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ABSTRACT
Researchers recently investigated to explain Graph Neural Net-

works (GNNs) on the access to a task-specific GNN, which may

hinder their wide applications in practice. Specifically, task-specific

explanation methods are incapable of explaining pretrained GNNs

whose downstream tasks are usually inaccessible, not to mention

giving explanations for the transferable knowledge in pretrained

GNNs. Additionally, task-specific methods only consider target

models’ output in the label space, which are coarse-grained and

insufficient to reflect the model’s internal logic. To address these

limitations, we consider a two-stage explanation strategy, i.e., ex-
plainers are first pretrained in a task-agnostic fashion in the rep-

resentation space and then further fine-tuned in the task-specific

label space and representation space jointly if downstream tasks

are accessible. The two-stage explanation strategy endows post-hoc

graph explanations with the applicability to pretrained GNNswhere

downstream tasks are inaccessible and the capacity to explain the

transferable knowledge in the pretrained GNNs. Moreover, as the

two-stage explanation strategy explains the GNNs in the represen-

tation space, the fine-grained information in the representation

space also empowers the explanations. Furthermore, to achieve a

trade-off between the fidelity and intelligibility of explanations,

we propose an explanation framework based on the Information

Bottleneck principle, named Explainable Graph Information Bot-
tleneck (EGIB). EGIB subsumes the task-specific explanation and

task-agnostic explanation into a unified framework. To optimize

EGIB objective, we derive a tractable bound and adopt a simple yet

effective explanation generation architecture. Based on the unified
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framework, we further theoretically prove that task-agnostic expla-

nation is a relaxed sufficient condition of task-specific explanation,

which indicates the transferability of task-agnostic explanations.

Extensive experimental results demonstrate the effectiveness of our

proposed explanation method.
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1 INTRODUCTION
Graph Neural Networks (GNNs) have emerged as a promising

learning paradigm and demonstrated superior learning perfor-

mance on different graph learning tasks, such as node classifica-

tion [9, 15, 17, 30], graph classification [41, 43], and link predic-

tion [5, 47]. Despite their strengths, GNNs are usually treated as

black box models and thus cannot provide human-intelligible ex-

planations [18, 42]. Such opaqueness impedes their broad adoption

in many decision-critical applications pertaining to fairness, pri-

vacy, and safety [7]. To better understand the working mechanisms

of GNNs, researchers started to investigate the GNN explanation

problem recently: what knowledge does the GNN model extract to
make a specific decision?

To answer the above question, many post-hoc explanation meth-

ods have been proposed. According to the taxonomy provided in a

recent survey [45], these methods can be subsumed into four tech-

nical route lines: the gradient-based [2, 22], perturbation-based [18,

24, 27, 33, 42], decomposition-based [2, 23], and surrogate model-

based [11, 32] methods. However, almost all the existing explana-

tion methods are task-specific, i.e., tailored for explaining a specific
learning task. Expressly, the explanation methods usually assume
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Figure 1: An intuitive view of the insufficiency of task-
specific explanations. Graphs are first embedded into the
representation space with different embedding logic, and
then decisions are made in the label space. One may fail to
capture the embedding logic in the label space since the out-
put probabilities stay similar for different graphs.

we have access to a target GNN model which is well-tuned on a

specific learning task. They attribute the target model’s decision on

the specific task to the input graph space and find the most crucial

components (e.g., nodes, edges, or subgraphs) that decide the GNN
model’s output. However, the dependency on task-specific target

models may hinder the explanation methods’ application in practice

because of the following reasons. First, task-specific explanation

methods are incapable of explaining GNNs that are pretrained in

an unsupervised way. Recently, unsupervised pretrained GNNs

have attracted tremendous research interest because of their free-

dom of manual labels and transferability to multiple downstream

tasks [37]. Nonetheless, task-specific explanation methods cannot

explain the transferable knowledge in these pretrained GNNs since

downstream tasks are usually inaccessible. Moreover, even if some

downstream tasks are given, task-specific explanation methods can

only explain task-specific knowledge, while knowledge transferable

to other tasks is not explained. Second, task-specific explanation

methods only consider target models’ output in the label space,

which are coarse-grained and insufficient to reflect the model’s

internal logic. GNNs can be regarded as a non-injective projection

from the graph space to the label space. Thus disparate graphs may

lead to similar prediction results in the label space. For example, in

Fig. 1, we perturb the graph gradually with decreasing edge weights

(deep color indicates larger edge weight). Although the model em-

beds the graphs into distinctive representations, the behavior of

graphs in the label space stays similar except for the last one. That

is, in the label space, we cannot capture the logic of how graphs are

embedded. Consequently, the coarse-grained information in the

label space is insufficient to supervise the explanations.

To overcome the limitations of task-specific explanation meth-

ods, we propose to investigate the task-agnostic explanations for

GNNs with the transferable and fine-grained information in the

representation space. Specifically, we consider a two-stage expla-

nation strategy which is applicable whether downstream tasks are

accessible. In the first stage where downstream tasks are inacces-

sible, we pretrain a task-agnostic explainer in the representation

space yielded by the target pretrained GNNs. In the second stage

where downstream tasks are accessible, we fine-tune the pretrained

explainer to be task-specific jointly in the label space and repre-

sentation space. As mentioned above, the representation space can

provide fine-grained supervision compared with the coarse-grained

label space, thus benefiting the fidelity of explanations. Note that

the second stage is not compulsory. Experimental results demon-

strate that we can achieve superior performance even without any

fine-tuning.

There are mainly two challenges for explanation in the two-stage

strategy. First, there is no theoretical support for the transferability

of task-agnostic explanations. The transferability of explanations

indicates the capacity they can explain the transferable knowledge

in the pretrained GNNs. Transferable explanations should incor-

porate graph information that is crucial for multiple downstream

tasks. As far as we know, there is no work theoretically analyzing

the transferability of task-agnostic explanations and thus it’s still

unexplored whether we can explain the transferable knowledge

of pretrained GNNs in the representation space. Second, it is un-

clear how to supervise the explanations in the representation space.

Typical task-specific explanation methods [18, 33, 42] usually su-

pervise the explanations in the label space by employing Mutual

Information (MI) as a relevance metric to measure the performance

of explanations. In this paper, we extend this idea to identify the

crucial subgraphs in the representation space. Nonetheless, differ-

ent from the label space, the representation space is usually high-

dimensional and semantically entangled [29], which exacerbates

the optimization difficulties of MI since MI requires the integral on

the corresponding space.

To analyze the transferability of task-agnostic explanation, we

provide a unified view of task-agnostic explanation and task-specific

explanation based on the Information Bottleneck (IB) principle [1,

28]. Specifically, graph explanations are usually defined as the com-

pact subgraphs that are most crucial for the GNNs’ output, which

shares a similar ideology with IB on the tradeoff between infor-

mativeness and compactness. In this paper, we extend the IB to

graph explanations and propose a novel explanation framework

named Explainable Graph Information Bottleneck (EGIB). Our EGIB

subsumes the task-agnostic and task-specific settings into a unified

framework. Based on the unified framework, we theoretically prove

that our task-agnostic explanation can transfer to downstream tasks

and that task-agnostic explanation is a relaxed sufficient condition

of task-specific explanation, which exhibits the validity and trans-

ferability of task-agnostic pretraining in the first stage. Furthermore,

we derive a tractable bound and adopt a simple yet effective explana-

tion generation architecture to optimize the EGIB objective which

is capable of supervising the explanations in the representation

space. Experimental results show that our proposed EGIB achieves

superior performance even without any task-specific fine-tuning.

Contributions of our paper can be summarized as follows:

• A Two-stage Explanation Strategy. We consider a two-

stage explanation strategy following a pretraining and fine-

tuning pipeline, which is applicable whether downstream

tasks are accessible.
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• An Unified Framework. We propose a unified framework

based on the IB principle that subsumes the task-agnostic and

task-specific settings with tractable bound for optimization.

Based on the unified framework, we theoretically analyze

the relationship between task-agnostic explanation and task-

specific explanation, which demonstrates the validity and

transferability of our method.

