
Automated Program Refinement: Guide and Verify Code
Large Language Model with Refinement Calculus

YUFAN CAI, Ningbo University, China, National University of Singapore, Singapore

ZHÉ HÓU, Griffith University, Australia

DAVID SANAN, Singapore Institute of Technology, Singapore
XIAOKUN LUAN, Peking University, China
YUN LIN, Shanghai Jiao Tong University, China

JUN SUN, Singapore Management University, Singapore

JIN SONG DONG, National University of Singapore, Singapore

Recently, the rise of code-centric Large Language Models (LLMs) has reshaped the software engineering world

with low-barrier tools like Copilot that can easily generate code. However, there is no correctness guarantee for

the code generated by LLMs, which suffer from the hallucination problem, and their output is fraught with risks.

Besides, the end-to-end process from specification to code through LLMs is a non-transparent and uncontrolled

black box. This opacity makes it difficult for users to understand and trust the generated code. Addressing these

challenges is both necessary and critical. In contrast, program refinement transforms high-level specification

statements into executable code while preserving correctness. Traditional tools for program refinement are

primarily designed for formal methods experts and lack automation and extensibility. We apply program

refinement to guide LLM and validate the LLM-generated code while transforming refinement into a more

accessible and flexible framework. To initiate this vision, we propose Refine4LLM, an approach that aims to:

(1) Formally refine the specifications, (2) Automatically prompt and guide the LLM using refinement calculus,

(3) Interact with the LLM to generate the code, (4) Verify that the generated code satisfies the constraints, thus

guaranteeing its correctness, (5) Learn and build more advanced refinement laws to extend the refinement

calculus. We evaluated Refine4LLM against the state-of-the-art baselines on program refinement and LLMs

benchmarks. The experiment results show that Refine4LLM can efficiently generate more robust code and

reduce the time for refinement and verification.

CCS Concepts: • Software and its engineering→ Automatic programming; Software notations and
tools; • Computing methodologies→Machine learning.

Additional Key Words and Phrases: Program Refinement, Large Language Model, Program Synthesis

ACM Reference Format:
Yufan Cai, Zhé Hóu, David Sanan, Xiaokun Luan, Yun Lin, Jun Sun, and Jin Song Dong. 2025. Automated

Program Refinement: Guide and Verify Code Large Language Model with Refinement Calculus. Proc. ACM
Program. Lang. 9, POPL, Article 69 (January 2025), 33 pages. https://doi.org/10.1145/3704905

Authors’ Contact Information: Yufan Cai, cai_yufan@u.nus.edu, Ningbo University, China, National University of Singapore,

Singapore; Zhé Hóu, z.hou@griffith.edu.au, Griffith University, Australia; David Sanan, david.miguel@singaporetech.edu.sg,

Singapore Institute of Technology, Singapore; Xiaokun Luan, luanxiaokun@pku.edu.cn, Peking University, China; Yun

Lin, lin_yun@sjtu.edu.cn, Shanghai Jiao Tong University, China; Jun Sun, junsun@smu.edu.sg, Singapore Management

University, Singapore; Jin Song Dong, dongjs@comp.nus.edu.sg, National University of Singapore, Singapore.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2475-1421/2025/1-ART69

https://doi.org/10.1145/3704905

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

HTTPS://ORCID.ORG/0009-0008-7579-0824
HTTPS://ORCID.ORG/0000-0001-7164-0580
HTTPS://ORCID.ORG/0000-0003-2755-3089
HTTPS://ORCID.ORG/0000-0002-5878-6486
HTTPS://ORCID.ORG/0000-0001-8255-0118
HTTPS://ORCID.ORG/0000-0002-3545-1392
HTTPS://ORCID.ORG/0000-0002-6512-8326
https://doi.org/10.1145/3704905
https://orcid.org/0009-0008-7579-0824
https://orcid.org/0000-0001-7164-0580
https://orcid.org/0000-0003-2755-3089
https://orcid.org/0000-0002-5878-6486
https://orcid.org/0000-0001-8255-0118
https://orcid.org/0000-0001-8255-0118
https://orcid.org/0000-0002-3545-1392
https://orcid.org/0000-0002-6512-8326
https://doi.org/10.1145/3704905

69:2 Yufan Cai, Zhé Hóu, David Sanan, Xiaokun Luan, Yun Lin, Jun Sun, and Jin Song Dong

1 Introduction
Challenges in LLM-based code generation. Large language models (LLMs) have recently advanced

rapidly in mathematics, reasoning, and programming [52, 70]. Industrial products like GPT-4 [47]

and Copilot [33] greatly assist programmers in coding-related tasks and have performed above the

50th percentile in programming competitions [48]. However, one of the critical challenges they

face is the problem of hallucination, where the models generate plausible but factually incorrect

information. Moreover, some user studies [27, 61] show that programmers find it hard to trust and

debug the LLM-generated code as the generation procedure is opaque and out of control. Even

worse, researchers found that over half of ChatGPT’s answers to programming-related questions

contain incorrect information [38], and more recently, there is mathematical proof that LLM’s

hallucination is inevitable [64]. We take the classic refinement example - square root algorithm

shown in Figure 1. We show the code snippets generated by the latest LLMs OpenAI o1-preview [46],

GPT-4 [47] and GitHub Copilot [33] with the prompt:

Find the square root of N within the error bound e.

