
On-the-Fly Adapting Code Summarization on
Trainable Cost-Effective Language Models

Yufan Cai
Shanghai Jiao Tong University

National University of Singapore
cai_yufan@u.nus.edu

Yun Lin∗

Shanghai Jiao Tong University
lin_yun@sjtu.edu.cn

Chenyan Liu
National University of Singapore

chenyan@u.nus.edu

Jinglian Wu
National University of Singapore
jinglian_wu@u.nus.edu

Yifan Zhang
National University of Singapore

yfzhang@nus.edu.sg

Yiming Liu
National University of Singapore

e0945794@u.nus.edu

Yeyun Gong
Microsoft

yegong@microsoft.com

Jin Song Dong
National University of Singapore

dcsdjs@nus.edu.sg

Abstract

Deep learning models are emerging to summarize source code to comment for code
documentation and program comprehension. We can achieve good performance by
training the model on large training corpus. However, in practice, the code samples
from different projects can have contradictory training signal for learning a deep
comment generator, making the model struggled to fit all the training samples.
In this work, we introduce a novel approach, AdaCom, to improve the performance
of comment generators by on-the-fly model adaptation. This research is motivated
by the observation that deep comment generators often need to strike a balance
as they need to fit all the training samples. Specifically, for one certain target
code c, some training samples Sp could have made more contributions while other
samples So could have counter effects. However, the traditional fine-tuned models
need to fit both Sp and So from a global perspective, leading to compromised
performance for one certain target code c. In this context, we design AdaCom to
(1) detect whether the model might have a compromised performance on a target
code c and (2) retrieve a few helpful training samples Sp that have contradictory
samples in the training dataset and, (3) adapt the model on the fly by re-training
the Sp to strengthen the helpful samples and unlearn the harmful samples. Our
extensive experiments on 7 comment generators and 4 public datasets show that (1)
AdaCom can significantly boost the performance of comment generation (BLEU4
score by on average 14.9%, METEOR by 12.2%, and ROUGE-L by 7.4%), (2)
the adaptation on one code sample is cost-effective and acceptable as an on-the-fly
solution, and (3) AdaCom can adapt well on out-of-distribution code samples.

1 Introduction

Deep learning models are increasingly emerging to generate comments from the source code, facilitat-
ing programmers’ tasks such as code documentation [27], program comprehension [18], and reverse-
engineering [17]. Regarding the code-to-comment generation problem as a language translation or

∗Corresponding author

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

summarization problem, many deep language models, such as CodeBERT [11], GraphCodeBERT
[15], CodeT5 [37], and CodeGPT [14], are designed as state-of-the-art code comment generators. The
forthcoming ChatGPT [13] also demonstrates its effectiveness in emulating human-like interpretation
of the target code.

On one hand, to improve the model performance, deep language models have evolved to scale up
their size. (Ultra-)large language models such as GPT3 [28], CodeX [7], and InstructGPT [29] have
shown their effectiveness. However, they usually consist of millions of neurons, which results in
substantial training and maintenance costs for individuals.

On the other hand, the relatively small models such as CodeBERT and CodeT5 are more economical
and maintainable, but they can struggle to compromise their performance on different subsets of
training samples. Our empirical study with the CodeBERT model on the CodeSearchNet[19] dataset
shows that on average 49.51% samples are more or less “conflicting” with each other. In other words,
if the model only fits some consistent training samples for one certain test case, it will show much
better performance. Overall, we observe that the conflicting effects are prevalent, regardless of the
types of models and the types of training corpus.

For the sake of a cost-effective comment generator, we propose AdaCom, an on-the-fly model
adaptation solution to boost the performance of deep comment generators. We design AdaCom to
fulfill three research goals:

• Compromise Detection: Given a source code, AdaCom aims to detect whether a comment
generator may have a compromised performance on the source code.

• Samples Searching: Given a source code and a dataset, AdaCom aims to search for a few samples
in the training dataset that can contribute to mitigating the model bias.

• On-the-Fly Model Tuning: Given a source code and few labeled samples, AdaCom aims to retrain
the model on the fly to boost its performance over the source code.

AdaCom takes input from a target code c, a comment generator g, and a dataset D. AdaCom adapts
g on the fly into g′ so that g′ can have a better performance on generating the comment of c. Our
rationale lies in that there could be a small subset of samples Ds ⊂ D which is more helpful for the
comment generator to learn to summarize c. Technically, we first build an influential graph Ginf on
the dataset D where each node is a sample and the edge between two nodes indicates the helpful
or harmful relation between the two training samples. Secondly, given a target code c, we use a
model-representation-based measurement to find the potentially semantic helpful samples of c in the
training dataset. Then, we enrich the set of helpful samples D based on the Ginf . Those samples
are chosen to fine-tune the model in a lightweight way so that the model can (1) better learn helpful
samples and (2) unlearn harmful samples. Finally, we retrain the model g to g′ with those samples on
the fly for the target code c.

The solution of AdaCom is orthogonal to many deep-learning-based comment generators including
improving model architectures [25], model training [15], and code representation [22].

We evaluate AdaCom on boosting 7 comment generators over 4 datasets. The experimental results
show that (1) AdaCom can significantly boost the performance of comment generation (the BLEU4
score by on average 14.9%, METEOR by 12.2% and ROUGE-L by 7.4%), (2) the whole adaptation
on an individual code sample takes a very small run-time overhead, and (3) AdaCom can generalize
well towards out-of-distribution code samples.

