tr>
<tr>
<td></td>
<td><code> if t.level > 0 {</code></td>
<td><code> common, name)</code></td>
</tr>
<tr>
<td></td>
<td><code> testName = t.name + "/" + name</code></td>
<td><code> if !ok {</code></td>
</tr>
<tr>
<td></td>
<td><code> // ... other code ...</code></td>
<td><code> return true</code></td>
</tr>
<tr>
<td></td>
<td>`</td>
<td><code> // ... other code ...</code></td>
</tr>
<tr>
<td>H6 (replace)</td>
<td><code>func newTestContext(maxParallel int) *</code></td>
<td><code>func newTestContext(maxParallel int, m *matcher) </code></td>
</tr>
<tr>
<td></td>
<td><code> testContext {</code></td>
<td><code> +testContext {</code></td>
</tr>
<tr>
<td></td>
<td><code> return &testContext{</code></td>
<td><code> return &testContext{</code></td>
</tr>
<tr>
<td></td>
<td><code> startParallel: make(chan bool),</code></td>
<td><code> startParallel: make(chan bool),</code></td>
</tr>
<tr>
<td></td>
<td><code> maxParallel: maxParallel,</code></td>
<td><code> maxParallel: maxParallel,</code></td>
</tr>
<tr>
<td></td>
<td>` running: i, // Set the count to 1 for the main (sequential) test.</td>
<td>` running: i, // Set the count to 1 for the main (sequential) test.</td>
</tr>
<tr>
<td></td>
<td>`</td>
<td>`</td>
</tr>
</tbody>
</table>

- We implement an open-source CoEdPilot as a VS code plugin, which adopts a cloud infrastructure and allows the programmers to try in practice with convenience.
- We conduct extensive experiments (simulation, model-wise evaluation, and user study) showing the effectiveness of individual models as independent model design, model interaction as a whole system, and UI design as a tool.
Figure 2: The type of edit propagation in the code-editing example showed in Table 1 and Table 2.

Given the space limit, the tool video demonstration, experimental details, and further discussion are available at [6].

2 MOTIVATING EXAMPLE

Table 1 and Table 2 (implemented by Go programming language) shows a simplified code-editing example from the commit 00a2 under the project golang/go. We summarize the programmer’s editing intention in such a commit as follows.

Original Design. The function under edit is to update the way to select test cases and benchmark in the golang/go project. The Go project is delivered with the testing package where a set of test cases are used to check the performance on a set of benchmarks of Go programs. The source file src/testing/testing.go automates the testing of the project by selecting a subset of required test cases, and the source file src/testing/benchmark.go selects a subset of the benchmark of Go programs such as runtime overhead, memory allocation, lock performance, etc. The old implementation of selecting test cases and benchmarks is by keyword-based matching the name of benchmark and test suites with a string (see the hunk of Before Edit of H3 in Table 1 and H5 in Table 2).

Editing Intention. In the editing session, the programmer intended to introduce a regular expression matcher to select the required benchmark and test cases.

Editing Implementation. To this end, the programmer edits the benchmark.go and testing.go files as follows:
- H1 (see Table 1): Introduce a variable matcher with pointer type *matcher in the type benchmark;
- H2 (see Table 1): Introduce a parameter of type matcher when initializing a reference of benchmarkContext;
- H3 (see Table 1): Replace the keyword-based matching implementation with regular-expression-based matching implementation;
- H4 (see Table 2): Introduce a variable matcher with pointer type *matcher in the type testContext;
- H5 (see Table 2): Replace the keyword-based matching implementation with regular-expression-based matcher implementation;
- H6 (see Table 2): Introduce a parameter of type matcher when initializing a reference of testContext;

While each edit is a simple operation, they are interactive and relevant as different types of edit propagation as shown in Figure 2.

Following the notation in Table 1 and Table 2, we use $T_i (i = 1, ..., 6)$ to indicate the hunk in the code example.

- **Syntactic Propagation:** Syntactic propagation indicates that an edit e_i incurs a compilation error in the project, which further mandates another edit e_j to fix the error. For example, hunk H1 happens so as to cause a compilation error on the location of hunk H2 for missing an initialized parameter. In Figure 2, the fact that H1 and H2 point to each other indicates that the edit propagation caused by program syntax is mutual.
- **Semantic Propagation:** Semantic propagation indicates that an edit e_i is propagated to e_j because e_i and e_j are applied to similar functionalities. In Figure 2, for the example of the editing pair (H1, H4) and (H3, H5), an edit can propagate to the other edit in the pair.
- **Logical Propagation:** Logical propagation indicates that an edit e_i lays a foundation for another edit e_j to accomplish a task. In Figure 2, H1 does not necessarily cause a compilation error at H3, however, H1 introduces a variable matcher so that the matching implementation is updated at H3.

Thus, we can see that (1) the edits are interactive with each other in a different way, (2) only a limited number of prior edits is relevant and informative to contribute to an edit, and (3) the edit can propagate to any possible files in the project. However, despite that the existing state-of-the-art solutions such as GRACE [25], CCTS [37], MODIT [15] and CodiT5 [58] lay an important foundation (see the summary their model architecture in Figure 1), they are still far from accomplishing the edit recommendation tasks in the aforementioned practice.