• Experimental Evaluations. We conduct extensive experi-

ments on real-world datasets with multiple tasks and observe

that our proposed EGIB outperforms existing methods on

effectiveness and can be transferable to downstream tasks

even without fine-tuning.

2 NOTATIONS AND PRELIMINARIES
In this section, we first elaborate on the notions used in this paper.

Then we formally introduce our explanation pipeline.

2.1 Notations
In most cases, we denote random variables with upper-case let-

ters (e.g., 𝐺 and 𝑍 ), and represent its support set by calligraphic

letters (e.g., G and Z). Lower-case letters with subscript (e.g., 𝑔𝑖
and 𝒛𝑖 ) refer to the instances of random variables (e.g., 𝐺 and 𝑍 )

correspondingly. The MI between random variables 𝑋 and 𝑍 is for-

mulated as 𝐼 (𝑋 ;𝑍 ) =
∫
𝑥

∫
𝑧
𝑝 (𝑥, 𝑧) log 𝑝 (𝑥,𝑧 )

𝑝 (𝑥 )𝑝 (𝑧 ) 𝑑𝑥𝑑𝑧. In this paper,

we suppose that GNNs follow an embedding-prediction architec-

ture. Graphs are first projected to node-level representations or

graph-level representations and then followed by a downstream

model, e.g., MLPs. Since node-level representation learning can

be seen as a particular case of graph representation learning by

considering the corresponding 𝑘-hop neighbor subgraphs of each

node as a single graph instance, we unify the embedding procedure

as 𝑍 = 𝑓𝑒 (𝐺) where 𝐺 ∈ G indicates graphs in the graph-level em-

bedding procedure or 𝑘-hop neighbor subgraphs in the node-level

embedding procedure. And 𝑍 ∈ Z denotes graph/node representa-

tions, correspondingly. Moreover, we denote downstream models

as 𝑌 = 𝑓𝑑 (𝑍 ) where 𝑌 ∈ Y denotes the prediction result on specific

downstream tasks.

2.2 Task-specific Explanation and Task-agnostic
Explanation

Typical task-specific explanation methods consider the decision

procedure of GNNs as end-to-end, i.e., they consider a composition

of 𝑓𝑑 and 𝑓𝑒 : 𝑓𝑡 = 𝑓𝑑 ◦𝑓𝑒 . Then they optimize the explainer to identify

the subgraphs 𝑆 ∈ S that are the most crucial in the prediction

of 𝑌 = 𝑓𝑡 (𝐺) in specific tasks where S is the set that contains

all possible subgraphs of 𝐺 . However, the downstream models 𝑓𝑑
may be inaccessible for pretrained GNNs. Moreover, they can only

explain how the embedding model 𝑓𝑒 behave on the specific task

corresponding to 𝑓𝑑 while the knowledge in 𝑓𝑒 transferable to other

tasks is not explained. And since they only consider the output

𝑌 of the end-to-end model 𝑓𝑡 in the label space, the fine-grained

information in the representation space yielded by 𝑓𝑒 may be filtered

out by 𝑓𝑑 and thus cannot be captured by the explainations.

Different from task-specific explanation, task-agnostic explana-

tion aims to explain the embedding procedure 𝑍 = 𝑓𝑒 (𝐺) without

any knowledge of downstream tasks. To overcome the above prob-

lems of task-specific explanations, we consider a two-stage expla-

nation strategy where a task-agnostic explainer is pretrained in the

representation space first and then fine-tuned in the label space

and the representation space jointly. The two-stage explanation

strategy can empower explanations with better transferability and

fidelity while liberating them from the assumption on access to

specific downstream tasks.

3 METHODOLOGY
In this section, we introduce our proposed Explainable Graph In-

formation Bottleneck (EGIB) which unifies the task-agnostic and

task-specific settings. Then we derive tractable bounds for the op-

timization of EGIB and introduce our explanation generation ar-

chitecture. Finally, we analyze the transferability of task-agnostic

explanations theoretically.

3.1 Explainable Graph Information Bottleneck
There are mainly two aspects for the assessment of graph expla-

nations, i.e., fidelity and intelligibility [13]. Fidelity measures the

importance of explanations in the decision procedure of the target

model. Intelligibility requires the explanations to be as compact as

possible. To generate explanatory subgraphs with both satisfactory

fidelity and intelligibility, we propose a method based on the IB

principle from a unified view of task-agnostic explanations and

task-specific explanations. Specifically, our EGIB is mainly built

on two crucial notions: sufficient subgraphs and 𝜖−explanatory
subgraphs. The sufficient subgraphs guarantee the fidelity of ex-

planations while 𝜖−explanatory subgraphs further guarantee the

intelligibility of sufficient subgraphs by discarding superfluous in-

formation. Formally,

Definition 1. Sufficient subgraphs: Given graph 𝐺 , let S be the
set of its subgraphs, and 𝑇 be its output of GNNs. A subgraph 𝑆 ∈ S
is called the sufficient subgraphs of 𝑇 if and only if 𝑆 is sufficient
for 𝑇 i.e., 𝐼 (𝑇 ;𝐺 |𝑆) = 0.

We call 𝑆 as task-agnostic sufficient subgraphs when 𝑇 refers

to graph/node representations 𝑍 , and task-specific sufficient sub-
graphs when𝑇 refers to downstream prediction results 𝑌 . Sufficient

subgraphs ensure the fidelity of explanations as 𝑆 extract all infor-

mation related with 𝑇 , i.e.,

𝐼 (𝑇 ;𝐺 |𝑆) = 𝐼 (𝑇 ;𝐺) − 𝐼 (𝑇 ; 𝑆) = 0. (1)

Please refer to the details of the above equation in the Appendix.

As we focus on the post-hoc explanations, the mutual information

𝐼 (𝑇 ;𝐺) can be regarded as a constant, which is decided by the

target GNN model. According to Eq. (1), we can achieve sufficient

subgraphs with desirable fidelity by the following objective:

argmax

𝑆∈S
𝐼 (𝑇 ; 𝑆) . (2)

However, there are trivial solutions for the sufficient subgraphs

(e.g., 𝑆 = 𝐺) as it overlooks the intelligibility and thus may involve

superfluous information. Inspired by the IB principle, we define the

𝜖−explanatory subgraphs by discarding the superfluous informa-

tion of sufficient subgraphs:
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Figure 2: An overview of Explainable Graph Information Bottleneck (EGIB). The dash lines indicate the task-specific setting
which is ignored in the task-agnostic pretraining. The objective can be roughly separated into two parts: the fidelity term and
the intelligibility term. In the fidelity term, we employ an invariance regularization besides the sufficiency term. And the
intelligibility term can be further decomposed to a residual term and a disentanglement term.

Definition 2. 𝜖−explanatory subgraphs: Given a sufficient sub-
graph 𝑆 of GNNs’ output 𝑇 , 𝑆 is called the 𝝐−explanatory sub-
graphs of 𝑇 if and only if 𝐼 (𝑆 ;𝐺 |𝑇 ) ≤ 𝜖 where 𝜖 constraints the
compactness of 𝑆 .

Analogously, we define task-agnostic 𝜖−explanatory subgraphs
and task-specific 𝜖−explanatory subgraphs when 𝑇 refers to repre-

sentations and prediction results, separately. 𝜖−explanatory sub-

graphs restrict the sufficient subgraphs to be compact by discarding

information irrelevant with 𝑇 . Similar to Eq. (1), it can be easily

proved that:

𝐼 (𝑆 ;𝐺 |𝑇 ) = 𝐼 (𝑆 ;𝐺) − 𝐼 (𝑆 ;𝑇 ) ≤ 𝜖. (3)

In tandem with Eq. (2), we can optimize explanatory subgraphs by

argmax

𝑆∈S
𝐼 (𝑍 ; 𝑆) 𝑠 .𝑡 . 𝐼 (𝑆 ;𝐺) − 𝐼 (𝑆 ;𝑇 ) ≤ 𝜖. (4)

To address the above constrained optimization problem, we adopt

the Lagrangian relaxation algorithm and rewrite Eq. (4) as:

argmax

𝑆∈S
𝐼 (𝑆 ;𝑇 ) − 𝛼 (𝐼 (𝑆 ;𝐺) − 𝐼 (𝑆 ;𝑇 )), (5)

Letting 𝛽 = 𝛼
1+𝛼 , we arrive at the IB-based optimization objective:

argmax

𝑆∈S
𝐼 (𝑇 ; 𝑆) − 𝛽𝐼 (𝑆 ;𝐺), (6)

where 𝐼 (𝑇 ; 𝑆) is named the sufficiency term since it requires the

subgraphs to be sufficient to the given𝑇 . And −𝐼 (𝑆 ;𝐺) is named the

intelligibility term as it guarantees the intelligibility of subgraphs.