2 Motivating Example

Table 1 shows an example of how AdaCom applies on-the-fly adaptation to adapt the comment
generator to improve its performance. In the table, the fourth row shows the origin-generated
comment after model fine-tuning, the fifth row shows the generated comment after model trained by
the helpful training samples, and the last row shows the generated comment after model trained by
the harmful training samples.

Step 1. Influence Construction. In this example, AdaCom first establishes the influential relationship
among all the training samples. For clarity, we only show the influence between charm and chelp

2

Table 1: The motivating example to illustrate the compromise of the comment generator. The
difference is shown on the last three rows (i.e., model prediction after trained by both charm and
chelp, after retrained by charm, after retrained by chelp.
Sample Target Test Sample, ct Harmful Training Sample, charm Helpful Training Sample, chelp

Code

public static java.
sql. Timestamp

internalToTimestamp (
long v) {

return new java.sql
. Timestamp

(v - LOCAL_TZ .
getOffset (v));
}

private Date longToDate (long
val , int sqlDataType) {
switch (sqlDataType) {

case Types .DATE:
return new java.sql.Date(val);
case Types .TIME:
return new java.sql.Time(val);
case Types . TIMESTAMP :
return new java.sql. Timestamp (

val); } }

public static java.sql.
Date internalToDate (
int v) {

final long t = v
* MILLIS_PER_DAY ;
return new java.sql.Date(

t - LOCAL_TZ .
getOffset (t));

}

Ground
Truth

Converts the internal representation
of a SQL TIMESTAMP (long) to
the Java type used for UDF

Parse the long-valued timestamp into the appropri-
ate SQL date type

Converts the internal representation of a
SQL DATE (int) to the Java type used for
UDF parameters (@link java.sql.Date)

Origin Converts the internal { @ link long } (local to a { @ link TIMESTAMP }) representation
After
Harmful Parse the long-valued TIMESTAMP into a { @ link TIMESTAMP } representation

After
Helpful Converts the internal representation of a SQL TIMESTAMP (long) to the java type used for UDF

Table 2: Influence and estimated training contribution for examples in Table 1

Sample Estimated Influence Estimated Contribution
charm chelp charm chelp

ct / / 0.23 0.67
charm 1 -0.76 / /
chelp -0.76 1 / /

in Table 2. Generally, we can see that charm and chelp have an estimated influence score of -0.76,
indicating that the deep-learning model has made a compromise to fit the pair. We will illustrate the
calculation of the influence score in Section 3. In this stage, we define and cache all the "contradictory"
pairs in the training dataset.

Step 2. Training Contribution Construction. Next, we estimate the potential training contribution
of each training sample to the target code ct and select chelp as one of the semantic contributing
training samples. Intuitively, ct and chelp shares a similar representation within the deep comment
generator, which serves as a clue for us to select chelp. We further enhance the chelp to a set of
code samples using the influence score. More details can be found in Section 3.2. In this stage, we
construct the possible helpful samples from the training dataset.

Step 3. On-the-fly Retraining. Finally, helpful code samples like {chelp} are used to retrain the
comment generator g to g′. In Table 1, both charm and chelp are well fitted by the model. However,
we can observe the changes of generated comments in the last three rows of Table 1 when retraining
happens. The origin comment generator generates a more general and inaccurate comment but after
re-training with the helpful sample, the model generates a more precise comment for ct.

Overall, AdaCom is designed for finding possible compromises and adapting the model under specific
scenarios. Note that, both g and g′ make a compromise. The original comment generator g inclines
to favor fitting both charm and chelp, which optimizes g from a global perspective. In contrast, g′
inclines to favor fitting chelp over charm, which optimizes g′ locally for improving the comments for
the target code ct. As shown in our experiment (see Section 4), the adaptation boosts the performance
of state-of-the-art comment generators with acceptable run-time overhead.

3 Approach

Figure 1 shows an overview of the design AdaCom, which consists of an offline stage and an online
stage. In the offline stage, a comment generator g is assumed to be trained from the training dataset
D. Based on D and g, we define the influence estimation and construct the influence graph among
the training samples in D by their pairwise mutual influence. We cache both the representation of the
training samples and the influence scores for online retrieval.

3

1. Influence
Construction

D

Training Dataset
Comment

Generator, g

Target Code

Training

Contributing
Training Samples

3. On-the-fly Model
Retraining

Code Comment

Sample Influence
Relation

2. Training Contributing
Estimation

Comment
Generator, g’

Offline Stage Online Stage

SOTA Comment Generation

Figure 1: Overview of AdaCom. We assume a state-of-the-art approach has been adopted to
train the comment generator g on the dataset D. Influence Construction in the offline stage is for
characterizing the helpful and harmful samples and training contribution estimation in the online
stage is for retrieving the semantic helpful samples.

In the online stage, we retrain the comment generator g to g′ with the retrieved contributing training
samples and then generate the new code comment by g′.

3.1 Influence Construction

We introduce a gradient-based estimation for efficiently calculating model-dependent mutual influence
of any pairs of training samples.