3 APPROACH

Figure 3 shows an overview of our CoEdPilot design, which takes a set of prior edits and an optional edit prompt, and generates the output as a list of subsequent editing locations and their editing options. Overall, the CoEdPilot architecture consists of subsequent edit analysis, prior edit analysis, and edit generation.
• **Subsequent Edit Analysis** takes a set of selected prior code edits and an optional editing prompt to estimate the subsequent edits in the project. In this work, we adopt a two-stage estimation. The first stage estimates the relevant source files, with *Edit-propagating File Locator*, for which the subsequent edits can happen in a coarse-grained (and lighted) way. The second stage further applies a fine-grained detector (i.e., *Edit-propagating Line Locator*) to predict the editing type of each line of code in those files.

• **Prior Edit Analysis** takes the editing locations and selects the most relevant prior edits with *Edit-dependency Analyzer*, regarding their potential of syntactic, semantic, and logical edit propagation to a target edit location.

• **Edit Generation** generates the concrete edit options for each edit location with predicted editing type of *insert* and *replace*, regarding the selected prior edits. Note that, once the user confirms a recommended edit option by (1) either accepting our recommendation or (2) input his or her own edit, it will be included as a new prior edit. Further, the newly applied edit serves as a new edit-triggering event to launch a new round of editing recommendations.

3.1 Subsequent Edit Analysis

Problem Statement. We consider the problem of finding the subsequent edits with an edit and its optional user prompt as a problem of edit propagation. Thus, we rephrase the problem as follows. Given a project be a set of files F, the user’s editing prompt be prp, the latest edit $e = (c_b, c_a)$ where c_b is the code before edit, and c_a is the code after edit, we aim to locate a subset of files $F_C \subseteq F$, where each $f \in F_C$ specifies the subsequent edits by attaching each line of code with an editing type as *keep*, *insert*, or *replace*.

Challenge. As mentioned above, the edits can interact with each other regarding the syntactic dependency and semantic relevance. As for analyzing syntactic dependencies, we usually need to parse the whole compilable project to build the program dependency graph [20] to track the data, control, and call dependencies. However, the graph construction for large projects could be time-consuming. Further, the implementation of syntactic graph construction [8, 51] and semantic relevance [7, 18, 30] are usually language-dependent. Therefore, we use the neural models for estimating both the syntactic dependency and semantic relevance between two pieces of source code in a more runtime-efficient and language-independent way.

In this work, we adopt a two-stage localization solution, i.e., file localization in a coarse-grained way and line of code localization in a fine-grained way.

3.1.1 Propagation File Localization

Technically, we select a subset $F' \subseteq F$ where $F' = \{f | sub_{edit}(f, e) > th_{sub} \forall f \in F\}$, where $sub_{edit}(\cdot, \cdot)$ is a likelihood estimation function for the file f which can be co-edited given the input edit e. Further, th_{sub} is a threshold to estimate its likelihood.

We estimate the propagation likelihood regarding two factors, i.e., (1) the estimated dependency of the file f on e, and (2) the semantic similarity between some code in f and e. Namely, we design **Equation 1** as follows.

$$sub_{edit}(f, e) = \alpha_1 \cdot dep(e, f) + \alpha_2 \cdot sem(e, f) + \epsilon$$

(1)

Figure 4: An example of input of our transformer for learning the dependency.

In **Equation 1**, we let each coefficient $\alpha_i > 0$. We quantify each factor (estimated dependency $dep(e, f)$ and semantic similarity $sem(e, f)$) as a score between 0 and 1 as follows.

Estimated Dependency. Given an edit $e = (c_b, c_a)$ and a source file f, we develop a dependency inference function $dep(e, f)$ to quantify the likelihood that f depends on e. Technically, we use a transformer (e.g., CodeT5 and CodeBERT) as our base model to learn the dependency between the source code. We follow the design of GRACE [25] by constructing the input of a transformer-based language model as shown in **Figure 4**. Specifically, we use the tags `<from>` and `<to>` as the separator between two pieces of source code. Those tags play a role as instruction tuning. Then we add one dense layer to have two output neurons activated with sigmoid function, i.e., (1) the former code depends on the latter code and (2) the latter code depends on the former code. Given a pair of source code c_1, c_2, their labelled dependencies are y_1 and y_2 ($y_1 = 1$ or 0 is for whether c_1 depends on c_2 and $y_2 = 1$ or 0 is for whether c_2 depends c_1), and their estimated dependency are \hat{y}_1 and \hat{y}_2, we design the loss function as **Equation 2**:

$$loss(c_1, c_2) = -(y_1 \times \log(\hat{y}_1)) + (1 - y_1) \times \log(1 - \hat{y}_1) + y_2 \times \log(\hat{y}_2) + (1 - y_2) \times \log(1 - \hat{y}_2))$$

(2)

In this work, we use Jin et al.’s dependency analyzer [28, 29] to construct the training dataset. Limited by the input length, we split a file f into k smaller segments as $seg_1, ..., seg_k$. Further, we choose c_b (the code before the edit) of the latest edit as the target code c_{tar}. Then we estimate the likelihood of the dependency between c_{tar} and each code segment. For convenience, we use the symbol of the second output neuron \hat{y}_2 to denote the likelihood of the latter code to depend on the former code, $dep(e, f) = max(\hat{y}_2(c_{tar}, seg_i))$. That is, we adopt one-directional dependency to infer the edit propagation. Further, we select the $max(.)$ function as we favour the recall over the precision in this stage. By replacing the analyzer tool [28, 29] with a neural network, we reduce the runtime overhead of analyzing a pair of code snippets from ~70 seconds to ~0.01 second.