The LLMs can generate almost correct code. However, these programs still contain some bugs.

Both LLM-based GitHub Copilot and OpenAI GPT-4 generated code fall into infinite loops, while

the OpenAI o1-preview model provides incorrect answers in some cases. In detail, the program

generated by Copilot is wrong when the input𝑛 < 1. Mathematically, the choice of the variable high
as the upper bound of the square root of N should be larger than𝑁 + 1

4
because∀𝑁 > 0, (𝑁 + 1

4
)2 ≥ 𝑁 .

The GPT-4 generated code fails in some cases, like sqrt(5), because the variable x goes to a fixed

point but does not terminate the loop due to float precision error. The code from the OpenAI

o1-preview model sometimes gives incorrect answers when N is smaller than (𝑒/4)2 because x is

initialized to a negative number.

Therefore, reliable LLMs for program generation remain an unresolved challenge. Current

strategies primarily focus on guiding LLMs during input and verifying their outputs. Guiding

LLMs involves prompting them with relevant information about the task to steer them toward

more straightforward solutions within the LLM’s capability. Recent works often employ informal

heuristics, such as the chain-of-thought approach, to direct the reasoning processes of LLMs [63]. On

the other hand, thoroughly verifying the deep learning models as a white box is still limited to small

quantized neural networks, far away from LLMs [36]. The latest LLM verification methods rely on

multiple LLMs to assess outputs throughmajority voting or consensus in natural language [1, 43, 68].

However, existing work [64] mathematically proves that it is impossible to eliminate hallucination

by simply changing the prompts. They also show that an ensemble of multiple LLMs is essentially

a single LLM and cannot eliminate the hallucination. In contrast, our Refine4LLM integrates the

LLM and the symbolic AI systems CoqHammer[21] to guide LLMs with constraints and verify the

generated code through program refinement and verification. Our approach mimics how humans

use tools like calculators and code interpreters to solve complex problems that go beyond their

immediate capabilities. Intuitively, we regard the LLMs as “constraint solvers”, whose powerful

extensibility and rich background knowledge shed light on the potential of automation for program

refinement. Our program refinement can “assert” constraints that help debugging and “verify”

constraints to establish the correctness of the generated code. This methodology represents a

significant advancement in applying LLMs to program generation, moving beyond error reduction

to achieving reliable and verifiable code.

Challenges in traditional program refinement. The refinement calculus [5, 15, 44, 55, 60] is a

formalization of the stepwise refinement method of program construction. Program refinement

involves specifying a program’s required behavior through a non-executable specification, which

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

Automated Program Refinement: Guide and Verify Code Large Language Model with Refinement Calculus 69:3

''' Github Copilot '''
def find_sqrt(n):

e = 0.0000001
low, high = 0, n
mid = (low + high) / 2
while abs(mid * mid - n) > e:
if mid * mid > n:

high = mid
else:

low = mid
mid = (low + high) / 2

return mid
find_sqrt(0.1) = Infinite Loop

''' GPT-4 '''
def find_sqrt(N):

x = N if N > 1 else 1
while x * x > N:
x = (x + N/x) / 2

return x
find_sqrt(5) = Infinite Loop

''' OpenAI o1-preview '''
def find_sqrt(N, e):
x = math.sqrt(N) - e / 2.0
if x**2 < N < (x + e)**2:
return x

else:
x_lower, x_upper = x, x + e

while x_upper - x_lower > 1e-10:
x_mid = (x_lower + x_upper) / 2.0
if x_mid**2<N and (x_mid + e)**2>N:
x = x_mid
break

elif x_mid**2 >= N:
x_upper = x_mid

else:
x_lower = x_mid

return x_mid

e = 0.01; N = (e**2/16)/4
find_sqrt(N, e) = -0.00125

Fig. 1. Three wrong programs generated by LLMs. The code from GitHub Copilot uses a wrong upper bound.
The GPT-4 generated code sometimes makes the variable x fall into a fixed point. The code from the OpenAI
o1-preview model sometimes gives incorrect answers when N is small.

is then transformed into an executable program via a series of correctness-preserving steps. How-

ever, this transformation, grounded in program refinement calculus, is predominantly performed

manually, which is time-consuming and error-prone. The necessity of manual code writing makes

the program refinement labor-intensive and challenging to automate. Therefore, integrating LLMs’

code generation ability into the refinement process is a logical progression.

Outline. We implement the approach in an automated tool called Refine4LLM that combines

the formal program refinement calculus with the informal LLM to refine the specification and

generate verified code step by step. Section 2 introduces the background of program refinement.