Influence Estimation We denote a comment generator as g, its training dataset as D =
{d1, d2, ..., dn} where di = (ci, comi), ci is the code and comi is its comment. Let L(g(ci), comi)
be the loss of di, and the parameters of the trained comment generator g∗ as θ, we calculate the
empirical mutual influence mul_infe of d1 and d2 as:

mul_infe(d1, d2) =
grad(d1) · grad(d2)

|grad(d1)| · |grad(d2)|
(1)

grad(di) =
∂L(g∗(ci), comi)

∂θ
(2)

In another word, we now empirically investigate how likely we can reduce the loss of d1 by reducing
the loss on d2 (and vice versa) on the comment generator g∗. Specifically, mul_infe(d1,d2) being
close to 1 indicates that d1 and d2 are mutually helpful, that being close to -1 indicates that d1 and d2
are mutually harmful and that being 0 indicates that d1 and d2 are independent.

Influence-based Graph We further build the influence graph by calculating the mutual influence
between every pair of the training samples. Generally, the resultant influence graph serves as a cache
to improve the retrieval efficiency of an unseen target code.

3.2 Training Contribution Construction

In this section, given a target code ct with unknown comment, a training sample ctra with labelled
comment comtra, and a comment generator g, we estimate how likely dtra = (ctra, comtra) can be
used to retrain g to improve the generated comment for ct.

Semantic Similarity Our rationale lies in that, from the perspective of the model g, if the training
samples have a more similar internal representation with that of ct, they are more likely to share the
similar distribution of ct, thus having more semantic informative to be contributing to predict ct.

Representation Assumption In this work, we assume that the deep-learning-based comment
generators have an internal representation of each code sample. We denote a code sample as
c = ⟨t1, t2, ..., tn⟩ and the comment generator as g. Then, g can generate an internal representation
when parsing ti, denoted as ri = h(ti), where h(.) is a representation function inside g. This

4

assumption generally holds for most neural network-based approaches. For example, all one-
directional or bi-directional recurrent neural networks and transformer-based model architectures
conform to the assumption.

Contribution Estimation Given the code sample c = ⟨t1, t2, ..., tn⟩, we can derive its sequence of
internal representation as ĉ = ⟨ h(t1), h(t2), ..., h(tn)⟩ = ⟨r1, r2, ..., rn⟩. Since each code will be rep-
resented by a sequence of high-dimensional vectors, we compare the target code c = ⟨r1, r2, ..., rn⟩
with all training samples. In this work, we score training contributions by calculating the cosine
similarity between the vectors of two code samples’ internal representations.

3.3 On-the-fly Model Retraining

Given a target code c and two thresholds th1, th2, AdaCom first retrieves a few samples M =
{m1,m2, ...} from all the training samples whose training contribution score is higher than the
user-defined th1. If no training samples can be retrieved, we do not retrain the model. Otherwise,
AdaCom retrieves some new samples N = {n1, n2, ...} from the influential graph related to nodes in
M (see Section 3.1). The estimated influence score between the samples in M and the samples in N
should be higher than the user-defined th2. The threshold th1 is designed to filter out the semantic
helpful training samples and the threshold th2 is to find out the samples that could help the model
unlearn the mutually harmful samples during the learning of some mutually helpful samples. If
no training samples are mutually harmful to the samples in M and N based on the influence graph,
AdaCom will remove these samples for further retraining. Finally, g is retrained to g′ by all the
retrieved samples and then generates the new comment as g′(c).

For the sake of run-time overhead, we freeze the majority of the neural network and retrain only the
last few layers. We also adopt a dropout training strategy and early stop mechanism to remedy the
over-fitting and run-time overhead problem.

4 Evaluation

We evaluate AdaCom with the following research questions:

• RQ1: Whether AdaCom can boost the performance of diverse comment generators?

• RQ2: Whether AdaCom can boost the performance of comment generation on diverse datasets?

• RQ3: Whether AdaCom can outperform the retrieval-augmented neuron-based approaches?

• RQ4: How generalized AdaCom can boost the performance on the out-of-distribution samples?

• RQ5: What is the runtime overhead of AdaCom to boost the performance?

• RQ6: How each component of AdaCom can contribute to its boosting performance?

Experiment Setup Our experiments are conducted on 2 Ubuntu 20.04 servers equipped with 2
AMD RyzenTM 9 5950X 16-Core CPU, 128 GB memory, and 2 Nvidia RTXTM A4000 GPU cards.
All the experiment details and replication details can be referred to our website [6].

In this experiment, we adopt four public datasets including CodeSearchNet [19] (CSN), CodeKG [9],
FunCom [21] and CosBench [41]. We select the datasets for their diversity and representativeness
in terms of cross-language features (CodeSearchNet), available project information (CodeKG), and
scalability (FunCom and CosBench). Table 3 shows the details.

We choose seven popular language models including Roberta [26], CodeBERT(small and base
version) [11], GraphCodeBERT [15], and CodeT5[37](small, based, and large version). Those
models are chosen for their diversity in their pretrained corpus (e.g., Roberta on natural language and
CodeBERT on code), architectures, and scalability.

Following existing literature [3, 21, 1, 39, 20, 2, 5], we use smoothing BLEU4 [30][24], METEOR
[4], and ROUGE-L [23] to evaluate the performance of code comment generation.

Experiment Design To answer RQ1 (cross-model evaluation), we fine-tune all the language models
on the CodeKG dataset. We select the CodeKG dataset for its diversity in the selected projects,

5

Table 3: Experiment Datasets

Dataset Train Valid Test
FunCom 1,954,807 104,273 90,908
CosBench 296,425 42,348 84,694
CodeKG 161,857 20,282 40,512
CSN-Python 251,820 13,914 14,918
CSN-PHP 241,241 12,982 14,014
CSN-Go 167,288 7,325 8,122
CSN-Java 164,923 5,183 10,955
CSN-JavaScript 58,025 3,885 3,291
CSN-Ruby 24,927 1,400 1,261

and explicit project and code relation information for further analysis [9]. Given the randomness
introduced by the dropout strategy in the on-the-fly retraining, we repeat the experiment five times to
evaluate the consistency of AdaCom.