Semantic Similarity and Prompt Relevance. We capture the semantic similarity of code-to-code by neural embedding in a universal way. The rationale is that we believe a pretrained neural network such as CodeT5 and CodeBERT can capture both the syntactic and semantic similarity. Therefore, still considering the limit of input length of a transformer, we split a source file f into k segments as $seg_1, ..., seg_k$, $c_{tar} = c_b$ where c_b is the code before the edit, and *emd(·)* as the representation of a piece of code or a prompt extracted...
from the transformer, we can have:

\[
\text{sem}(e, f) = \max(\cos(\text{emd}(c_{\text{tar}}), \text{emd}(seg_i)))
\]

(3)

By this means, with given hyperparameters \(a_1, a_2, \epsilon, \) and \(t_{\text{sub}},\) we have a set of reported source files in a coarse-grained way. These coefficients, intercept and thresholds are available at [6].

3.1.2 Propagation Line Localization. Given the located source files with the propagation potential, we apply a sliding window across each file to identify the editing type of each line of source code. As shown in Figure 5, we fine-tune a base transformer model as a MLM (Mask Language Modeling) [17] problem by instruction tuning [47]. Overall, the input of the transformer consists of the target code inside the window, the user prompt, and the relevant prior edits (see more details in Section 3.2). For each input component, we introduce instructions (or tags) such as code-window, prompt, prior-edits and edit as the separators for the model to learn the input structure. For each line of the code, we additionally introduce an operator as follows:

- \textit{keep}: the operator type indicates that a line should not be changed, symbolled as \(<K>\).
- \textit{insert}: the operator type indicates that there shall be some code inserted after the line, symbolled as \(<I>\).
- \textit{replace}: the operator type indicates that the line should be replaced by either an empty line (i.e., delete) or a few different lines (update), symbolled as \(<R>\).

These edit operators are masked with a special token \(<\text{MASK}>\) in input. Therefore, we apply MLM task on the operators to train the model to recover them. The prompt is collected from the commit message from the code commit histories. Further, we introduce the details of selecting the prior edits in Section 3.2 and Section 3.4.

Figure 5: Overview of fine-grained edit location architecture. We formulate the edit location problem as a MLM (Mask Language Modelling) problem to predict the edit type of each LoC (Line of Code).

3.2 Prior Edit Analysis

Problem Statement. Given a set of prior edits \(E_p = \{e_{p1}, ..., e_{p_k}\}\) where \(e_i = (c_{bi}, c_{ai})\), and the target code \(c_{\text{tar}}\), we quantify the likelihood of the influence of \(e_{pi}\) to \(c_{\text{tar}}\) between 0 and 1. Specifically, we denote the estimation function as \(rel(., .) : E_p \times C \rightarrow (0, 1)\), where \(C\) is the set of pieces of code, i.e., \(rel(e_i, c_{\text{tar}}) \in (0, 1)\).

We quantize the relevance of prior edits by their syntactic dependency and semantic similarity by Equation 4:

\[
rel(e_{pi}, c_{\text{tar}}) = FCN(\text{dep}(e_{pi}, c_{\text{tar}}), \text{sem}(e_{pi}, c_{\text{tar}})).
\]

(4)

Further, in Equation 4, FCN is a multi-layer fully connected network, the dependency estimation function \(\text{dep}(., .)\) for estimating the dependency from \(c_{\text{tar}}\) to the code before the edit of \(e_{pi}\) and the semantic relevance function \(\text{sem}(., .)\) is defined in Section 3.1.1. Function \(\text{locsim}\) evaluates the proximity between \(e_{pi}\) and \(c_{\text{tar}}\) as:

\[
\text{locrel}(e_{pi}, c_{\text{tar}}) = \begin{cases}
1 - \frac{|\text{loce}(e_{pi}) - \text{loc}(c_{\text{tar}})|}{k} & \text{if } \text{ld}(e_{pi}, c_{\text{tar}}) < k \\
0 & \text{otherwise}
\end{cases}
\]

(5)

In Equation 5, we use a sliding window of size \(k\) to define whether the location difference of \(e_{pi}\) and \(c_{\text{tar}}\) is small (i.e., \(\text{ld}(e_{pi}, c_{\text{tar}}) < k\)). If it is, we estimate the proximity as Equation 5. Otherwise, the function \(\text{locrel}(., .)\) is 0. Finally, we define a threshold \(t_{\text{pr}},\) to identify the set of relevant prior edits \(E_{\text{rel}} = \{e_p|rel(e_p, c_{\text{tar}}) > t_{\text{pr}}\}\).

3.3 Edit Generation

Figure 6 shows the overall model architecture to generate edit content on one edit location and selected prior edits. Similar to the design of the location of edit lines, the edit generation model takes as input a code-window under the edit, the user’s prompt, and relevant prior
edits. The prompt and the prior edits share similar tags for the model to capture the structure.

In contrast, the code window describes a *hunk* consists of consecutive lines of the same edit type (*replace* and *insert*) with a few lines of type *keep* as its context. Specifically, each line is attached with a tag `<K>` for the edit type of *keep*; and with a tag `<I>` or `<R>` for the edit type of *insert* and *replace* respectively. Further, the output predicts the edit content of the edit location. We train the transformer with classical cross-entropy loss (see Section 3.1.2), and an

• **GUI** (see Figure 7) as follows. A detailed video is available at [6].

Code extension Figure 7 shows a screenshot of our CoEdPilot tool as a Visual Studio

4 TOOL DESIGN

Figure 7 shows a screenshot of our CoEdPilot tool as a Visual Studio Code extension [2], which consists of functions designed according to our approach (see Figure 3). We introduce the basic functions and GUI (see Figure 7) as follows. A detailed video is available at [6].