Section 3 illustrates a motivating example with the square root algorithm. Section 4 shows the

overview of the tool Refine4LLM and the following Section 5 defines the formal specification

language and program language. To enhance the efficiency of the program refinement, Refine4LLM

adopts a learning strategy to build new refinement laws to reduce the depth of the refinement

process shown in Section 6. In Section 7, we introduce the formal system part that automatically

and formally transforms the specification based on the refinement law and generates the associated

proof obligations. Refine4LLM combines automated theorem provers (ATPs) like Z3 [22] to verify

the code and justify the choice of the refinement laws. In Section 8, we show the informal system

part, including a top-down algorithm to split the high-level specification into sub-components and

then a bottom-up algorithm to refine the sub-specifications and generate the code one by one. We

evaluate Refine4LLM on the classic program refinement benchmarks [39] and LLM benchmarks -

Humaneval dataset from OpenAI [47] and the EvalPlus dataset with more test cases [41] shown

in Section 9. Overall, our approach leverages the creativity of LLMs and rigorous proof of formal

methods to provide a reliable code generator. The approach is complementary to LLMs, automated

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

69:4 Yufan Cai, Zhé Hóu, David Sanan, Xiaokun Luan, Yun Lin, Jun Sun, and Jin Song Dong

theorem provers, and traditional verification tools. To the best of our knowledge, Refine4LLM is

the first framework that combines the LLM and program refinement techniques.

Contributions. The contributions of the paper are summarized below:

(1) A framework, Refine4LLM, for LLM aided automated program refinement, including a formal

specification language 𝐿𝑠𝑝𝑒𝑐 , a programming language 𝐿𝑝𝑙 associated with our refinement

calculus, and a verification strategy that verifies the generated code.

(2) A refinement law learning strategy to derive more advanced refinement rules to reduce the

depth of the refinement process.

(3) A top-down splitting and bottom-up refining algorithm to build the library of program

refinement for reducing the complexity of the specification.

2 Preliminaries
This section introduces the background knowledge and technical details of program refinement.

2.1 Notation
We follow the notations in Morgan’s book on program refinement [44].

Specification. This work considers the formal specifications defined in first-order logic (FOL). A

specification contains variables, a precondition, and a postcondition, in the form

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 : [𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑝𝑜𝑠𝑡𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛]
Variables are the list of program variables; the precondition describes the program’s initial states,

and the postcondition describes the program’s final states.

Program Refinement. Formally, the refinement relation is defined by the weakest preconditions

of the related programs [14]. For program 𝑆 and postcondition 𝑃 ,𝑤𝑝 (𝑆, 𝑃) represents the weakest
precondition where S is guaranteed to terminate in a state satisfying 𝑃 . Program 𝑆0 is refined by 𝑆1
denoted as 𝑆0 ⊑ 𝑆1, iff

∀𝑃,𝑤𝑝 (𝑆0, 𝑃) → 𝑤𝑝 (𝑆1, 𝑃) (1)

which states that 𝑆1 will preserve the total correctness of program 𝑆0. The program refinement can

be established in a linear sequence:

𝑆0 ⊑ 𝑆1 ⊑ 𝑆2 ⊑ 𝑆3... ⊑ 𝑆𝑛 (2)

which shows the refinement 𝑆0 ⊑ 𝑆𝑛 with the transitivity of the refinement relation.

2.2 The Basic Refinement Calculus
The refinement calculus is based on the weakest precondition semantics for programs from the

literature [26]. Typically, the refinement process is a sequence of refinement law applications that

refine formal specifications to a mixture of specifications and programs (mixed programs) and

finally to only program code, as illustrated below:

𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 ⊑𝑚𝑖𝑥𝑒𝑑 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 ⊑ · · · ⊑𝑚𝑖𝑥𝑒𝑑 𝑝𝑟𝑜𝑔𝑟𝑎𝑚′ ⊑ 𝑝𝑟𝑜𝑔𝑟𝑎𝑚.

The core refinement calculus listed in Morgan’s book [44] is summarized as follows:

Lemma 2.1 (Strengthen Postcondition Law). Let 𝑝𝑟𝑒 (precondition) and 𝑝𝑜𝑠𝑡 , 𝑝𝑜𝑠𝑡 ′ (postcon-
ditions) be any FOL formula, if 𝑝𝑜𝑠𝑡 ′ ⇛ 𝑝𝑜𝑠𝑡 , then 𝑥 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] ⊑ 𝑥 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡 ′].

Lemma 2.2 (Weaken Precondition Law). Let 𝑝𝑟𝑒 , 𝑝𝑟𝑒′ (preconditions) and 𝑝𝑜𝑠𝑡 (postcondition)
be any FOL formula, if 𝑝𝑟𝑒 ⇛ 𝑝𝑟𝑒′, then 𝑥 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] ⊑ 𝑥 : [𝑝𝑟𝑒′, 𝑝𝑜𝑠𝑡].