To answer RQ2 (cross-dataset evaluation), we evaluate how AdaCom can boost CodeT5-small on all
four datasets. We fine-tune the codeT5-small model for each dataset and then apply the AdaCom to
all four test datasets.

To answer RQ3 (retrieval-methods comparison), we compare AdaCom with the retrieval-augmented
method Retro [16] and the method that uses [CLS] with cosine similarity for helpful examples
retrieval. Compared to Retro, AdaCom does not need to retrieve and concatenate similar samples in
the training stage but retrieves some samples for each test sample in the test stage.

To answer RQ4 (generalization), we follow the setting in the [35] and create a new dataset split into
source and target. The source and target dataset have different types of training and testing samples.
We evaluate the performance of AdaCom on the model on the target testing dataset by finding
helpful samples in the target training dataset. Note that we do not fine-tune the model on the target
domain but only cache the estimated influence and representation of the target training dataset in the
offline stage. In this case, we can evaluate how AdaCom adapts the model to new domains by only
on-the-fly training the helpful samples without the need to fine-tune the whole dataset. We evaluate
the generalizability of AdaCom by defining the split-type regarding three different granularity:

• Cross Languages: We apply AdaCom to T5 [31] and Roberta model that are pre-trained only on
natural language corpus (as source training dataset) to generate code comments on the CodeKG
dataset. We evaluate the boosting performance of AdaCom on the CodeKG as the target testing
dataset by on-the-fly retraining a few helpful samples in the training dataset of CodeKG.

• Cross Program Languages: We apply the AdaCom to enforce the Roberta model trained on
CSN-Java to generate code comments on the Python, PHP, Go, Javascript, and Ruby programming
languages on the CSN dataset. We train the Roberta model on training data of CSN-Java (source
training dataset) and then evaluate the boosting performance of AdaCom on the testing dataset of
other programming languages by finding the helpful subset in their training dataset.

• Cross Projects: Finally, based on the code project information reported in CodeKG, we split the
code corpus by projects, denoted as Dpj1 and Dpj2 . Similarly, we apply AdaCom to enforce the
Roberta model trained on Dpj1 to generate code comments on Dpj2 .

To answer RQ5 (runtime overhead evaluation), we instrument the runtime overhead on the experiment
for RQ2. We conducted two settings: one utilizing the RTX 3080 GPU on a Windows platform to
emulate a programmer’s working environment, and another using the A4000 GPU on Ubuntu within
the lab setting. We record the average boosting of smoothing BLEU-4 score over all datasets and the
consuming time for the whole testing stage. Then we use the boosting smoothing BLEU-4 score per
second as the metric to measure the cost performance of different methods.

To answer RQ6 (ablation study), we compare the AdaCom performance with three settings. The first
setting just uses the comment of the most helpful sample as the prediction, and the second setting
uses the standalone model (i.e., adaptation disabled) to predict the comment. Last, we compare the
larger model – CodeT5+[36] with the CodeT5-small and base model equipped with AdaCom.

6

Table 4: Cross-model evaluation for the boosting performance of AdaCom.

Model Scale Parameter BLEU4 METEOR ROUGE-L

before after bst (%) before after bst (%) before after bst (%)
codeT5-small small 60M 34.89±0.26 49.05±0.38 40.6 43.74±0.00 56.73±0.08 29.7 50.98±0.00 61.23±0.09 20.1
CodeBERT-small 84M 40.83±0.31 48.84±0.72 19.6 48.84±0.32 57.07±0.50 16.9 54.82±0.28 60.40±0.47 10.2

RoBERTa

base

173M 44.73±0.08 48.71±0.45 8.9 52.67±0.17 57.23±0.60 8.7 57.78±0.15 60.28±0.59 4.3
CodeBERT-base 173M 44.30±0.34 48.35±0.43 9.1 52.35±0.38 56.74±0.26 8.4 57.71±0.39 59.81±0.26 3.6
GraphCodeBERT 173M 45.51±0.48 49.40±0.53 8.5 53.68±0.58 57.82±0.46 7.7 58.89±0.60 61.13±0.48 3.8
codeT5-base 223M 45.53±0.00 49.79±0.03 9.4 54.19±0.00 57.63±0.15 6.3 58.48±0.00 61.85±0.09 5.8

codeT5-large large 738M 45.99±0.65 49.87±0.66 8.4 54.09±0.69 58.27±0.47 7.7 59.29±0.57 61.73±0.46 4.1

Table 5: Cross-dataset evaluation for the boosting performance of AdaCom.