• **Triggering the Edit Recommendation:** When the users edit the code, they can trigger the edit recommendation with a shortcut (or right-click the editor) to request edit locations. Then, an *Edit Description Input* ③ can be shown for them to input their optional description of the edit.

• **Subsequent Edit Recommendation:** Then, CoEdPilot shows an *Edit Location View* ④ where the edit locations are organized in terms of edit files as their parent nodes and edit lines as their child nodes. The users can click a child node to highlight the corresponding location in the code editor, where a line with edit type of *insert* is in green and a line with that of *replace* is in red.

Edit Option Recommendation: Next, the users can further request the edit option in each edit location, as shown in *Editable Difference View* ⑤ in Figure 7 where how the code before and after the edit is simulated. Users can use the *Edit Operation Button* ⑥ to *browse*, *accept* and *ignore* the edit options. The accepted edit (and their follow-up modification) will be recorded as prior edits for next recommendation.

Cloud Service: Last, we follow the design of Copilot to deploy CoEdPilot on the cloud so that the user request (e.g., for edit location and edit generation) and their response are communicated between the server and the client. Users can check the network connection by *Query State* ⑦ as in Figure 7.

5 EXPERIMENT

We evaluate CoEdPilot with the following research questions:

• **RQ1 (Locating Propagating Files, see Section 3.1.1):** Can CoEdPilot locate the edit-propagating source files?

• **RQ2 (Locating Propagating Lines, see Section 3.1.2):** Given the located source files, can CoEdPilot locate the edit-propagating lines of code?

• **RQ3 (Edit Generation, see Section 3.3):** Given edit location, what is the performance of generating edit options?

• **RQ4 (Prior Edit Relevance, see Section 3.1.2):** Can CoEdPilot select the relevant prior edits accurately?

• **RQ5 (Performance Boost for State-of-the-arts):** Whether the framework of CoEdPilot further boost the performance of the state-of-the-art solutions?

Note that, CoEdPilot serves more as a complementary framework to enhance the state-of-the-art edit generator by locating subsequent edits and capturing relevant prior edits. Thus, in RQ5, we briefly compare our edit generation model with the state-of-the-arts, followed by how we can boost their performance.

5.1 Benchmark Construction

To evaluate the performance of CoEdPilot, we construct a benchmark of 5 programming languages (i.e., JavaScript, Java, Go, Python, and TypeScript) from 471 open-source projects. Upon construction, we select the top 100 projects from GitHub according to the number of their stars. For each programming language, we remove the projects with educational purposes (e.g., tutorial) or non-English commit messages. For each project, we select commits with the following criteria in our dataset:

• A commit shall include at least three hunks;

• A commit shall include hunks with the number of changed lines of code less than 15 (considering the length limit of our model);

• The commit message shall be an English message with a token length over 5;

• The commit shall not contain the automatically generated source files (e.g., the Java files with @auto keywords) or non-source files (e.g., .bak, .log, and .pyc files)

In this work, we provide our definition of good quality, but we encourage the practitioners to adjust the definition according to their practical scenarios.
Table 3: Benchmark of CoEdPilot on 471 open source projects on 5 programming languages. For the columns of ‘Train’, ‘Valid’, ‘Test’ dataset, we show the number of their training samples.

<table>
<thead>
<tr>
<th>Language</th>
<th>Model</th>
<th>Train</th>
<th>Valid</th>
<th>Test</th>
<th>#Proj</th>
<th>#Com</th>
<th>#File</th>
<th>#Hunk</th>
</tr>
</thead>
<tbody>
<tr>
<td>JavaScript</td>
<td>File location</td>
<td>22K</td>
<td>3K</td>
<td>6K</td>
<td>93</td>
<td>34K</td>
<td>34K</td>
<td>658K</td>
</tr>
<tr>
<td></td>
<td>Line location</td>
<td>382K</td>
<td>54K</td>
<td>109K</td>
<td>94</td>
<td>34K</td>
<td>34K</td>
<td>658K</td>
</tr>
<tr>
<td></td>
<td>Edit generation</td>
<td>460K</td>
<td>65K</td>
<td>130K</td>
<td>95</td>
<td>34K</td>
<td>34K</td>
<td>658K</td>
</tr>
<tr>
<td>Java</td>
<td>File location</td>
<td>68K</td>
<td>10K</td>
<td>20K</td>
<td>98</td>
<td>24K</td>
<td>72K</td>
<td>556K</td>
</tr>
<tr>
<td></td>
<td>Line location</td>
<td>335K</td>
<td>47K</td>
<td>95K</td>
<td>99</td>
<td>24K</td>
<td>72K</td>
<td>556K</td>
</tr>
<tr>
<td></td>
<td>Edit generation</td>
<td>389K</td>
<td>55K</td>
<td>111K</td>
<td>100</td>
<td>24K</td>
<td>72K</td>
<td>556K</td>
</tr>
<tr>
<td>Go</td>
<td>File location</td>
<td>46K</td>
<td>7K</td>
<td>14K</td>
<td>98</td>
<td>50K</td>
<td>88K</td>
<td>1174K</td>
</tr>
<tr>
<td></td>
<td>Line location</td>
<td>695K</td>
<td>99K</td>
<td>198K</td>
<td>100</td>
<td>50K</td>
<td>88K</td>
<td>1174K</td>
</tr>
<tr>
<td></td>
<td>Edit generation</td>
<td>822K</td>
<td>117K</td>
<td>234K</td>
<td>100</td>
<td>50K</td>
<td>88K</td>
<td>1174K</td>
</tr>
<tr>
<td>Python</td>
<td>File location</td>
<td>60K</td>
<td>9K</td>
<td>17K</td>
<td>91</td>
<td>33K</td>
<td>42K</td>
<td>555K</td>
</tr>
<tr>
<td></td>
<td>Line location</td>
<td>327K</td>
<td>46K</td>
<td>93K</td>
<td>92</td>
<td>33K</td>
<td>42K</td>
<td>555K</td>
</tr>
<tr>
<td></td>
<td>Edit generation</td>
<td>389K</td>
<td>55K</td>
<td>111K</td>
<td>92</td>
<td>33K</td>
<td>42K</td>
<td>555K</td>
</tr>
<tr>
<td>TypeScript</td>
<td>File location</td>
<td>65K</td>
<td>9K</td>
<td>17K</td>
<td>91</td>
<td>39K</td>
<td>76K</td>
<td>817K</td>
</tr>
<tr>
<td></td>
<td>Line location</td>
<td>480K</td>
<td>68K</td>
<td>137K</td>
<td>92</td>
<td>39K</td>
<td>76K</td>
<td>817K</td>
</tr>
<tr>
<td></td>
<td>Edit generation</td>
<td>572K</td>
<td>81K</td>
<td>163K</td>
<td>92</td>
<td>39K</td>
<td>76K</td>
<td>817K</td>
</tr>
</tbody>
</table>