The hyper-parameter 𝛽 makes a trade-off between fidelity and in-

telligibility, just like the typical IB [1, 28] which balances the infor-

mativeness and compression. Typical explanation methods usually

compress the subgraphs to be compact by 𝑙1 norm regularization

which restricts the size of subgraphs. However, compared with our

intelligibility term, the 𝑙1 norm regularization may lead to a biased

assumption since explanations may vary in size [20]. Specifically,

some subgraphs may miss crucial edges, while others may involve

superfluous edges with the same size restriction. Instead, our intel-

ligibility term is capable of discarding the superfluous information

without any assumption on the size of explanations.

In Eq. (6), we achieve a unified framework that subsumes the

task-specific explanations and task-agnostic explanations. When 𝑇

refers to the representations 𝑍 , we can pretrain an explainer in a

task-agnostic fashion. In contrast, when𝑇 refers to the task-specific

predictions 𝑌 , we can train a task-specific explainer. In this paper,

we adopt a two-stage explanation strategy based on our framework.

In the first stage, we employ a learnable explainer to generate

explanatory subgraphs, i.e., 𝑆 ∼ 𝑞Φ (𝑆 |𝐺) in a task-agnostic fashion:

argmax

𝑆∼𝑞Φ (𝑆 |𝐺 )
𝐼 (𝑍 ; 𝑆) − 𝛽𝐼 (𝑆 ;𝐺). (7)

And in the second stage, the explainer is fine-tuned to generate

task-specific explanatory subgraphs

argmax

𝑆∼𝑞Φ (𝑆 |𝐺 )
𝐼 (𝑍 ; 𝑆) + 𝛾𝐼 (𝑌 ; 𝑆) − 𝛽𝐼 (𝑆 ;𝐺). (8)

Note that in the second stage, instead of only explaining down-

stream predictions 𝑌 , representations are also involved as they can

provide fine-grained information.

Invariance regularization. Previous self-explainable work [35]

demonstrates that it is crucial to ensure the invariance of GNNs’ pre-

dictions across different superfluous information. In this paper, we

extend this idea to post-hoc explanation by restricting 𝐼 (𝑆 ;𝑍 |𝑆) = 0

where 𝑆 is the complementary subgraphs of 𝑆 and 𝐺 = (𝑆, 𝑆).
We call 𝑆 as the residual subgraph in this paper. 𝐼 (𝑆 ;𝑍 |𝑆) = 0

indicates that the representations are independent of other infor-

mation except for the explanatory subgraph 𝑆 . Since 𝐼 (𝑆 ;𝑍 |𝑆) =
𝐼 (𝑆 ;𝑍 ) − 𝐼 (𝑆 ;𝑍 ; 𝑆) ≤ 𝐼 (𝑆 ;𝑍 ), we adopt 𝐼 (𝑆 ;𝑍 ) as an invariance reg-
ularization term to guarantee the invariance of 𝑍 across different

superfluous information. The objective in two stages can be further

rewritten as:

argmax

𝑆∼𝑞Φ (𝑆 |𝐺 )
𝐼 (𝑍 ; 𝑆) − 𝛽𝐼 (𝑆 ;𝐺) − 𝜆𝐼 (𝑆 ;𝑍 ), (9)

argmax

𝑆∼𝑞Φ (𝑆 |𝐺 )
𝐼 (𝑍 ; 𝑆) + 𝛾𝐼 (𝑌 ; 𝑆) − 𝛽𝐼 (𝑆 ;𝐺) − 𝜆𝐼 (𝑆 ;𝑍 ) . (10)

3.2 Optimization
Optimization of mutual information is notoriously intractable as it

involves the integration of high-dimensional data. There are copi-

ous works devoted to mutual information estimation and optimiza-

tion [3, 21, 34]. In this paper, we adopt the well-known InfoNCE [8]
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loss, which is widely used in self-supervised learning [26, 31]. For-

mally, 𝐼 (𝑍 ; 𝑆) in Eq. (9) and Eq. (10) can be estimated by InfoNCE

as:

L𝑁𝐶𝐸 (𝑍 ; 𝑆 ;Φ) = − 1

𝑁

𝑁∑︁
𝑖=1

[
log

exp(< 𝒛𝑖 , 𝑓𝑒 (𝑠𝑖 ) >)∑
𝑗≠𝑖 exp(< 𝒛𝑖 , 𝑓𝑒 (𝑠 𝑗 ) >)

]
, (11)

where 𝑁 is the number of samples in a mini-batch, 𝒛𝑖 and 𝑠𝑖 denotes
the samples of 𝑍 and 𝑆 , respectively. Note that 𝑠𝑖 is sampled from

the learnable distribution 𝑞Φ (𝑆 |𝐺). < 𝒛𝑖 , 𝑓𝑒 (𝑠𝑖 ) > denotes the inner

product of two vectors. 𝐼 (𝑆 ;𝑍 ) can be computed similarly to 𝐼 (𝑍 ; 𝑆).
The remaining problem is how to optimize the task-specific term

𝐼 (𝑌 ; 𝑆) and the intelligibility term 𝐼 (𝑆 ;𝐺) in Eq. (9) and Eq. (10).

The former term can be addressed following previous works, e.g.,
PGExplainer [18]:

L𝑡𝑠 (𝑌 ; 𝑆 ;Φ) = −
𝑁∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝑃 (𝑓𝑡 (𝑔𝑖 ) = 𝑐) log 𝑃 (𝑓𝑡 (𝑠𝑖 ) = 𝑐), (12)

where 𝑓𝑡 = 𝑓𝑑 ◦ 𝑓𝑒 denotes the composition of GNN-based encoder

𝑓𝑒 and downstream model 𝑓𝑑 . 𝐶 is the total number of labels, 𝑔𝑖 is

the 𝑖-the sample of graph 𝐺 .

Directly minimizing the intelligibility term 𝐼 (𝑆 ;𝐺) usually leads

to a min-max optimization objective and thus suffers concerns

about the instability and convergence during training [44]. Instead,

we bypass this problem by decomposing the intelligibility term

𝐼 (𝑆 ;𝐺) to a residual term and a disentanglement term:

𝐼 (𝑆 ;𝐺) = −𝐼 (𝑆 ;𝐺) + 𝐼 (𝑆 ; 𝑆) + 𝐻 (𝐺). (13)

From the above decomposition, we find that we can guarantee the

explanatory subgraphs’ intelligibility by maximizing the residual

term 𝐼 (𝑆 ;𝐺) and minimizing the disentanglement term 𝐼 (𝑆 ; 𝑆) si-
multaneously. 𝐼 (𝑆 ;𝐺) is called the residual term because it measures

the mutual information between 𝐺 and the residual subgraph 𝑆 ,

i.e., the complement of the explanatory subgraph 𝑆 . We maximize

𝐼 (𝑆 ;𝐺) by employing an additional learnable GNN encoder 𝑓𝜃 to

learn representations of 𝐺1
and then minimizing the InfoNCE loss:

L𝑁𝐶𝐸 (𝑆 ;𝐺 ;𝜃 ;Φ) = − 1

𝑁

𝑁∑︁
𝑖=1

[
log

exp(< 𝑓𝜃 (𝑔𝑖 ), 𝑓𝜃 (𝑠𝑖 ) >)∑
𝑗≠𝑖 exp(< 𝑓𝜃 (𝑔 𝑗 ), 𝑓𝜃 (𝑠𝑖 ) >)

]
.