Dataset BLEU4 METEOR ROUGE-L

before after bst (%) before after bst (%) before after bst (%)
CodeKG 34.89 49.05 40.6 43.74 56.73 29.7 50.98 61.23 20.1
Cosbench 29.22 31.31 7.15 35.86 37.07 3.37 37.23 37.48 0.67
FunCom 33.32 33.76 1.32 41.71 42.04 0.79 49.23 49.53 0.61
CSN-java 19.17 20.06 4.64 32.09 32.84 2.34 38.28 38.88 1.57
CSN-js 15.15 17.06 12.61 22.84 24.40 6.83 30.38 31.18 2.63
CSN-python 19.71 19.92 1.07 30.57 30.68 0.36 37.23 37.48 0.67
CSN-go 18.88 19.15 1.43 33.95 34.10 0.44 41.21 41.40 0.46
CSN-php 24.70 25.76 4.29 36.34 36.96 1.71 44.53 45.40 1.95
CSN-ruby 14.78 15.03 1.69 25.11 25.05 -0.24 31.77 31.94 0.54

RQ1: Cross-model Evaluation Table 4 shows that AdaCom can improve the state-of-the-art
comment generators with decent significance and consistency. Overall, AdaCom can boost the
smoothing BLEU-4 score by on average 14.9%, the METEOR score by 12.2% , and the ROUGE-L
score by 7.4%. Compared to the boosted performance in large models, the improvement of AdaCom
is more significant on the smaller models, which aligns with the expectation that smaller models can
be more “struggled” over conflicting subsets of code samples. In addition, AdaCom performs in a
consistent manner in the experiment. The deviation generally ranges between 0 and 0.72 in BLEU4,
0.08 and 0.5 in METEOR, and 0.09 and 0.59 in ROUGE-L.

RQ2: Cross-dataset Evaluation Table 5 shows that AdaCom generally works well on different
code datasets based on CodeT5-small, which improves on average 8.3% in BLEU4 score, 5.0% in
METEOR, and 3.2% in ROUGE-L. We first notice that the performance is not consistent over all
dataset. The AdaCom shows much better boosting performance on the CodeKG, Cosbench, CSN-js
dataset. Our investigation on these datasets shows that the number of helpful training samples in
some dataset such as CSN-python are limited, which lead to minor improvement on the model
performance. Secondly, as we mainly adjust our hyper-parameters for optimizing BLEU score, the
BLEU4 scores increase much higher than other two measurements. We observe that the choice of
a stricter threshold of helpful sample selection is a useful and practical mitigation. Given a higher
threshold, AdaCom may include less irrelevant training samples to force the on-the-fly retraining.
More experiment results on other sizes of models can be referred in our website [6].

RQ3: Retrieval-methods Comparison Table 6 shows that AdaCom works generally better than
the retrieval-augmented methods. We find that for traditional retrieval-augmented methods, they can
not adapt the model to one certain sample simply using the similar code comment. In the training
stage, their model still suffer the bias of the contradictory samples and simply concatenate some
similar training samples will not avoid the compromise. In the testing stage, AdaCom can adapt the
model to re-learn the helpful samples and unlearn the harmful samples to gain a better performance
for one certain test sample.

RQ4: Generalization Evaluation Table 7 shows the generalizability of AdaCom, which indicates
that its boosting performance for cross-language, cross-PL, and cross-project is significant. For
adapting from natural language to programming language, both T5 and Roberta model have much
better performance even approaching the performance of traditional fine tuning model. In AdaCom,
the large language model can skip the time-consuming fine tuning stage but only search few helpful
samples in the target dataset and use AdaCom to fir for one certain test sample. For adapting from one

7

Table 6: The performance of retrieval-augmented method Retro and using CLS embedding with
cosine similarity based on CodeT5-base model.

Dataset Retro CLS-Cosine AdaCom
223M 223M 223M

CSN-java 20.05 20.14 20.85
CSN-js 16.15 17.35 18.81
CSN-python 19.67 19.58 20.46
CSN-go 19.46 19.12 19.61
CSN-php 24.91 26.45 26.90
CSN-ruby 14.91 14.45 15.39
overall 19.19 19.52 20.34

Table 7: Generalizability of AdaCom on cross-language, cross programming-language, and cross-
project evaluation.

Generalization Type Option BLEU4 METEOR ROUGE-L

before after bst (%) before after bst (%) before after bst (%)

Cross language T5-base 10.44 41.97 302.01 24.91 57.27 129.91 18.99 50.72 167.09
Roberta-base 6.42 37.51 484.27 10.24 42.85 318.46 11.45 38.77 238.60

Cross PL

CSN-JS 7.00 15.50 121.43 14.37 23.48 63.40 7.90 18.16 129.87
CSN-Python 7.42 12.91 73.99 16.34 22.61 38.37 8.54 16.71 95.67

CSN-Go 4.20 11.32 169.52 9.95 21.99 121.01 4.91 17.14 249.08
CSN-PHP 7.56 16.71 121.03 16.39 28.61 74.56 8.66 22.38 158.43
CSN-Ruby 7.71 9.95 29.05 16.18 20.18 24.72 8.63 13.69 58.63

Cross project CodeKG 11.52 35.19 205.47 20.82 45.57 118.88 28.03 48.64 73.53

programming language to another, AdaCom also shows effectiveness on cross programming language
generalizability. For adapting across projects, AdaCom still shows quite competitive performance.
The model improves a lot on the out-of-distribution data - the code from unseen projects. Generally,
AdaCom has shown its effectiveness to address the distribution-shift problem on diverse scenarios.

RQ5: Runtime Overhead Evaluation Table 8 shows the detailed runtime overhead over boosting
of smoothing BLEU-4 score using CodeT5-base model as the baseline model. We can see that on
Windows, both AdaCom-small and base outperform the CodeT5+ and on Ubuntu, the AdaCom-base
shows better performance than CodeT5+. Based on this experiment, we deem that AdaCom can be
well applied for the practical performance boost for the cost-effective smaller models.