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

Automated Program Refinement: Guide and Verify Code Large Language Model with Refinement Calculus 69:5

Lemma 2.3 (Skip Law). If 𝑝𝑟𝑒 ⇛ 𝑝𝑜𝑠𝑡, 𝑡ℎ𝑒𝑛 𝑥 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] ⊑ skip.

Lemma 2.4 (Seqential Composition Law (Seq)). Let𝑚𝑖𝑑 be any formula except for 𝑝𝑟𝑒 or 𝑝𝑜𝑠𝑡 .
𝑥 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] ⊑ 𝑥 : [𝑝𝑟𝑒,𝑚𝑖𝑑]; 𝑥 : [𝑚𝑖𝑑, 𝑝𝑜𝑠𝑡].

We denote 𝑝𝑜𝑠𝑡 ⟨𝑥 := 𝐸⟩ as a new condition that assigns all occurrences of 𝑥 in 𝑝𝑜𝑠𝑡 by 𝐸.

Lemma 2.5 (Assignment Law). Let 𝐸 be any 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛, 𝑝𝑜𝑠𝑡 ⟨𝑥 := 𝐸⟩ assigns every x in 𝑝𝑜𝑠𝑡

with 𝐸. If 𝑝𝑟𝑒 ⇛ 𝑝𝑜𝑠𝑡 ⟨𝑥 := 𝐸⟩, 𝑡ℎ𝑒𝑛 𝑥 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] ⊑ x = E.

Lemma 2.6 (Alternation Law). Let 𝐺𝐺 be the disjunctive normal form of the guards 𝐺0,𝐺1,

, ...,𝐺𝑖 , ...,𝐺𝑛 , if 𝑝𝑟𝑒 ⇛ 𝐺𝐺, 𝑡ℎ𝑒𝑛 𝑥 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] ⊑ if
⊔

𝑖 (𝐺𝑖 then 𝑥 : [𝐺𝑖 ∧ 𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡]) where if⊔
𝑖 𝐺𝑖 then means if 𝐺0 then ... else if 𝐺𝑖 then

Iterations (while loops) are built by loop conditions, invariants, and variants. An invariant 𝐼𝑛𝑣 is

a formula that, if it is true initially, stays true for each repetition. The variant 𝑉 of the iteration is a

value changing in the iteration and guarantees the termination of the iteration.

Lemma 2.7 (Iteration Law). Let 𝐼𝑛𝑣 , the invariant, be any formula; let 𝑉 , the variant, be any
integer-valued expression. Let 𝐺𝐺 be the disjunctive normal form of the guards 𝐺0,𝐺1, ...,𝐺𝑖 , ...,𝐺𝑛

then 𝑥 : [𝐼𝑛𝑣, 𝐼𝑛𝑣 ∧ ¬𝐺𝐺] ⊑ while
⊔

𝑖 (𝐺𝑖 do 𝑥 : [𝐼𝑛𝑣 ∧𝐺𝑖 , 𝐼𝑛𝑣 ∧ (0 ≤ 𝑉 < 𝑉0)]) where 𝑉0 is the
initial value of V, while

⊔
𝑖 𝐺𝑖 do means while 𝐺0 do ... else 𝐺𝑖 do ... else 𝐺𝑛 do.

Lemma 2.8 (Expand Law). Let x be the origin variant and y be another variant and 𝑦0 be the initial
value of y, then 𝑥 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] = 𝑥,𝑦 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡 ∧ 𝑦 = 𝑦0]

Lemma 2.9 (Assertion Law). Let E be a boolean condition for the variable x, then 𝑥 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] =
𝑎𝑠𝑠𝑒𝑟𝑡 𝐸;𝑥 : [𝑝𝑟𝑒 ∧ 𝐸, 𝑝𝑜𝑠𝑡]

Procedure. A procedure is declared by a name, some parameters, and a program.

Definition 2.10 (Procedure). 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 ⟨Name⟩ (⟨Variable⟩ : ⟨Type⟩) ≜ ⟨Prog⟩.
Lemma 2.11 (Procedure Value Specification). Given a procedure

𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 ⟨Name⟩ (𝑣𝑎𝑙𝑢𝑒 𝑓 : ⟨Type⟩) ≜ 𝑤, 𝑓 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] where w and f are different variables. Let
A be the expression of the ⟨Type⟩, then𝑤 : [𝑝𝑟𝑒 ⟨𝑓 := 𝐴⟩, 𝑝𝑜𝑠𝑡 ⟨𝑓0 := 𝐴0⟩] ⊑ 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 ⟨Name⟩(𝐴).