𝐼 (𝑆 ; 𝑆) in Eq. (22) is named disentanglement term since it measures

the relevance between two complementary subgraphs, which in-

dicates the explanatory subgraphs should be disentangled with

the residual subgraphs. We minimize 𝐼 (𝑆 ; 𝑆) by maximizing the

InfoNCE loss:

L𝑁𝐶𝐸 (𝑆 ; 𝑆 ;Φ) = − 1

𝑁

𝑁∑︁
𝑖=1

[
log

exp(< 𝑓𝑒 (𝑠𝑖 ), 𝑓𝑒 (𝑠𝑖 ) >)∑
𝑗≠𝑖 exp(< 𝑓𝑒 (𝑠 𝑗 ), 𝑓𝑒 (𝑠𝑖 ) >)

]
.

The overall loss function for the first-stage can be summarized as:

L1 (Φ;𝜃 ) =L𝑁𝐶𝐸 (𝑍 ; 𝑆 ;Φ) + 𝛽 ∗ (L𝑁𝐶𝐸 (𝑆 ;𝐺 ;𝜃 ;Φ)
− L𝑁𝐶𝐸 (𝑆 ; 𝑆 ;Φ)) − 𝜆 ∗ L𝑁𝐶𝐸 (𝑍 ; 𝑆 ;Φ) .

(14)

In the second-stage, we fine-tune the explainer by simply employing

an additional term L𝑡𝑠 (𝑌 ; 𝑆 ;Φ) based on the first-stage:

L2 (Φ;𝜃 ) = L1 (Φ;𝜃 ) + 𝛾L𝑡𝑠 (𝑌 ; 𝑆 ;Φ) . (15)

1
Note that different from optimization of 𝐼 (𝑍 ;𝑆 ) in Eq. (11), we do not directly employ

the target GNN model 𝑓𝑒 but adopt a learnable GNN encoder 𝑓𝜃 . This is because that

𝐼 (𝑆 ;𝐺 ) will degrade to 𝐼 (𝑆 ;𝑍 ) if we embed graphs with 𝑓𝑒 .

3.3 Explanation Generation Architecture
In this subsection, we elaborate on how we design the explainer

𝑞Φ (𝑆 |𝐺) and how to optimize the explainer with the loss functions

in Eq. (14) and Eq. (15). In practice, we decompose the explainer

𝑞Φ (𝑆 |𝐺) into a learnable attributor TΦ and a selectorH . The attrib-

utor with parameters Φ estimates the distribution of every edge,

i.e., 𝑞Φ (𝑒𝑖 𝑗 |𝐺) where 𝑒𝑖 𝑗 is a binary random variable indicating the

mask for edge (𝑖, 𝑗). Specifically, if 𝑒𝑖 𝑗 = 1, we retain the edge (𝑖, 𝑗)
to construct explanatory subgraphs, and otherwise, we mask out

the edge to be superfluous. Then the selector samples edges from

𝑞Φ (𝑒𝑖 𝑗 |𝐺) to instantiate an explanatory subgraph 𝑠𝑘 . Formally, we

have

𝑠𝑘 = H ©­«
⋃

(𝑖, 𝑗 ) ∈E
{𝑒𝑖 𝑗 }

ª®¬ where 𝑒𝑖 𝑗 ∼ 𝑞Φ (𝑒𝑖 𝑗 |𝐺) = TΦ (𝐺) , (16)

where E denotes the edges in 𝐺 .

It is intractable to optimize the explainer with the loss functions

in Eq. (14) and Eq. (15) because the 𝑒𝑖 𝑗 are discrete and the sam-

pling procedure in H is indifferentiable. To tackle this problem,

existing graph explanation methods [18, 33, 39] usually assume

𝑒𝑖 𝑗 follows the Bernoulli distribution. And then, they employ the

Gumbel-Softmax reparameterization trick [19] to sample edges in-

dependently. The reparameterization trick relaxes the edges to be

continuous and makes the sampling procedure derivable. However,

the assumption on Bernoulli distribution is unreasonable since it

assumes that every edge contributes to the GNNs’ output indepen-

dently and discards their correlations.

Instead, we assume that the edges follow a Categorical distri-

bution, i.e., we assume 𝑞Φ (𝑒𝑖 𝑗 |𝐺) =
exp(𝑤𝑖 𝑗 /𝜏 )∑

(𝑖,𝑗 ) ∈E exp(𝑤𝑖 𝑗 /𝜏 ) where logits

𝑤𝑖 𝑗 is calculated by the attributor TΦ which is implemented by

a multilayer perceptron (MLP)
2
, and 𝜏 > 0 is the temperature

value. Different from the Bernoulli distribution, the Categorical

distribution assumption measures the contribution of edge (𝑖, 𝑗)
among all edges in the whole graph 𝐺 without overlooking their

relevance. With the Categorical assumption, we generate the ex-

planatory subgraphs by sampling 𝑘 edges from the distribution

and set the value of 𝑒𝑖, 𝑗 of corresponding selected edges to be 1

while masking out other edges. To this end, we adopt the Gumbel

top-𝑘 trick which is provably equivalent to sampling without re-

placement from 𝑞Φ (𝑒𝑖 𝑗 |𝐺) [16, 38]. Formally, edges are sampled by

argtopk(𝑖, 𝑗 ) ∈E (𝑤𝑖 𝑗 − log(− log𝑈𝑒 )) where𝑈𝑒 ∼ Uniform(0, 1).
Nonetheless, the operator argtopk(·) is indifferentiable. To tackle

this problem, we choose the straight-through (ST) estimator [4,

12], which can approximately estimate the gradient for discrete

variables. Specifically, instead of directly setting the values of mask

𝑒𝑖, 𝑗 corresponding to the selected edges to be 1, we use:

𝑒𝑖, 𝑗 := 1 − no_grad

(
𝑞Φ

(
𝑒𝑖 𝑗 |𝐺

) )
+ 𝑞Φ

(
𝑒𝑖 𝑗 |𝐺

)
, (17)

where no_grad(·) means that the back-propagation signals will

not go through this term. Experimental results demonstrate the

superiority of the Categorical distribution assumption combined

with the ST estimator.

2
Details of the implementation can be found in the appendix.

2353



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Jihong Wang et al.

3.4 Theoretical Analysis
In this section, we theoretically analyze the connection between

task-agnostic explanation and task-specific explanation, which

demonstrates the validity and transferability of our proposed two-

stage explanation.

Theorem 1. Let 𝑆 ∈ S be a subgraph of𝐺 ,𝑍 be the representations
of 𝐺 . Given any potential task-specific predictions 𝑌 , we have:

(1) If 𝑆 is a task-agnostic sufficient subgraph corresponding to 𝑍 ,
then 𝑆 must be a task-specific sufficient subgraph correspond-
ing to 𝑌 .

(2) If 𝑆 is a task-agnostic 𝜖−explanatory subgraph corresponding
to 𝑍 , then 𝑆 must be a task-specific 𝜖′−explanatory subgraph
corresponding to 𝑌 where 𝜖′ = 𝜖 + 𝐼 (𝐺 ;𝑍 |𝑌 ).

See the proof details in the Appendix. The above theorem reveals

that the task-agnostic sufficient subgraph is a sufficient condition

for the task-specific sufficient subgraph. And the task-agnostic

explanatory subgraph is a relaxed sufficient condition for the task-

specific explanatory subgraph where the compactness constraint is

relaxed from 𝜖 to 𝜖′. That is, task-agnostic 𝜖−explanatory subgraphs
can be used to explain predictions on any potential downstream

tasks 𝑌 since they are sufficient for 𝑌 . And their compactness on

specific tasks is bounded by 𝜖 and the transferability knowledge in

the representation space (knowledge except for 𝑌 , i.e., 𝐼 (𝐺 ;𝑍 |𝑌 )).
This theorem demonstrates the transferability of our task-agnostic

explanation in the first stage. Moreover, in the second stage, the

compactness of task-agnostic explanations on specific tasks can be

further tightened by fine-tuning.