RQ6: Ablation study Table 9 shows that simply utilizing helpful comments or models will decrease
the AdaCom performance. In contrast, AdaCom (the last two column) can combine them and adapt
the model by the helpful samples to increase the model performance. AdaCom can also adapt the
base model to outperform the CodeT5+ large model.

5 Related Work

Large Language Model Generally, the neural network model architecture follows an encoder-
decoder structure. Regarding the code text as sequential data, CNN [2], LSTM [20, 38], or GRU
[21] are used to serve as backbone model. With the advance of model, attention mechanism [34] and
transformer [1, 8] are adopted to further improve the performance. CodeBERT [11] is a bimodal
pre-trained model for multiple programming languages (PLs) and natural language (NLs), it supports

Table 8: Run-time Overhead over BLEU-4 score boosting compared to CodeT5 model.

Model Name CodeT5 CodeT5+ AdaCom-small Adacom-base
Parameter Size 223M 770M 60M 223M

Windows

Time (second) 1.21 4.06 2.34 4.81
Time per sample (second) 0 2.85 1.13 3.60
Average boost BLEU score 0 0.63 0.45 1.28
Boost BLEU score per second - 22.11% 39.82% 35.56%

Ubuntu

Time (second) 0.38 1.91 1.46 3.16
Time per sample (second) 0 1.53 1.08 2.78
Average boost BLEU score 0 0.63 0.45 1.28
Boost BLEU score per second - 41.18% 41.67% 46.04%

8

Table 9: Ablation Study on AdaCom

Retrieved Comment Model Only Larger Model AdaCom-small AdaCom-base
223M 223M 770M 60M 223M

CSN-java 13.18 19.17 20.83 20.06 20.85
CSN-js 13.96 15.15 17.93 17.06 18.81
CSN-python 11.70 19.71 20.47 19.92 20.46
CSN-go 11.17 18.88 19.64 19.15 19.61
CSN-php 17.47 24.70 26.39 25.76 26.90
CSN-ruby 8.91 14.78 15.63 15.03 15.39
overall 12.73 18.73 20.15 19.50 20.34

downstream NL-PL tasks like code search and code comment generation. Compared with CodeBERT,
the input of GraphCodeBERT includes both code tokens and a code data flow graph among the vari-
ables. Compared to CodeBERT and GraphCodeBERT, CodeT5 [37] aims at a generic representation
of both PLs and NLs. Following the original T5 model [31], the architecture of CodeT5 is faithful to
the original Transformer.

Retrieval Based Comment Generator As code duplication is common in large-scale repositories,
retrieval-based techniques like vector space model [17] and code clone detection [40] are used to find
the most similar code comment pairs from the database in the early stage. By manually designing a
set of rules, they can filter out the most similar pair and copy its comment as the output. Recent works
combine the retrieval system and neural network model to generate comments. Researchers use neural
network as semantic feature extractor to retrieve the comment of the most similar training sample.
CCGIR [42] adopts CodeBERT and BERT-whitening operation [32] for retrieval. Re2Com [39]
uses BM25 to find the most semantically similar sample and utilizes four encoders to process target
code, similar code, similar code’s comment, and code abstract syntax tree. Through the attention
mechanism, the four encoders’ outputs are fused and fed into the decoder to get the final comment.
Similarly, in [44], a fusion layer is designed to combine the CodeBERT output of both target code
and retrieved code.

Different from the previous works that retrieval during the training stage, we search for the helpful
samples in the testing stage to reduce the bias of the model.

Test-time Adaptation Adaptation means the generalization from one distribution to another distri-
bution. Transfer learning [10, 43] is a technique to transfer the parameters of a pre-trained model to
a new model on the target dataset. Through transfer learning, we can share the learned parameters
(also the knowledge learned by the model) with the new model to speed up the learning procedure.
The model is first pre-trained on the source dataset and then trained on the training data of the target
dataset. Then it can be used for predicting the test data of the target. Domain adaptation techniques
[12] aim to improve the performance of the model in another domain (target domain) to approach the
effect of the original domain (source domain). Further, the test-time training technique [33] updates
the model during testing with unlabeled data in a self-supervised way. Compared to test-time training,
Wang et al. propose [35] an adaptation technique independent of the training data and training loss.
The model is trained by test entropy minimization during the test stage and adapts itself to feedback
from its predictions.

To the best of our knowledge, we are the first to introduce test-time adaptation for comment generation.
Different from the aforementioned works, AdaCom selects the helpful samples from the existing
training samples and then adapts the model for each target code sample.

6 Limitation

Scalability AdaCom requires more time to adapt the model, especially for a billion-size model. To
mitigate this, freezing techniques are necessary, specifically freezing the parameters in the encoder
and only training part of the parameters of the decoder.

Construct Validity AdaCom assumes that it can find helpful examples in the training dataset based
on the two metrics to enhance the performance of the model. However, there exist test cases with no
helpful examples or possible helpful examples that are ignored. It also remains a question whether
our proposed methods would introduce some harmful samples.

9

Table 10: An example showing the potentially over-fitting problem of AdaCom
Sample Target Test Sample, ct Harmful Training Sample, charm Helpful Training Sample, chelp

Code

ReceiptViewModel purchase
(...) {

Db.User user = Db.
getInstance ().
findUserByUserName
(userName);

if (user == null) {
...

}
Db. Account account =

findAccount (user)
;

return purchase (user ,
account , itemName
);

}

String receiveRequest (
Object ... parameters)

throws
DbUnavailableException

{
var id = generateId ();
var req = new

PaymentRequest (id
, (float)
parameters [0]);

return updateDb (req);
}

ReceiptViewModel purchase
(...) {

Db. Product item = Db.get
().find(itemName);

if (item == null) {
...