Lemma 2.12 (Procedure Result Specification). Given a procedure
𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 ⟨Name⟩ (𝑟𝑒𝑠𝑢𝑙𝑡 𝑓 : ⟨Type⟩) ≜ 𝑤, 𝑓 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡 ⟨𝑎 := 𝑓 ⟩] where w, a, and f are different
variables. Then𝑤, 𝑎 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] ⊑ 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 ⟨Name⟩(𝑎).
The literature [4, 45] has established the correctness of the laws in this section. In particular,

define a Hoare-triple-like notation {𝑝𝑟𝑒}𝑝𝑟𝑜𝑔{𝑝𝑜𝑠𝑡} that means that starting from a precondition

that satisfies 𝑝𝑟𝑒 , if the program 𝑝𝑟𝑜𝑔 terminates, then the postcondition satisfies 𝑝𝑜𝑠𝑡 . We represent

the result as follows sans proof:

Theorem 2.13 (Soundness of Core Refinement Laws). If ®𝑥 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] ⊑ 𝑝𝑟𝑜𝑔 is derivable
from the laws in Section 2.2, then {𝑝𝑟𝑒}𝑝𝑟𝑜𝑔{𝑝𝑜𝑠𝑡} holds.

3 Motivating Example
This section illustrates our intuitions for Refine4LLM with the square root (sqrt) algorithm. We

extend the sqrt algorithm from integers to real numbers compared to the other program refinement

works [44, 55], presenting how we guide LLMs and verify the generated code. Then, we illustrate

the learning strategy for extending the refinement law to evolve and extend the refinement calculus

to reduce the complexity of program refinement.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

69:6 Yufan Cai, Zhé Hóu, David Sanan, Xiaokun Luan, Yun Lin, Jun Sun, and Jin Song Dong

Fig. 2. Square Root with Program Refinement: success version. The specification format follows the notations
in Section 2.1, and the proof obligation follows the Hoare Logic format. The LLM selects one law introduced
in Section 2.2 and generates the associated code. The symbol ↓means the variant is strictly decreasing.

3.1 Guide the LLM
The specification of the square root example reads as follows: for any positive constant N and e,

the program 𝐶 will change the variable 𝑥 until 𝑥2 is less or equal to N, but (𝑥 + 𝑒)2 is larger than N.

Program refinement aims to refine the specification stepwise into smaller pieces while building

the program step by step. We begin with the basic refinement calculus consisting of the core laws

defined in Section 2 and show the refinement process in Figure 2.

The first possible choice is the sequential composition law to separate the two constraints 𝑥2 ≤ 𝑁

and 𝑁 < (𝑥 + 𝑒)2. For the first part, the LLM can utilize the specification to find a possible correct

assignment 𝑥 = 0, which could be verified by Hoare logic and automatic theorem provers (ATPs).

Refine4LLM can then apply the iteration law for the second part with the specification structure

[𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡, 𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡∧¬𝐺𝑢𝑎𝑟𝑑𝑠] for iteration. The iteration lawwill split the postcondition into two

parts: a guard condition and an invariant, further establishing an iterative structure that preserves

the invariant while changing the variant until the guard condition is violated. The symbol ↓means

that the variant is strictly decreasing. Refine4LLM will use the constraints “𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 ∧𝐺𝑢𝑎𝑟𝑑𝑠 →
𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 ∧ Variant is strictly decreasing” as a prompt and instruct the LLM to generate code like

𝑥 = 𝑥 + 𝑒 . Finally, Refine4LLM will verify whether the generated assignment can preserve the

invariant and decrease the variant. Note that it is partially correct because it only verifies that the

variant is decreasing. To achieve total correctness, we need to verify that there exists one state in

the iteration where the guard condition is violated.

3.2 Failure Feedback
The program refinement can be implemented in many ways. Figure 3 shows another direction:

initializing the x with a large number and decreasing it until the constraints are satisfied. The

associated program will begin by initializing the variable 𝑥 to satisfy the invariant 𝑁 < (𝑥 + 𝑒)2.
Traditional synthesis methods are hard to infer the correct assignment following the idea that

∀𝑁 > 0, 𝑒 > 0, (𝑥 > 𝑁 + 1

4
→ (𝑥 + 𝑒)2 > 𝑁) since ∀𝑁 > 0, (𝑁 + 1

4
)2 > 𝑁 . In contrast, the LLM may

guess the assignment could be 𝑥 = 𝑁 or 𝑥 = 1 but lacks verification and guidance to the correct

answer. Refine4LLM can verify the output to ensure correctness or give counterexample feedback

to guide the LLM to the correct answer. If the LLM generates the assignment 𝑥 = 𝑁 , Refine4LLM

will reject the assignment and give the counterexample feedback to the LLM until some correct

assignments like 𝑥 = 𝑁 + 1 are generated. Then, the Refine4LLM will apply the iteration law and

instruct the LLM to generate the code that satisfies the constraints for the new specification. The

LLM may generate code like 𝑥 = 𝑥 − 𝑒 , and Refine4LLM will formally generate the associated proof

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

Automated Program Refinement: Guide and Verify Code Large Language Model with Refinement Calculus 69:7

Fig. 3. Square Root with Program Refinement: failed version. The dash lines mean the failure feedback.

obligation:

(𝑁 < (𝑥 + 𝑒)2 ∧ 𝑁 < 𝑥2) → (𝑁 < (𝑥 ′ + 𝑒)2 ∧ (𝑁 − 𝑥 ′2 < 𝑁 − 𝑥2) ∧ 𝑥 ′ = 𝑥 − 𝑒) (3)

However, ATPs will reject the generated code because the variant 𝑁 − 𝑥2 is not strictly decreasing

in some cases. Interestingly, despite similarities in the two symmetric directions of program

refinement for the square root algorithm, the previous program in Figure 2 succeeds, but the

current program will fall into an infinite loop. This asymmetry highlights the importance of formal

program verification for seemingly simple algorithms. After the first failure, the LLM will receive

feedback on the failure and generate a new assignment like 𝑥 = (𝑥 + 𝑁
𝑥
)/2, which may be based on

Newton’s method. However, ATPs show that the variant will not decrease and reach a fixed point

in some cases due to the float number precision error. If the LLM repeatedly fails to generate the

verified code several times, Refine4LLM will trace back to the last refinement step and apply a new

refinement law to find another refinement direction.

3.3 Optimizing the Algorithm with Binary Search
Identifying an appropriate intermediate condition for sequential composition law will facilitate

further refinement. As shown in Figure 4, the specification introduces a new variable 𝑦 so that 𝑥,𝑦

delimits the search space for the square root. We can interpret the refinement procedure first by

initializing 𝑥 and 𝑦 to satisfy the intermediate condition 𝑥2 ≤ 𝑁 < 𝑦2 and then adjusting 𝑥,𝑦 to

ultimately fulfill the postcondition 𝑥2 ≤ 𝑁 < 𝑦2 ∧ 𝑦 < 𝑥 + 𝑒 . The setup naturally leads to a looping

structure, as the invariant 𝑥2 ≤ 𝑁 < 𝑦2 and the guard condition 𝑦 ≥ 𝑥 + 𝑒 can be derived directly

from the precondition and postcondition. The LLM may apply the alternation law to ensure the

loop’s termination by diminishing the variant 𝑦 − (𝑥 + 𝑒) while maintaining the invariant. One

way is to set the condition (𝑥+𝑦
2
)2 ≤ 𝑁 in the precondition with the alternation law. Then, based

on the new specification, the LLM will assign 𝑥 with
𝑥+𝑦
2

to decrease the variant 𝑦 − (𝑥 + 𝑒) while
preserving the invariant. The proof obligation is automatically generated by Refine4LLM as follows:

(𝑥2 ≤ 𝑁 < 𝑦2∧𝑥 +𝑒 < 𝑦∧(𝑥 + 𝑦
2

)2 ≤ 𝑁) → (𝑥 ′2 ≤ 𝑁 < 𝑦2∧𝑦−(𝑥 ′+𝑒) < 𝑦−(𝑥 +𝑒)∧𝑥 ′ = 𝑥 + 𝑦
2

)
(4)

Similarly, the other side should assign 𝑦 with
𝑥+𝑦
2
. The new refinement direction will generate

a binary search-based algorithm that is more efficient than the above programs. The detailed

refinement procedure and generated code are shown in Section 10. However, synthesizing an

optimized algorithm is a non-trivial task. In this work, we mainly depend on the LLM’s knowledge

and code generation ability to generate an optimized algorithm to pass the test cases in the specific

time and space complexity requirements.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

69:8 Yufan Cai, Zhé Hóu, David Sanan, Xiaokun Luan, Yun Lin, Jun Sun, and Jin Song Dong

Fig. 4. Square Root with Program Refinement: binary search version.

3.4 Learning Strategies for Extending Refinement Calculus
The above program refinement procedures share some similarities, which start with the sequential

composition law and then use the assignment law for the first part and the iteration law for the

second part, as illustrated in Figure 5. Semantically, this kind of refinement procedure first initializes

the variables to satisfy the invariant, then preserves the invariant, and changes the variant with

the iteration until the postcondition is satisfied. On the one hand, the sequential composition law

constructs the structure [𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡, 𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 ∧𝐺𝑢𝑎𝑟𝑑] for further iteration. On the other hand, the

future iteration law can hint at the first step of sequential composition law to split the specification.

If the LLM has the future information on the iteration law, it will be more possible to split the

specification in the expected way.

To capture the common patterns of program refinement, we design a learning algorithm to

extract the patterns of refinement procedures and extend the refinement calculus. The algorithm

takes a collection of refining processes and extracts the law patterns and specification patterns from

the refinement history dataset. The new extended laws are summarized from the common patterns

in the dataset and allow the specifications to be refined with fewer refinement steps, reducing the

depth of the search and verification. All the new laws are built upon the core refinement laws, and

their correctness can also be derived based on correctness-by-construction [11]. Different from

the typical program synthesis methods like [12, 29] that recover higher-order functions such as

map, fold, and filter, Refine4LLM tries to conclude higher-level refinement laws such as initialized

iteration rule and traverse rule, that capture the high-level synthesis idea of the program synthesis.