4 EXPERIMENTS
In this section, we conduct extensive experimental studies to evalu-

ate our proposed EGIB method. We first introduce the details of our

adopted datasets, baseline methods, and experimental settings. And

then, we discuss the results of the experiments. Specifically, we aim

to answer the following questions:RQ1: Can the fine-grained infor-

mation in the representation space enhance the explanations? RQ2:
Can our pretrained task-agnostic explanations be transferable to

downstream tasks? RQ3: Can our proposed invariance regulariza-

tion term, the Categorical distribution assumption, and the IB-based

intelligibility term benefit the effectiveness of EGIB?

4.1 Datasets
To evaluate the effectiveness and transferability of EGIB on both

node-level and graph-level tasks, we adopt two groups of real-

world datasets that contain multiple tasks. The statistics of the used

datasets can be found in the appendix.

MoleculeNet. The MoleculeNet [36] is a large-scale bench-

mark for molecular machine learning. In a molecular graph, each

node indicates an atom, and each edge denotes a bond connect-

ing atoms. The prediction of molecular graphs’ properties can be

treated as graph-level tasks. We adopt four graph classification

tasks in MoleculeNet to evaluate graph-level explanations: BACE,

BBBP, SIDER, and HIV.

PPI. The PPI [49] dataset collects the physical interactions be-
tween proteins in 24 different human tissues. In a PPI graph, each

node indicates a protein, while edges denote interactions among

proteins. Each protein in the datasets has 121 binary labels asso-

ciated with its functions. The prediction of each protein function

can be regarded as a node-level task. We adopt four tasks in PPI to

evaluate the node-level explanation.

4.2 Baselines
Weadopt three task-specific explanationmethods and a task-agnostic

explanation method as baselines. Specifically, 1) GNNExplainer [42]

is a transductive explanation method that learns edge masks for ev-

ery single instance. 2) PGExplainer [18] is an inductive explanation

method. Compared with GNNExplainer, PGExplainer provides a

global understanding of predictions made by GNNs. 3) Refine [33]

is an inductive explanation method that learns the multi-grained

explanations with class-wise attributors and contrastive learning.

It employs a two-stage training strategy to generate explanations

with both local and global understanding of the predictions. 4)

TAGE [39] is a task-agnostic explanation method that learns the

explainer based on conditioned contrastive learning. Moreover, we

refer to EGIB-TA as a variant of EGIB without the second fine-

tuning stage.

4.3 Experimental Settings and Metrics
Target model settings. In this paper, we consider target mod-

els trained in a two-stage fashion. Specifically, we first pretrain a

GNN-based encoder to learn graph/node representations in a self-

supervised way. Then we freeze the encoder and train MLP-based

downstream models with the learned representations in a super-

vised way. For MoleculeNet, we adopt the pretraining strategies

proposed in previous work [10] and pretrain a 5-layer GIN [40]

encoder on ZINC-2M [25]. ZINC-2M is a large unlabeled dataset in

MoleculeNet, which contains 2 million molecules. Then, we train a

2-layer MLP for every downstream task (i.e., BACE, BBBP, SIDER,
and HIV) in a supervised way. For PPI, we employ GRACE [48]

to train a 2-layer GCN [14] as the encoder on all graphs from PPI.

Downstream models are also adopted as a 2-layer MLP.

Explanation settings. The task-agnostic explainers, i.e., EGIB and

TAGE are trained consistently with target models. For MoleculeNet,

the explainer is first pretrained on ZINC-2M and then fine-tuned

on downstream tasks, i.e., BACE, BBBP, SIDER, and HIV. For PPI,

the explainer is first pretrained in a task-agnostic way on the whole

graphs and then fine-tuned with specific tasks. Previous work [39]

shows that task-specific explainers like PGExplainer cannot transfer

to other tasks. Thus, we only evaluate task-specific explainers’

performance on the task they are trained with.

Metric. To evaluate the performance of explanation quantita-

tively, we adopt the metrics of fidelity score and the sparsity score

following previous works [39, 45, 46]. The fidelity score measures

the change of prediction probability when edges are removed. The

larger the fidelity score is, the more critical the removed edges are.

And the sparsity score measures the fraction of edges selected as im-

portant by explanation methods. The larger the sparsity score, the

fewer edges identified as explanations. Details of the two metrics

can be found in the appendix.
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Figure 3: Quantitative results of EGIB against other baselines.

4.4 Experimental Results
4.4.1 Effectiveness and transferability of EGIB. We quantitatively

analyze the effectiveness of EGIB on multiple downstream tasks to

answer RQ1 and RQ2. In Fig. 3, we demonstrate how the fidelity

scores change when the sparsity scores of explanations vary. We

observe that 1) Our proposed methods supervised by the repre-

sentation space (i.e., EGIB and EGIB-TA) outperform task-specific

explanation methods (i.e., GNNExplainer, PGExplainer, and Re-

fine). We attribute the observation to the fine-grained information

in node/graph representations. The decision procedure of GNNs

can be regarded as a projection from the high-dimensional graph

space to the low-dimensional label space, where information in the

graphs is filtered layer by layer. Compared with task-specific pre-

dictions, intermediate representations provide more fine-grained

information to supervise task-agnostic explainers. 2) Our proposed

pretrained task-agnostic explanations, i.e., EGIB-TA, can transfer to

multiple downstream tasks without access to downstream models

during pretraining, which indicates that we can explain the trans-

ferable knowledge in the pretrained GNNs with EGIB. Specifically,

we can observe that EGIB-TA outperforms other baseline methods

except for a slight gap with TAGE on task 1 of PPI dataset. A possi-

ble interpretation for the slight gap is that the downstream models

involved in TAGE provide more information. 3) The task-specific

fine-tuning can enhance the performance of EGIB. From the figure,

we can observe that EGIB with fine-tuning outperforms EGIB-TA

thanks to the task-specific information in the label space.

4.4.2 Ablation studies. To answer RQ3, we conduct ablation stud-

ies to investigate whether the invariance regularization term, the

Categorical distribution assumption, and the IB-based intelligibility

term benefit the performance of EGIB. Specifically, we consider

three variants of our task-agnostic explanation EGIB-TA: 1) We

eliminate the invariance regularization term and refer to the invari-

ant as EGIB /wo IR. 2) We adopt the typical Bernoulli distribution

assumption [18] with GumbelSoftmax reparameterization trick in-

stead of our Categorical assumption and refer to this variant as

EGIB /wo Cat. 3) Based on EGIB /wo Cat, we further replace the

IB-based intelligibility term with the typical 𝑙1 norm regularization

and refer it to EGIB /wo IB. Note that the 𝑙1 norm regularization

cannot apply to the Categorical assumption because the 𝑙1 norm of

edge logits in the Categorical assumption is fixed as 1. The detailed

comparison among different settings can be found in Table 1. We

control the sparsity of explanations on the same level and report

the fidelity score in Table 2. From the table, we can observe that:

1) EGIB-TA outperforms EGIB wo/ IR and EGIB wo / Cat, which

indicates that both the Categorical assumption and the invariance

regularization benefit the performance of our EGIB-TA. 2) EGIB

wo/ Cat with the IB-based intelligibility constraint outperforms

EGIB wo/ IB with 𝑙1 norm. We attribute this observation to the

fact that 𝑙1 norm may lead to a biased assumption on explanations’

size [20]. Specifically, explanations can vary in size with the same

size restriction. Some explanations may miss crucial edges, while

others may involve additional irrelevant edges. Instead, we bypass

the biased assumption with IB-based intelligibility constraint by

minimizing the superfluous information in Eq. (4) while keeping

the relevant information.