As a result, we have the dataset as shown in Table 3, with an average commit filter rate of 6.89%. Further, we train our dependency analyzer on 49 sampled projects of different programming languages with 77K positive pairs and 24K randomly sampled negative pairs.

5.2 Experiment Setup

5.2.1 RQ1 (Propagating-file Location). We extract a commit with k hunks as a set, denoted as H, located in m source files, to construct k training samples. In each sample, we select one hunk $h \in H$ as the target hunk. Assume that the m' files with other hunks as the ground-truth positive files, and we randomly select n ($n > m$) files not in the commit as negative files. If CoEdPilot reports g files as positive and h out of g files are true positive, we measure the precision of file location as $\frac{h}{g}$ and the recall of the file location as $\frac{h}{m}$.

5.2.2 RQ2 (Propagating-line Location). We parse a commit with k hunks as a set, denoted as H, located in m files to construct k training samples as follows. Each time, we select one out of k hunks, i.e., $h \in H$, as the target edit to be predicted. We select relevant prior edits from $H \setminus \{h\}$ with CoEdPilot. Then we apply a sliding window of size s across the m files for CoEdPilot to report the hunk h. We apply the above procedure for k times, each of which we select a different target edit.

We measure the average accuracy, precision, and recall in the k times as follows. In each time, for the m lines of code not in the prior edits, we measure the accuracy as $\frac{n}{m}$, where n is the number of lines with edit type predicted accurately. Further, we compute the precision and recall for each of the three labels individually. Assume for each edit type, there are l positive lines of code and CoEdPilot reports t lines of code as positive and d out of t lines are the true positive, thus we have the precision as $\frac{d}{t}$ and the recall as $\frac{d}{l}$. Given the imbalance in sample sizes across these labels, we employ the macro-averaging method to calculate the final precision and recall.

5.2.3 RQ3 (Edit Generation). Given a commit with the set of hunks as H, we then choose one hunk k as the target edit, and have $H' = H \setminus \{h\}$, as the prior edits. We use Beam Search to generate the top-1, top-3, top-5, and top-10 edit options for each edit location. For each configuration, we measure its performance with (1) the
exact match rate (EMR) for a commit (i.e., an edit session) and (2) the BLEU4 score [45] of the generated edit content. Specifically, assume that we generate the edit content exactly the same as the ground truth edit for m out of k times, the exact match rate is \(\frac{m}{k} \). Further, we calculate the highest BLEU4 score from all k times’ predictions.

5.2.4 RQ4 (Prior Edit Prediction). We compare training the edit locating models and the edit generation models with selective prior edits (by our Edit-dependency Analyzer) and random prior edits. We compare their performance as mentioned in Section 5.2.2 and Section 5.2.3.

5.2.5 RQ5 (Performance Boost). We design the experiment as follows. We select the state-of-the-art solutions, i.e., GRACE [25], CCT5 [37], and CoditT5 [58], as the baselines, observe the boosting effect of CoEdPilot. CoPilot [23] is neglected for its programming API is yet published at the time of this work.

- **Rough Edit Location** We provide the baselines with rough location as a general hunk area to observe their performance in generating edits.
- **Precise Edit Location** We equip baselines with our edit location model so that they are fed with specific lines to further observe their performance.

We measure the performance of edit generation as in Section 5.2.5. Given the space limit, we provide more experimental details (e.g., hyperparameters, hardware configuration, etc.) in our websites [6].