In summary, extending refinement laws has the following advantages:

• They broaden the horizon of LLM from one-step refinement to considering future directions.

• They reduce the depth of refinement and save time and resources of interaction with LLMs.

• They may simplify program verification and reduce the requirement of ATPs.

4 Overview
Figure 6 shows an overview of our approach. Generally, it can be divided into two parts: the formal

and informal systems. In the formal system, we first define the formal specification language 𝐿𝑠𝑝𝑒𝑐
and program language 𝐿𝑝𝑙 defined in Section 5. The formal specification will first be transformed

into an abstract syntax tree. Then, with one specific law, Refine4LLM will formally transform the

specification into the new specification and build the proviso constraints of the law. Finally, after

extracting the generated code from LLM, Refine4LLM will automatically build the proof obligations

and the verification scripts for ATPs to verify. ATPs will try to verify the scripts automatically and

output the success or error message. If the code fails to verify, Refine4LLM will provide feedback to

the LLM with possible counterexamples. In the informal system, the user needs to first formalize

the natural language specification into a formal specification with the aid of the LLM. Secondly,

Refine4LLM will build the prompt and describe the refinement laws to the LLM. Then, the LLM

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

Automated Program Refinement: Guide and Verify Code Large Language Model with Refinement Calculus 69:9

Fig. 5. One Example for the Refinement Law Learning and Extending. 𝑝𝑟𝑒 means precondition and 𝑝𝑜𝑠𝑡

means postcondition. 𝐼 , 𝐺 , 𝑉 means the invariant, guard condition, and variant of an iteration.

Fig. 6. Overview of Refine4LLM that combines LLMs and program refinement.

selects one refinement law based on the specification’s description and constraints and generates

the associate code. The LLM will regenerate the code based on the verification result. If getting

multiple times of failure, Refine4LLM will trace back to the last refinement step and interact with

the LLM to choose another refinement law and re-generate the associated code.

5 Refine4LLM’s Languages
We introduce our formal specification language 𝐿𝑠𝑝𝑒𝑐 used to describe the specification and the

programming language 𝐿𝑝𝑙 for our generated program. As these languages interact closely with

LLMs, we target designing languages that are well understood and applied by LLMs.

5.1 The Specification Language
Our specification language 𝐿𝑠𝑝𝑒𝑐 extends first-order logic (FOL) and is a subset of the language of

Coq [6]. Most LLMs are familiar with both FOL and Coq grammar. We follow the standard syntax

and semantics of FOL and highlight the following notations.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

69:10 Yufan Cai, Zhé Hóu, David Sanan, Xiaokun Luan, Yun Lin, Jun Sun, and Jin Song Dong

Table 1. Syntax of the specification language 𝐿𝑠𝑝𝑒𝑐 .

⟨Type⟩ ::= bool | nat | int | float | char | array ⟨Type⟩
⟨Spec⟩ ::= Precondition:⟨Definition⟩ Postcondition:⟨Definition⟩

⟨Definition⟩ ::= ⟨Name⟩⟨Params⟩ := ⟨Expr⟩.
⟨Params⟩ ::= (⟨Name⟩ : ⟨Type⟩)

⟨Expr⟩ ::= ⟨Logit⟩ | ⟨Logit⟩ ∧ ⟨Expr⟩ | ⟨Logit⟩ ∨ ⟨Expr⟩ | ¬⟨Expr⟩ | ⟨QExpr⟩
⟨QExpr⟩ ::= forall|exists ⟨Params⟩ ⟨Expr⟩
⟨Logit⟩ ::= ⟨Term⟩ | ⟨Term⟩ < ⟨Logit⟩ | ⟨Term⟩ <= ⟨Logit⟩ | ⟨Term⟩ = ⟨Logit⟩

| ⟨Term⟩ > ⟨Logit⟩ | ⟨Term⟩ >= ⟨Logit⟩ | ⟨Term⟩ <> ⟨Logit⟩
⟨Term⟩ ::= ⟨Factor⟩ | ⟨Factor⟩ + ⟨Term⟩ | ⟨Factor⟩ − ⟨Term⟩
⟨Factor⟩ ::= ⟨atom⟩ | ⟨atom⟩ * ⟨Factor⟩ | ⟨atom⟩ / ⟨Factor⟩
⟨atom⟩ ::= ⟨Number⟩ | ⟨Variable⟩ | ⟨Const⟩ | true | false

| - ⟨Expr⟩ | (⟨Expr⟩) | ⟨Variable⟩0
| ⟨Name⟩[⟨atom⟩] | ⟨Name⟩[⟨atom⟩ : ⟨atom⟩]

Variants and Constants. We use lower case words like x, y, z to denote the variants that will
change in the refinement and upper case words like N, M to denote constants. Both variants and

constants should be typed.