4.4.3 Parameter studies. In Fig. 4, we investigate the influence of

different choices hyper-parameters in Eq. (14) and Eq. (15), i.e., 𝜆,
𝛽 , and 𝛾 on BACE task. For 𝜆 and 𝛽 , we report the performance

without fine-tuning, i.e., EGIB-TA. Specifically, for 𝜆, we fix 𝛽 =

1.0 and vary 𝜆 from {0.1, 0.3, 0.5, 0.7, 0.9}. For 𝛽 , we fix 𝜆 = 1.0

and vary 𝛽 from {0.001, 0.01, 0.1, 1.0, 10.0}. For 𝛾 , we report the

performance after fine-tuning, i.e., EGIB. We fix 𝛼 = 1.0, 𝛽 = 1.0

and vary 𝛾 from {0.1, 0.3, 0.5, 0.7, 0.9}. The blue line indicates TAGE,
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Table 1: Settings of ablation studies.

Invariance

regularization

Categorical

assumption

Intelligibility

constraint

EGIB wo/ IR × ✓ IB

EGIB wo/ IB ✓ × 𝑙1
EGIB wo/ Cat ✓ × IB

EGIB-TA ✓ ✓ IB

Table 2: Fidelity score of of ablation studies. Bold indicates
the best results on the same level of sparsity.

Graph-level BACE BBBP SIDER HIV

EGIB wo/ IR 0.424 ± 0.271 0.089 ± 0.130 0.249 ± 0.289 0.485 ± 0.326

EGIB wo/ IB 0.532 ± 0.266 0.191 ± 0.157 0.472 ± 0.300 0.574 ± 0.319

EGIB wo/ Cat 0.567 ± 0.260 0.202 ± 0.159 0.506 ± 0.307 0.603 ± 0.317

EGIB-TA 0.662 ± 0.205 0.211 ± 0.151 0.549 ± 0.297 0.676 ± 0.296
Node-level TASK 1 TASK 2 TASK 3 TASK 4

EGIB wo/ IR 0.413 ± 0.452 0.413 ± 0.481 0.371 ± 0.439 0.488 ± 0.449

EGIB wo/ IB 0.212 ± 0.381 0.206 ± 0.395 0.266 ± 0.401 0.364 ± 0.421

EGIB wo/ Cat 0.332 ± 0.435 0.351 ± 0.467 0.345 ± 0.429 0.461 ± 0.442

EGIB-TA 0.437 ± 0.452 0.517 ± 0.488 0.413 ± 0.449 0.589 ± 0.423

Figure 4: Results of parameter studies.

which performs the second best among all methods. We can observe

that 1) the invariance regularization benefits the performance of

the explanation, and our method keeps stable when 𝜆 ≥ 0.5. 2)

The Lagrangian multiplier 𝛽 makes a trade-off between fidelity

and compression. Either too-large or too-small 𝛽 will degrade the

performance. 3) The fine-tuning keeps stable across different values

of 𝛾 .

4.4.4 Visualization. As there are no ground-truth explanations

for our above-used muti-task datasets, we provide more visual-

ization results on two additional single-task datasets with expla-

nation ground-truths, i.e., MUTAG [6] and BA-2MOTIFS [18] as

well as quantitative results. Among them, MUTAG is a molecular

mutagenic property prediction dataset. Here, carbon rings with

chemical groups 𝑁𝑂2 groups and 𝑁𝐻2 are widely known to be mu-

tagenic [18, 20]. BA-2MOTIFS is a synthetic dataset where house

motifs and cycle motifs give class labels and thus are regarded as

ground-truth explanations. Note that the single-task datasets can

only reflect the effectiveness of EGIB while the transferability of

EGIB to multiple tasks is not presented. We remain it as future work

to construct muti-task datasets with ground-truth explanations to

facilitate the research of task-agnostic transferable explanations.

Although there is only a binary classification task in both datasets,

experimental results still demonstrate the effectiveness of our pro-

posed method. Specifically, we follow the experimental setting in

previous work [20] and report ROC-AUC averaged over 10 times

tests with different random seeds. From Table 3, we can observe

that our proposed EGIB outperforms other methods quantitatively

and qualitatively
3
. Specifically, our EGIB can correctly identify the

crucial edges, while other methods fail and miss some important

edges. For example, in the first row of explanations, all baselines

miss the 𝑁𝐻2 group while our method correctly captures the mu-

tagenic group. And in the fourth row, we can find some edges in

the house motif is missed by baseline methods while our EGIB can

identify the complete motif.

5 RELATEDWORKS
In this section, we briefly introduce existing post-hoc explanation

methods on graphs, which can be categorized into task-specific and

task-agnostic methods.

Task-specific Explanation on Graphs. According to a recent sur-

vey [45], most task-specific explanation methods on graphs can be

pigeonholed into four technique routes: (1) Gradient-based meth-

ods [2, 22] usually involve gradient-like scores as heuristics to

quantify the importance of edges, nodes, or node features. For ex-

ample, SA [2] directly employs the squared values of gradients

as the importance scores of different graph nodes, edges, or node

features.Gradient-based methods usually suffer from saturation

problems, i.e., when model output changes minimally w.r.t. any

input change, the gradients can hardly reflect the contributions

of inputs. (2) Surrogate methods [11, 32] employ a simple and in-

terpretable surrogate model to approximate the predictions of the

GNNs for the neighboring areas of the input example. For instance,

GraphLime [11] considers the 𝑁 -hop neighboring nodes and their

predictions as a local dataset. Then a kernel-based feature selec-

tion algorithm HISC Lasso is employed to fit the local dataset. The

weights of different features in HSIC Lasso are used to select impor-

tant features. However, GraphLime can only explain node features

and is incapable of making an explanation with graph structure. (3)

Decomposition methods [2, 23] build score decomposition rules to

distribute the prediction scores to the input space. GNN-LRP [23]

makes a high-order Taylor decomposition of GNNs to develop the

score decomposition rule. It proves that each term in the Taylor

decomposition corresponds to a graph walk, and such terms can

be regarded as importance scores. However, the method is com-

putationally expensive as each walk is considered separately. (4)

Perturbation-based methods [18, 24, 27, 33, 42] generate masks with

a parametrized explainer model. Then the explanatory subgraphs

are identified by the masks combined with the input graphs. To

name a few, GNNExplainer [42] learns soft masks with a local view

and applies the masks to the adjacency matrix.

Task-Agnostic Explanations on Graphs. As far as we know, only
one existing work [39] named TAGE attempted to explain GNNs in

a task-agnostic way. Specifically, they decompose the explainer as

a representation explainer and downstream explainer. The repre-

sentation explainer is first trained using a self-supervised training

framework without knowledge of downstream tasks. Then the

representation explainer generates the final explanation in coop-

eration with the downstream explainer. There are mainly three

3
Note that on BA-2MOTIFS and MUTAG, GNNExplainer and PGExplainer work worse

than results reported in previous work [18] as we do not cherry pick the target model.

Instead, we evaluate the performance of explanation methods on target models with

different random seeds. Similar settings can be found in work [20]
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GNNExplainer PGExplainer Refine TAGE EGIB-TA EGIB

M
U
T
A
G

B
A
-
2
M
O
T
I
F
S

Explanation AUC
MUATG 59.77 ± 2.80 80.38 ± 3.77 71.48 ± 7.76 89.49 ± 6.90 98.21 ± 1.42 98.31 ± 1.33

BA-2MOTIFS 66.22 ± 10.42 75.05 ± 11.36 73.27 ± 9.36 75.81 ± 16.70 82.81 ± 11.12 88.09 ± 10.83

Table 3: Qualitative and quantitative results of different explanation methods on datasets with explanation groundtruths. The
green edges in MUTAG and black edges in BA-2MOTIFS indicate the explanations.

differences between our EGIB and TAGE. First, in the training time

of the representation explainer in TAGE, they mimic the behavior

of the downstream explainer with a multivariate Laplace distribu-

tion, which may lead to a distribution shift in the inference time.