5.3 Results

5.3.1 RQ1 and RQ2 (Propagating-file Location & Line). Table 4 shows the overall performance of CoEdPilot to detect the edit locations regarding different granularity (i.e., file-level and line-level). We achieve a average precision of 79.52% and a recall of 72.93% to locate the edit file, and the precision of on average 86.97% and the recall of 84.82% to locate the edit lines. We observe that the performance of CoEdPilot lies in identifying the edit pattern (e.g., the commit 4bf1c in Golang/Go project (see an example at [10]), which demonstrates the concrete example). Further, the average runtime overhead to infer a file takes 1.6s. We probe into the commits and summarize the reasons for false positives and false negatives as follows:

Reason 1: Noisy Samples in the Training Dataset. As for inferring the location of subsequent edits, we find that the quality of the dataset is of vital importance. Despite that we have set a number of criteria to filter out some commits, we still observe that noisy training samples might introduce negative effects. One of the observations is that some programmers can submit some irrelevant changes files (as well as the edits) in a single commit, which makes CoEdPilot challenging to report some edit locations. Further, we find that quite a number of edits are about code comments and documentation (e.g., the commit 3f442 in golang/go project [9]), which may not be well captured by CoEdPilot.

Nevertheless, cleaning the whole dataset regarding the edit relevance is a non-trivial work, which is iterative and interactive between human observation/interpretation and automatic inference. Thus, we leave the solution in our future work.

<table>
<thead>
<tr>
<th>Programming Language</th>
<th>File Location</th>
<th>Line Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Precision</td>
<td>Recall</td>
</tr>
<tr>
<td>Javascript</td>
<td>81.52%</td>
<td>71.21%</td>
</tr>
<tr>
<td>Python</td>
<td>70.84%</td>
<td>73.40%</td>
</tr>
<tr>
<td>Java</td>
<td>85.28%</td>
<td>75.67%</td>
</tr>
<tr>
<td>Go</td>
<td>80.10%</td>
<td>72.12%</td>
</tr>
<tr>
<td>TypeScript</td>
<td>79.84%</td>
<td>72.25%</td>
</tr>
<tr>
<td>Average</td>
<td>79.52%</td>
<td>72.93%</td>
</tr>
</tbody>
</table>

5.3.2 RQ3 and RQ4 (Edit Generation & Prior Edit Prediction). Table 5 shows the overall performance of edit generation with Top-k candidates. Further, Table 6 shows the relevance of prior edits in locating the subsequent edits and edit content generation. We can see that (1) CoEdPilot achieves good performance in generating the edit options, and (2) the selective prior edits play a vital role in enhancing the performance. An example can be referred to [11], where CoEdPilot is good at capturing the edit pattern (via syntactic dependency or semantic relevance). The random prior edits can break the pattern, which introduces additional edit chaos during the recommendation. Further, we find that the mis-prediction of the edit options shares similar reasons introduced in Section 5.3.1.

<table>
<thead>
<tr>
<th>Prior Edit Relevance</th>
<th>Edit-propagating line locator</th>
<th>Edit-content generator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accuracy</td>
<td>Precision</td>
</tr>
<tr>
<td>Selective Prior Edits</td>
<td>94.89%</td>
<td>86.62%</td>
</tr>
<tr>
<td>Random Prior Edits</td>
<td>91.86%</td>
<td>81.73%</td>
</tr>
</tbody>
</table>

Table 4: The accuracy of propagating-file & line location

Table 5: The performance of edit generation

Table 6: Relevance of prior edits on edit location & generation

Reason 2: Informativeness of Edit Inference. Further, we observe that some false negatives are caused by single-directed interaction. For example, an addition of method call implies an addition of importing a relevant library declaring the method, however, the implication does not hold in the other way (see example at [11]). When some interactions between the edits are not causal, the inference becomes more challenging.

5.3.3 RQ5 (Performance Boost). In Table 7, we compare CoEdPilot with three baselines, i.e., GRACE, CCT5, and CoditT5, in generating top-1 edit option. As described in Section 5.2.5, the fine-tuned baselines are fed with the hunk-level location (i.e., the lines included in a hunk) to predict the edited code. We can see that the
performance gap between CoEdPilot and the baselines are large. The reason lies in that the edit locator can largely help the edit generator to generate edits in a far more precise position.

Given that CoEdPilot is an extensible and integrable framework, we replace our edit generation model with the fine-tuned baselines, observing that the performance of both GRACE and CCoT5 is boosted significantly. Note that, CoditT5 can predict location as CoEdPilot, we do not equip it with our locator. In comparison to CoditT5, we observe that our two-stage model has the advantage of utilizing more input length given the limit of existing base models such as CoditT5.

6 USER STUDY
To further evaluate how the programmers can use CoEdPilot as a tool in practice, we design a user study to evaluate its functionalities as described in Section 4.

Baseline. To evaluate whether the design of CoEdPilot can well support practical code edits, we choose Copilot [23] as a baseline for its wide popularity for generating code. We omit the full manual editing mode in this study because (1) Copilot is supported by powerful GPT-3.5 Turbo, which is shown to improve the productivity by 27%-57% [42], and (2) the limitation of budget and overhead.

Participant. We recruit 18 participants from three universities in China and Singapore, including both undergraduate and graduate students. We conduct a pre-study (including a test) based on their programming experience. Their demographic analysis is available at [6]. We divide them into two equivalent groups based on their experience. The experimental group uses CoEdPilot while the control group uses Copilot in the study.

Code Edit Tasks. To ensure that the participants can focus on editing with a light-weighted overhead of comprehension, we extract a simplified version from three real-world commits. The tasks are selected as follows:

• Bug Fix (Task 1): We show a bug as mistakenly used `range(arr)` for `range(len(arr))` in the project. We ask the participants to find and fix multiple such mistaken uses across the project.
• Refactoring (Task 2): We ask the participants to extract three pieces of duplicated code into a new function.