}
Receipt receipt = ...;
if (transaction == null)

{
...

}
return receipt ;

}

Ground
Truth

domain purchase with userName and item-
Name, with validation for userName

public method which will receive request
from @link com. iluwatar. commander.
Commander

domain purchase with user, account and item-
Name, with validation for whether product is
out of stock and whether user has insufficient
funds in the account

Origin (BLEU 16.78) register purchase with user name
AdaCom
Epoch8 (BLEU 66.43) domain purchase with user name and item name , with validation for whether user is enabled or not

AdaCom
Epoch11 (BLEU 84.84) domain purchase with user name and item name , with validation for the account

AdaCom
Epoch15 (BLEU 47.79) domain purchase with user , account and item name , with validation for whether user is enabled or not

Internal Validity We further analyze the cases where the AdaCom shows limited performance.
We find that AdaCom sometimes overfits the retrained training samples. In Table 10, despite that
AdaCom can successfully select a useful reference chelp, it cannot stop at a correct point. In this
example, AdaCom retrains the deep comment generator for 15 epochs. However, the best stopping
condition happens at epoch 11, which means that AdaCom should have stopped earlier to gain higher
accuracy and lower run time. We think AdaCom can leave these candidates to the users to choose
and use the helpful samples to interpret the model behavior.

7 Conclusion

In summary, we propose a novel system - AdaCom which boosts the performance of comment
generators on-the-fly. Extensive experiments has shown that AdaCom can effectively improve the
performance of the code comment generation on diverse datasets, programming languages, and
different deep language models. Further, AdaCom also shows its decent generalizability on cross-
language, cross programming-language and cross-project settings. Overall, our solution shows
promising results in enhancing model performance and potentially efficiency.

Acknowledgments and Disclosure of Funding

This research is supported in part by the Minister of Education, Singapore (T2EP20120-0019,
MOET32020-0004), NUS-NCS Joint Laboratory for Cyber Security, Singapore, the National Re-
search Foundation, Singapore, and Cyber Security Agency of Singapore under its National Cyber-
security Research and Development Programme (Award No. NRF-NCR_TAU_2021-0002) and
A*STAR, CISCO Systems (USA) Pte. Ltd and National University of Singapore under its Cisco-
NUS Accelerated Digital Economy Corporate Laboratory (Award I21001E0002), National Research
Foundation, Singapore, and the Cyber Security Agency under its National Cybersecurity R&D
Programme (NCRP25-P04-TAICeN), and National Natural Science Foundation of China (62172099,
23Z990203011). Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not reflect the views of National Research Foundation,
Singapore and Cyber Security Agency of Singapore.

10

References
[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020. A

transformer-based approach for source code summarization. ACL (2020).

[2] Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A convolutional attention network
for extreme summarization of source code. In International conference on machine learning.
PMLR, 2091–2100.

[3] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq: Generating sequences
from structured representations of code. ICLR (2019).

[4] Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for MT evaluation
with improved correlation with human judgments. In Proceedings of the acl workshop on
intrinsic and extrinsic evaluation measures for machine translation and/or summarization.
65–72.

[5] Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2021. Self-supervised contrastive learning for
code retrieval and summarization via semantic-preserving transformations. In Proceedings of
the 44th International ACM SIGIR Conference on Research and Development in Information
Retrieval. 511–521.

[6] Yufan Cai. 2023. AdaCom website. https://sites.google.com/view/adacom23/home

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. 2021. Evaluating
large language models trained on code. arXiv preprint arXiv:2107.03374 (2021).

[8] Colin B Clement, Dawn Drain, Jonathan Timcheck, Alexey Svyatkovskiy, and Neel Sundaresan.
2020. PyMT5: multi-mode translation of natural language and Python code with transformers.
arXiv preprint arXiv:2010.03150 (2020).

[9] CodeKG. 2022. CodeKG. https://sites.google.com/view/code-kg/home

[10] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor
Darrell. 2014. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recogni-
tion. In Proceedings of the 31st International Conference on Machine Learning (Proceedings
of Machine Learning Research, Vol. 32), Eric P. Xing and Tony Jebara (Eds.). PMLR, Bejing,
China, 647–655. https://proceedings.mlr.press/v32/donahue14.html

[11] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou,
Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained model for programming
and natural languages. EMNLP (2020).

[12] Yaroslav Ganin and Victor Lempitsky. 2015. Unsupervised Domain Adaptation by Backpropa-
gation. In Proceedings of the 32nd International Conference on International Conference on
Machine Learning - Volume 37 (Lille, France) (ICML’15). JMLR.org, 1180–1189.

[13] Roberto Gozalo-Brizuela and Eduardo C Garrido-Merchan. 2023. ChatGPT is not all you need.
A State of the Art Review of large Generative AI models. arXiv preprint arXiv:2301.04655
(2023).

[14] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022. UniXcoder:
Unified Cross-Modal Pre-training for Code Representation. arXiv preprint arXiv:2203.03850
(2022).

[15] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcodebert: Pre-training code representations
with data flow. ICLR (2020).