Instead, our EGIB does not rely on any assumptions about down-

stream tasks. Second, TAGE assumes that the edges in explanatory

subgraphs follow a Bernoulli distribution which overlooks the rel-

evance among edges. Moreover, they guarantee the intelligibility

of explanations by simply restricting the size of explanatory sub-

graphs with an 𝑙1 norm regularization, which usually leads to a

biased assumption [20]. In contrast, our EGIB makes a Categorical

distribution assumption that measures the contribution of an edge

among all edges without overlooking their relevance. Additionally,

our IB-based intelligibility term does not assume the size of expla-

nations. Third, our EGIB theoretically subsumes the task-agnostic

explanation and task-specific explanation into a unified framework.

Based on the framework, we further analyze the transferability of

task-agnostic explanations.

6 CONCLUSION
We investigate a two-stage explanation strategy since typical task-

specific explanation methods are incapable of explaining pretrained

GNNs where downstream tasks are inaccessible, not to mention

explaining the transferable knowledge in pretrained GNNs. More-

over, the coarse-grained information in the label space may be

insufficient to reflect the internal logic of GNNs. To overcome these

limitations, we propose a unified framework named Explainable

Graph Information Bottleneck (EGIB) based on IB which subsumes

the task-specific explanations and task-agnostic explanations. Based

on the unified framework, we derive a tractable bound for optimiza-

tion and adopt a simple yet effective graph generation architecture.

Furthermore, we theoretically prove that the task-agnostic expla-

nation is a relaxed sufficient condition of task-specific explanation,

demonstrating the transferability of task-agnostic pretrained ex-

planation. Our experiments demonstrate that our proposed EGIB

outperforms other baseline methods on effectiveness. We discuss

the limitations and potential social impact in the appendix.
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A DERIVATION DETAILS
A.1 Derivation for Eq. (1) and Eq. (3)
In this subsection, we show how Eq. (1) and Eq. (3) are derived. In

Eq. (1), we have

𝐼 (𝑇 ;𝐺 |𝑆) = 𝐼 (𝑇 ;𝐺) − 𝐼 (𝑇 ; 𝑆) = 0 (18)

which can be derived as:

𝐼 (𝑇 ;𝐺 |𝑆) = 𝐼 (𝑇 ;𝐺) − 𝐼 (𝑇 ;𝐺 ; 𝑆)
= 𝐼 (𝑇 ;𝐺) − (𝐼 (𝑇 ; 𝑆) − 𝐼 (𝑇 ; 𝑆 |𝐺))
= 𝐼 (𝑇 ;𝐺) − 𝐼 (𝑇 ; 𝑆)

(19)

The third equation holds because 𝑆 is a subgraph of 𝐺 , i.e., 𝑆 is

conditionally independent of 𝑇 given 𝐺 . Moreover, in Eq. (3) we

have:

𝐼 (𝑆 ;𝐺 |𝑇 ) = 𝐼 (𝑆 ;𝐺) − 𝐼 (𝑆 ;𝑇 ) (20)

Similar to Eq. (1), the Eq. (3) can be proved as :

𝐼 (𝑆 ;𝐺 |𝑇 ) = 𝐼 (𝑆 ;𝐺) − 𝐼 (𝑇 ;𝐺 ; 𝑆)
= 𝐼 (𝑆 ;𝐺) − (𝐼 (𝑆 ;𝑇 ) − 𝐼 (𝑇 ; 𝑆 |𝐺))
= 𝐼 (𝑆 ;𝐺) − 𝐼 (𝑆 ;𝑇 )

(21)

A.2 Derivation for Eq. (22)
In Eq. (22), we have

𝐼 (𝑆 ;𝐺) = −𝐼 (𝑆 ;𝐺) + 𝐼 (𝑆 ; 𝑆) + 𝐻 (𝐺) (22)

which can be proved as:

𝐼 (𝑆 ;𝐺) = −𝐼 (𝑆 ;𝐺 |𝑆) + 𝐼 (𝑆, 𝑆 ;𝐺)
= −𝐼 (𝑆 ;𝐺) + 𝐼 (𝑆 ;𝐺 ; 𝑆) + 𝐻 (𝐺)
= −𝐼 (𝑆 ;𝐺) + 𝐼 (𝑆 ; 𝑆) − 𝐼 (𝑆 ; 𝑆 |𝐺) + 𝐻 (𝐺)
= −𝐼 (𝑆 ;𝐺) + 𝐼 (𝑆 ; 𝑆) + 𝐻 (𝐺)

(23)

The second equation holds because𝐺 = (𝑆 ; 𝑆), and thus 𝐼 (𝑆, 𝑆 ;𝐺) =
𝐼 (𝐺 ;𝐺) = 𝐻 (𝐺).

A.3 Proof for Theorem 1
Theorem. Given a subgraph 𝑆 ∈ S whereS is the set of subgraphs

of 𝐺 , 𝑍 denotes the representations of 𝐺 , 𝑌 denotes the downstream
prediction based on 𝑍 . We have:

(1) If 𝑆 is a task-agnostic sufficient subgraph corresponding to 𝑍 ,
then 𝑆 must be a task-specific sufficient subgraph correspond-
ing to 𝑌 .

(2) If 𝑆 is a task-agnostic 𝜖−explanatory subgraph corresponding
to 𝑍 , then 𝑆 must be a task-specific 𝜖′−explanatory subgraph
corresponding to 𝑌 where 𝜖′ = 𝜖 + 𝐼 (𝐺 ;𝑍 |𝑌 ).

Proof. The conclusion (1) can be formulated as 𝐼 (𝑍 ;𝐺 |𝑆) = 0 ⇒
𝐼 (𝑌 ;𝐺 |𝑆) = 0. We prove the conclusion by:

𝐼 (𝑌 ;𝐺 |𝑆) − 𝐼 (𝑍 ;𝐺 |𝑆)
= 𝐼 (𝐺 ;𝑌 ) − 𝐼 (𝑆 ;𝑌 ) − (𝐼 (𝐺 ;𝑍 ) − 𝐼 (𝑆 ;𝑍 )) (Substitute in Eq. (1))
= 𝐼 (𝐺 ;𝑌 ;𝑍 ) + 𝐼 (𝐺 ;𝑌 |𝑍 ) − (𝐼 (𝑆 ;𝑌 ;𝑍 ) + 𝐼 (𝑆 ;𝑌 |𝑍 )) − 𝐼 (𝐺 ;𝑍 ) + 𝐼 (𝑆 ;𝑍 )
= 𝐼 (𝐺 ;𝑌 ;𝑍 ) − 𝐼 (𝑆 ;𝑌 ;𝑍 ) − 𝐼 (𝐺 ;𝑍 ) + 𝐼 (𝑆 ;𝑍 )
= −𝐼 (𝐺 ;𝑍 |𝑌 ) + 𝐼 (𝑆 ;𝑍 |𝑌 )
= −𝐼 (𝐺 ;𝑍 |𝑌 ) + 𝐼 (𝐺 ; 𝑆 ;𝑍 |𝑌 ) + 𝐼 (𝑆 ;𝑍 |𝑌,𝐺)
= −𝐼 (𝐺 ;𝑍 |𝑌, 𝑆) ≤ 0

(24)

The third equation holds because 𝑌 denotes the predictions based

only on 𝑍 and thus 𝑌 is conditionally independent of𝐺 and 𝑆 given

𝑍 , i.e., 𝐼 (𝐺 ;𝑌 |𝑍 ) = 0 and 𝐼 (𝑆 ;𝑌 |𝑍 ) = 0. The final equation holds

because 𝑆 is the subgraph of 𝐺 , and thus 𝑆 is independent of 𝑍

given 𝐺 and 𝑌 , i.e., 𝐼 (𝑆 ;𝑍 |𝑌,𝐺) = 0. The proof of conclusion (1) is

completed.