Table 7: Performance Boost with CoEdPilot

<table>
<thead>
<tr>
<th>Approach</th>
<th>EMR</th>
<th>BLEU4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoEdPilot (Line Locator + Edit Generator)</td>
<td>29.96</td>
<td>78.58</td>
</tr>
<tr>
<td>CoditT5</td>
<td>7.42</td>
<td>69.01</td>
</tr>
<tr>
<td>GRACE</td>
<td>2.73</td>
<td>38.36</td>
</tr>
<tr>
<td>CCoT5</td>
<td>14.19</td>
<td>75.37</td>
</tr>
<tr>
<td>GRACE + Line Locator</td>
<td>18.61</td>
<td>71.61</td>
</tr>
<tr>
<td>CCoT5 + Line Locator</td>
<td>15.45</td>
<td>78.27</td>
</tr>
</tbody>
</table>

Table 8: Runtime Estimation of CoEdPilot

<table>
<thead>
<tr>
<th>Step</th>
<th>File locator (s/file)</th>
<th>Line locator (s/file)</th>
<th>Edit-content generator (s/location)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepare Input</td>
<td>0.0064</td>
<td>0.3976</td>
<td>0.0683</td>
</tr>
<tr>
<td>Model Inference</td>
<td>0.1008</td>
<td>0.0878</td>
<td>0.3972</td>
</tr>
<tr>
<td>Total</td>
<td>0.1072</td>
<td>0.4854</td>
<td>0.4655</td>
</tr>
</tbody>
</table>

Results. Table 9 shows the participants’ performance to accomplish the code-editing tasks, with the following observation:

• Feature Enhancement (Task 3): We ask the participants to introduce a scale capability to normalize the input vectors for existing class classifiers, which requires multiple edit propagation.

Study Setup. We conducted a warm-up session with a tutorial for both CoEdPilot and Copilot, followed by a practice task, to familiarize them with the tools. For each task, we allocate each participant with 30 minutes to accomplish. We prepare the test cases for each edit task for them to validate their edits. The test cases are designed to guarantee that all the participants can confirm their accomplishment. During the study, we ask the participants to do a video-recorder so that we can conduct the post-mortem analysis. Finally, we measure their performance regarding (1) whether they can successfully accomplish the tasks (i.e., all the test cases passed) and (2) their efficiency in accomplishing the tasks.

Table 9: Overall performance of EG (Experimental Group) and CG (Control Group): The completion time is in seconds.

<table>
<thead>
<tr>
<th></th>
<th>Task1</th>
<th>Task2</th>
<th>Task3</th>
<th>Task1</th>
<th>Task2</th>
<th>Task3</th>
</tr>
</thead>
<tbody>
<tr>
<td>EG</td>
<td>220</td>
<td>515</td>
<td>1196</td>
<td>339</td>
<td>696</td>
<td>1287</td>
</tr>
<tr>
<td>P1</td>
<td>362</td>
<td>487</td>
<td>216</td>
<td>480</td>
<td>483</td>
<td>545</td>
</tr>
<tr>
<td>P2</td>
<td>361</td>
<td>389</td>
<td>279</td>
<td>360</td>
<td>776</td>
<td>1563</td>
</tr>
<tr>
<td>P3</td>
<td>160</td>
<td>529</td>
<td>963</td>
<td>522</td>
<td>724</td>
<td>1770</td>
</tr>
<tr>
<td>P4</td>
<td>230</td>
<td>301</td>
<td>756</td>
<td>277</td>
<td>395</td>
<td>838</td>
</tr>
<tr>
<td>P5</td>
<td>364</td>
<td>473</td>
<td>617</td>
<td>181</td>
<td>446</td>
<td>930</td>
</tr>
<tr>
<td>P6</td>
<td>329</td>
<td>688</td>
<td>588</td>
<td>337</td>
<td>720</td>
<td>825</td>
</tr>
<tr>
<td>P7</td>
<td>840</td>
<td>780</td>
<td>1020</td>
<td>151</td>
<td>666</td>
<td>1515</td>
</tr>
<tr>
<td>P8</td>
<td>200</td>
<td>638</td>
<td>1050</td>
<td>266</td>
<td>722</td>
<td>1563</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EG</th>
<th>Task1</th>
<th>Task2</th>
<th>Task3</th>
<th>Task1</th>
<th>Task2</th>
<th>Task3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG</td>
<td>290</td>
<td>638</td>
<td>1050</td>
<td>323</td>
<td>625</td>
<td>1070</td>
</tr>
</tbody>
</table>

Why CG underperforms EG in Task 1 on average completion time without statistical significance (the p-value in Wilcoxon Signed Rank test is 0.33 and the effect size is -0.08).

• Task 2: EG outperforms CG in Task 2 on average completion time without statistical significance (the p-value in Wilcoxon Signed Rank test is 0.07 > 0.05 and the effect size is 0.60).

• Task 3: In contrast, EG outperforms CG in Task 3 on the completion time with statistical significance (the p-value is 0.003 < 0.05 and the effect size is 0.96).

Why CG outperforms EG in Task 1? In Task 1 (i.e., fixing a duplicated bug), we observe that Copilot users (EG group) still suffer from the learning curve of the new tool for running the function of predicting edit location and edit content. Further, some participants (P2 and P8) were still building their trust in our recommendations such as edit location and edit content, despite that they are accurate. As a result, they spend more time confirming our results. We deem this a common problem for any new tool deployed on either user study or production line. In contrast, given that the edit pattern in the task is simple, some Copilot user (e.g., P17) tries to search the expression across the project. In the other words, they address their need of edit location with keyword-based search in Task 1.