[16] Vivek Gupta, Akshat Shrivastava, Adithya Sagar, Armen Aghajanyan, and Denis Savenkov.
2022. RetroNLU: Retrieval Augmented Task-Oriented Semantic Parsing. In Proceedings of
the 4th Workshop on NLP for Conversational AI. Association for Computational Linguistics,
Dublin, Ireland, 184–196. https://doi.org/10.18653/v1/2022.nlp4convai-1.15

11

https://sites.google.com/view/adacom23/home
https://sites.google.com/view/code-kg/home
https://proceedings.mlr.press/v32/donahue14.html
https://doi.org/10.18653/v1/2022.nlp4convai-1.15

[17] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. 2010. On the use of automated
text summarization techniques for summarizing source code. In 2010 17th Working Conference
on Reverse Engineering. IEEE, 35–44.

[18] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment generation. In
2018 IEEE/ACM 26th International Conference on Program Comprehension (ICPC). IEEE,
200–20010.

[19] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
2019. Codesearchnet challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436 (2019).

[20] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016. Summarizing
source code using a neural attention model. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). 2073–2083.

[21] Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model for generating
natural language summaries of program subroutines. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 795–806.

[22] Jia Li, Yongmin Li, Ge Li, Xing Hu, Xin Xia, and Zhi Jin. 2021. Editsum: A retrieve-and-edit
framework for source code summarization. In 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 155–166.

[23] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries. In Text
Summarization Branches Out. Association for Computational Linguistics, Barcelona, Spain,
74–81. https://aclanthology.org/W04-1013

[24] Chin-Yew Lin and Franz Josef Och. 2004. ORANGE: a Method for Evaluating Automatic
Evaluation Metrics for Machine Translation. In COLING 2004: Proceedings of the 20th
International Conference on Computational Linguistics. COLING, Geneva, Switzerland, 501–
507. https://aclanthology.org/C04-1072

[25] Shangqing Liu, Yu Chen, Xiaofei Xie, Jingkai Siow, and Yang Liu. 2020. Retrieval-augmented
generation for code summarization via hybrid gnn. arXiv preprint arXiv:2006.05405 (2020).

[26] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A Robustly Optimized BERT
Pretraining Approach. arXiv:1907.11692 [cs.CL]

[27] Paul W McBurney and Collin McMillan. 2014. Automatic documentation generation via source
code summarization of method context. In Proceedings of the 22nd International Conference
on Program Comprehension. 279–290.

[28] OpenAI. 2020. OpenAI GPT-3 Model. https://openai.com/gpt-3/

[29] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022. Training language
models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155 (2022).

[30] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for
automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics. 311–318.

[31] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, Peter J Liu, et al. 2020. Exploring the limits of transfer learning with a
unified text-to-text transformer. J. Mach. Learn. Res. 21, 140 (2020), 1–67.

[32] Jianlin Su, Jiarun Cao, Weijie Liu, and Yangyiwen Ou. 2021. Whitening sentence representations
for better semantics and faster retrieval. arXiv preprint arXiv:2103.15316 (2021).

12

https://aclanthology.org/W04-1013
https://aclanthology.org/C04-1072
https://openai.com/gpt-3/

[33] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. 2020.
Test-Time Training with Self-Supervision for Generalization under Distribution Shifts. In Pro-
ceedings of the 37th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 119), Hal Daumé III and Aarti Singh (Eds.). PMLR, 9229–9248.
https://proceedings.mlr.press/v119/sun20b.html

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural
information processing systems 30 (2017).

[35] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. 2021.
Tent: Fully Test-Time Adaptation by Entropy Minimization. In International Conference on
Learning Representations. https://openreview.net/forum?id=uXl3bZLkr3c

[36] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li, and Steven
C. H. Hoi. 2023. CodeT5+: Open Code Large Language Models for Code Understanding and
Generation. arXiv:2305.07922 [cs.CL]

[37] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and generation. arXiv
preprint arXiv:2109.00859 (2021).

[38] Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019. Code generation as a dual task of code
summarization. NeurIPS (2019).

[39] Bolin Wei, Yongmin Li, Ge Li, Xin Xia, and Zhi Jin. 2020. Retrieve and refine: exemplar-based
neural comment generation. In 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 349–360.

[40] Edmund Wong, Jinqiu Yang, and Lin Tan. 2013. Autocomment: Mining question and answer
sites for automatic comment generation. In 2013 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 562–567.

[41] Shuhan Yan, Hang Yu, Yuting Chen, Beijun Shen, and Lingxiao Jiang. 2020. Are the code
snippets what we are searching for? A benchmark and an empirical study on code search with
natural-language queries. In 2020 IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 344–354.

[42] Guang Yang, Ke Liu, Xiang Chen, Yanlin Zhou, Chi Yu, and Hao Lin. 2022. CCGIR: Informa-
tion retrieval-based code comment generation method for smart contracts. Knowledge-Based
Systems 237 (2022), 107858.

[43] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. How Transferable Are
Features in Deep Neural Networks?. In Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2 (Montreal, Canada) (NIPS’14). MIT Press,
Cambridge, MA, USA, 3320–3328.

[44] Chi Yu, Guang Yang, Xiang Chen, Ke Liu, and Yanlin Zhou. 2022. BashExplainer: Retrieval-
Augmented Bash Code Comment Generation based on Fine-tuned CodeBERT. arXiv preprint
arXiv:2206.13325 (2022).

13

https://proceedings.mlr.press/v119/sun20b.html
https://openreview.net/forum?id=uXl3bZLkr3c

	Introduction
	Motivating Example
	Approach
	Influence Construction
	Training Contribution Construction
	On-the-fly Model Retraining

	Evaluation
	Related Work
	Limitation
	Conclusion