The conclusion (2) can be formulated as 𝐼 (𝑆 ;𝐺 |𝑍 ) ≤ 𝜖 ⇒
𝐼 (𝑆 ;𝐺 |𝑌 ) ≤ 𝜖 + 𝐼 (𝐺 ;𝑍 |𝑌 ). To prove the conclusion, we have:

𝐼 (𝑆 ;𝐺 |𝑍 ) − 𝐼 (𝑆 ;𝐺 |𝑌 )
= 𝐼 (𝑆 ;𝑌 ) − 𝐼 (𝑆 ;𝑍 ) (Substitute in Eq. (3))
= 𝐼 (𝐺 ;𝑌 ) − 𝐼 (𝐺 ;𝑍 ) (Substitute in Eq. (1))
= 𝐼 (𝐺 ;𝑌 ;𝑍 ) + 𝐼 (𝐺 ;𝑌 |𝑍 ) − 𝐼 (𝐺 ;𝑍 )
= 𝐼 (𝐺 ;𝑌 ;𝑍 ) − 𝐼 (𝐺 ;𝑍 )
= −𝐼 (𝐺 ;𝑍 |𝑌 )

(25)

The first equation holds because if 𝑆 is a task-agnostic sufficient

subgraph corresponding to 𝑍 , it must be a task-specific sufficient

subgraph corresponding to 𝑌 . Then substituting Eq. (3), we can

prove the equation. According to the definition of 𝜖−explanatory
subgraph, we have 𝐼 (𝑆 ;𝐺 |𝑍 ) ≤ 𝜖 . Since 𝐼 (𝑆 ;𝐺 |𝑌 ) = 𝐼 (𝑆 ;𝐺 |𝑍 ) +
𝐼 (𝐺 ;𝑍 |𝑌 ) ≤ 𝜖 + 𝐼 (𝐺 ;𝑍 |𝑌 ), we can say that 𝑆 is a task-specific

𝜖′−explanatory subgraph where 𝜖′ = 𝜖 + 𝐼 (𝐺 ;𝑍 |𝑌 ). The proof is
completed. □

B IMPLEMENTATION DETAILS
B.1 Implementations of Explainers
We adopt the multilayer perceptron (MLP) as the attributor TΦ to

calculate the logits𝑤𝑖 𝑗 following PGExplainer [18]. Formally, for

graph-level tasks, the logits of edge (𝑖, 𝑗), i.e.,𝑤𝑖 𝑗 is calculated by

the concatenation of its corresponding nodes’ representations, 𝒛𝑖
and 𝒛 𝑗 :

𝑤𝑖 𝑗 = MLP𝑔 ( [𝒛𝑖 ; 𝒛 𝑗 ];Φ) (26)

For node-level tasks, except for the corresponding nodes’ represen-

tations of edge (𝑖, 𝑗), we also involve the target node’s representa-

tion, 𝒛𝑡 whose prediction is to be explained:

𝑤𝑖 𝑗 = MLP𝑛 ( [𝒛𝑖 ; 𝒛 𝑗 ; 𝒛𝑡 ];Φ) (27)

For both MLP𝑔 and MLP𝑛 , we adopt a 2-layer MLP with Relu acti-

vation to implement them.

B.2 Implementation of Target GNNs and
Downstream Models

We adopt the same settings following previous work [39]. For

MoleculeNet, we adopt a 5-layer GIN with Relu activation as the

encoder. The hidden dimension is fixed as 600 for each layer. Batch

Normalization is adopted to normalize the output of hidden layers.

For PPI, we adopt a 2-layer GCN with Relu activation. For down-

stream models, 2-layer MLPs are adopted to predict specific tasks.

For convenience of reproduction and comparison, we adopt the

open-sourced parameters released by previous works
4
.

4
https://drive.google.com/drive/folders/1f41cVroWXtbACHfVgYkLo3Mj-gBdkexI
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Figure 5: Training time of different explanation strategies on
PPI. The y-axis indicates the time cost in seconds. Note that
we take the logarithm for convenience of demonstration.

Table 4: Statistics of datasets

MoleculeNet

PPI

BACE BBBP SIDER HIV

# of Graphs 1513 2039 1427 41127 24

Avg. # of Nodes 34.12 24.05 33.64 25.53 56,944

Avg. # of Edges 36.89 25.94 35.36 27.84 818,716

B.3 Details of EGIB Training
For the training of EGIB, we adopt the Adam optimizer. For Molecu-

leNet, the learning rate is fixed as 0.001, the batch size is set as

256. The explainer is first pretrained on the unlabeled ZINC-2M

dataset with 1 epoch and fine-tuned on specific tasks (BACE, BBBP,

SIDER and HIV) with 10 epochs. For PPI dataset, the learning rate

is fixed as 5𝑒 − 6 and the batch size is set as 4. The explainer is first

pretrained on the whole dataset in a unsupervised fashion with 1

epcoh and then further fine-tuned on specific tasks with 1 epoch.

For the choice of 𝑘 in the Categorical sampling, we simply set it as

0.1 ∗ |E| where |E | denotes the number of edges in the graphs or

𝑘−hop subgraphs.

C EXPERIMENTS
C.1 Datasets
The statistics of the used datasets are summarized in Table 4.

C.2 Metrics
Given a graph instance 𝑔𝑖 , the fidelity score is calculated as:

Fidelity =
1

𝑁

𝑁∑︁
𝑖=1

(
𝑓𝑡 (𝑔𝑖 )𝑦𝑖 − 𝑓𝑡 (𝑠𝑖 )𝑦𝑖

)
(28)

where 𝑓𝑡 is the target model, 𝑠𝑖 denotes the residual subgraphs of

which the explanation edges are removed. 𝑦𝑖 denotes the label of

graph 𝑔𝑖 . The sparsity score is calculated as:

Sparsity =
1

𝑁

𝑁∑︁
𝑖=1

(1 −
|E𝑠

𝑖
|

|E𝑖 |
) (29)

where |E𝑠
𝑖
| denotes the number of edges selected to be explanation

and |E𝑖 | is the number of edges in the graph samples.

C.3 Efficiency of EGIB
Besides the results on effectiveness, we also experimentally analyze

the efficiency of our EGIB in the muti-task setting. With similar

explainer architecture, we emphasize that the most crucial factor

that decides the efficiency of explanation methods is the training

strategy they adopt. In Fig. 5, we evaluate the efficiency of three

different explanation strategies: the task-specific transductive ex-

planation strategy (e.g., GNNExplainer), the task-specific inductive
explanation strategy (e.g., PGExplainer) and our proposed two-

stage task-agnostic explanation strategy in a muti-task setting. We

record the training time (in seconds) on PPI dataset and take the

logarithm as the y-axis. All experiments are conducted with the

same machine with a single NVIDIA GeForce RTX 3090. We can

observe that EGIB is the most efficient method among the three

strategies in the muti-task setting because the explainer does not

need to be trained from scratch and only requires fine-tuning with

a few epochs. This observation demonstrates the superiority of our

two-stage explanation strategy on efficiency in muti-task settings.

Moreover, another task-agnostic method, TAGE, does not require

any fine-tuning after pretraining and thus can be more efficient

than our EGIB in a muti-task setting. However, our variant EGIB-

TA can be comparable to TAGE without fine-tuning on specific

tasks. The constant gap between EGIB-TA and TAGE on efficiency

is independent of the task numbers and can be acceptable since

EGIB-TA outperforms TAGE on effectiveness.

D DISCUSSION OF LIMITATIONS AND SOCIAL
IMPACTS

Access to target models and datasets. Just like typical methods [18,

42], our method relies on access to the target model and the datasets.

In other words, we consider a white-box setting. Nonetheless, this

knowledge may be inaccessible in practice. When the target model

is inaccessible, a straightforward strategy is to employ a surrogate

model approximating the behavior of the target model. However,

models may yield similar results with different logic. How to give

post-hoc explanations with only some queries is an intractable

problem. Moreover, since datasets can also be inaccessible, the

training of inductive explanations may suffer the data scarcity

problem.

Potential social impacts. Actually, most post-hoc explanation

methods face reliable problems. Since we try to infer the possible

logic of target models in a post-hoc fashion, the explanations may

be unreliable. Wrong explanations may lead to potential negative

and severe impacts, especially in fields like molecular property

prediction or drug discovery. Thus, it is urgent and essential to

study methods to verify the reliability of post-hoc explanations.
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