Why EG outperforms CG in Task 2 but without statistical significance? In Task 2 (i.e., refactoring by method extraction), the CoEdPilot users become more experienced in adapting our tool by switching between different functions such as location prediction,
edit generation, edit option selection, etc. The accurate edit location can largely mitigate the efforts in finding the cross-file code duplication for the new function. Compared to the CG participants with manually summarized edit patterns, the EG group is gradually outperforming the CG group (the p-value 0.07 is closer to 0.05).

How EG outperforms CG in Task 3? Task 3 (i.e., enhance the model training with `scale` function) is the most difficult task, where the editing pattern cannot be captured by keyword search. For example, one edit to insert a `scale` parameter is associated with another edit to insert a follow-up decision logics with the `scale` variable. In such a scenario, EG outperforms CG in general.

Nevertheless, we observe that the performance of the participants varies, some accomplish the task in less than 5 minutes (e.g., P2) while some take a longer time (e.g., P1, P8, and P9). We investigate their tool logs and videos, finding that some participants modify the edit content with their own interpretation, which leads to the buggy code. Taking the buggy edit as the prior edits, CoEdPilot can generate confusing edits afterwards. Only by running the test cases to validate the results, the participants can realize they produce a bug during the editing. Human mistakes in such an interaction-based tool are a long-standing problem, we will address the issue in our future work. Further, the CoEdPilot group accepts recommended 69.3% edit options, among which they modify 31.6% generated edits. For the space limit, more statistics of user behaviors in the study are available at [6].

7 **THREAT TO VALIDITY**

Several aspects of the user study may impair its validity:

Internal Validity: In this study, the experiment group may face a steeper learning curve, while the control group is already acquainted with CoPilot. This learning disparity could lead to observed differences in the test that are attributed to learning effects rather than the actual performance of the extension.

External Validity: The edit tasks are simplified versions of code derived from actual commits and equipped with comprehensive instructions. This modification might deviate from the real editing scenario. Moreover, as edit tasks exclusively focus on Python in this study, such specificity choice could confound the interpretation of the plugin’s effectiveness.

Statistical Validity: Due to the limitation of time and resources, we recruited 18 participants in the study. The relatively small size may not provide sufficient statistical power to detect genuine differences in the effectiveness of the extension. Consequently, the generalizability and robustness of the study findings might be compromised.

8 **RELATED WORK**

Code Generation. Code generation is long standing software engineering task [13, 35, 48, 55, 56], which starts from sequence-based and tree-based approaches [39, 49], and gravitates towards pre-trained language models, such as BERT [17], GPT [12], T5 [26, 46], CodeBERT [19], GraphCodeBERT [24], DietCodeBERT [60], CodeTS [54], CodeT5+ [53], CodeT [16], and Incoder [22]. Recently, StarCoder [34] is trained with over 8 programming languages, Git commits, GitHub issues, and Jupyter notebooks. It outperforms existing open Code LLMs on popular programming benchmarks and matches or surpasses closed models such as code-cushman-001 from OpenAI (the original Codex [43] model). Meanwhile, our approach uniquely generates incremental edits, rather than new code.

Code Edit Generation. Among the work to edit code [14, 15, 27, 36, 38, 58, 59, 61], Codit [14] is the first to introduce tree-based neural networks for predicting the edits. Following their tree model structure, Recoder [61] introduces another abstract syntax tree (AST) reader along with the code reader to outperform the Codit model. Further, CURE [27] introduces the pre-training models for automatic program repair. CoditT5 [58] pre-train a CodeT5 [54] base model with the input including natural language comments and edit code hunk and the output including an edit plan. The current state-of-the-art transformer-based model is GRACE [25], which trains a prompting language model [57] with a designed prompt to include the associated code update. Overwatch [59] symbolically analyzes edit sequence patterns by formulating them into rules based on prior program transformations. Our solution, CoEdPilot, is complementary to the majority of the transformer-based code-edit generation model. In addition to exploring the interactive nature of code edits, we further learn to capture the relevant prior edits and subsequent edit location.

9 **CONCLUSION**

In this work, we introduce CoEdPilot, an end-to-end framework to interactively generate code edits by orchestrating a set of neural transformers as components, regarding prior edit analysis, subsequent edit analysis, and edit generation. Our extensive experiments show that CoEdPilot is able to predict the edit location and generate edit options in an effective way. Further, the framework is complementary to a set of state-of-the-art edit generators to boost their performance. Our user study shows that CoEdPilot as a VS-code plugin is effective in assisting programmers in practice. In the future, we will improve the quality of the training dataset for a more effective model and address the potential mistaken human feedback in tool design.

10 **DATA AVAILABILITY**

Our models and datasets are published in our HuggingFace website [5], both source code and VS-Code extension are available in our GitHub website [3, 4].

ACKNOWLEDGMENTS

This research is supported in part by National Key Research and Development Program of China (Grant No.2023YFB4503802), the Bytedance Network Technology, the Minister of Education, Singapore (T2EP20120-0019, MOET32020-0004), the National Research Foundation, Singapore, and Cyber Security Agency of Singapore under its National Cybersecurity Research and Development Programme (Award No, NRF-NCR_TAU_2021-0002), National Research Foundation, Singapore, and the Cyber Security Agency under its National Cybersecurity R&D Programme (NCRP25-P04-TAICeN), DSO National Laboratories under the AI Singapore Programme (AISG Award No: AISG2-GC-2023-008).

REFERENCES

Received 16-DEC-2023; accepted 2024-03-02