Relations and Functions. We use common relation operators and function operators in SMT, such

as <,=, +,−, ∗, /, 𝐴𝑟𝑟𝑎𝑦 [𝐼𝑛𝑡]. The theory of integer-indexed arrays following [13] is defined below:∑︁N

𝐴
:

∑︁
𝐴
∪
∑︁
N

::= {𝑎[𝑖], 𝑎⟨𝑖 ⊳ 𝑣⟩,=, 0, 1, +, ≥}
∀𝑎, 𝑖, 𝑗, 𝑣 . 𝑖 = 𝑗 → 𝑎[𝑖] = 𝑎[𝑗]
∀𝑎, 𝑖, 𝑗, 𝑣 . 𝑖 = 𝑗 → 𝑎⟨𝑖 ⊳ 𝑣⟩[𝑗] = 𝑣

∀𝑎, 𝑖, 𝑗, 𝑣 . 𝑖 ≠ 𝑗 → 𝑎⟨𝑖 ⊳ 𝑣⟩[𝑗] = 𝑎[𝑗]

Syntax. We define our specification based on the first-order theory and theory of arrays. The

full syntax of 𝐿𝑠𝑝𝑒𝑐 is given in Table 1, where ⟨Specification⟩ defines the specification that needs to

be refined, ⟨Definition⟩ defines the condition that the variants should satisfy, ⟨Params⟩ defines the
variants and constants. In the case of ⟨atom⟩, ⟨Variable⟩0 denotes the previous value of the variable,
⟨Name⟩[⟨atom⟩] specifies the array selecting operation, and ⟨Name⟩[⟨atom⟩ : ⟨atom⟩] is used for

array slicing operation. The remainder of the syntax is standard FOL used in SMT solving.

Semantics. We follow the standard FOL semantics defined in Coq and only present the notable

elements in Table 2. Note that the theory of arrays is realized by relations and functions, similar to

its treatment in the literature [20].

Table 2. The semantics of the specification language 𝐿𝑠𝑝𝑒𝑐 .

𝑡𝑦𝑝𝑒 𝑇 ⇐⇒ 𝐴 𝑣𝑎𝑙𝑢𝑒 𝑠𝑒𝑡 𝑇 ⟦𝑒𝑇⟧ ∈ 𝑇

𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠 𝑣 : 𝑇 ⇐⇒ 𝐴 𝑣𝑎𝑙𝑢𝑒 𝑣 ∈ 𝑇 ⟦𝑣⟧
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑐 : 𝑇 ⇐⇒ 𝐴 𝑣𝑎𝑙𝑢𝑒 𝑐 ∈ 𝑇 ⟦𝑐⟧ = 𝑐

𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑓 (𝑇1,𝑇2, ...) : 𝑇 ⇐⇒ ⟦𝑓 (𝑎, 𝑏, ...)⟧ = 𝑓 (⟦𝑎⟧, ⟦𝑏⟧, ...)
𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑅(𝑇1,𝑇2, ...) : 𝐵𝑜𝑜𝑙 ⇐⇒ ⟦𝑅(𝑎, 𝑏, ...)⟧ = 𝑅(⟦𝑎⟧, ⟦𝑏⟧, ...)

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

Automated Program Refinement: Guide and Verify Code Large Language Model with Refinement Calculus 69:11

Table 3. Syntax of the program language 𝐿𝑝𝑙 .

⟨Type⟩ ::= bool | nat | int | float | char | array⟨Type⟩
⟨Expr⟩ ::= ⟨Number⟩ | ⟨Name⟩ | true | false | ⟨Variable⟩

| ⟨Expr⟩ == ⟨Expr⟩ | ⟨Expr⟩ < ⟨Expr⟩ | ⟨Expr⟩ <= ⟨Expr⟩
| ⟨Expr⟩ > ⟨Expr⟩ | ⟨Expr⟩ >= ⟨Expr⟩ | ⟨Expr⟩ != ⟨Expr⟩
| ⟨Expr⟩ and ⟨Expr⟩ | ⟨Expr⟩ or ⟨Expr⟩ | not⟨Expr⟩
| ⟨Expr⟩ + ⟨Expr⟩ | ⟨Expr⟩ − ⟨Expr⟩
| ⟨Expr⟩ · ⟨Expr⟩ | ⟨Expr⟩ / ⟨Expr⟩
| ⟨Variable⟩[⟨Expr⟩]
| ⟨Variable⟩[⟨Expr⟩:⟨Expr⟩]

⟨Prog⟩ ::= pass | ⟨Variable⟩ = ⟨Expr⟩ | ⟨Prog⟩; ⟨Prog⟩
| assert⟨Expr⟩
| while (⟨Expr⟩): ⟨Prog⟩ endwhile
| if (⟨Expr⟩): ⟨Prog⟩ else ⟨Prog⟩ endif
| def ⟨Name⟩ (⟨Name⟩ : ⟨Type⟩)*:⟨Prog⟩ enddef

Table 4. Syntax of the program language 𝐿𝑚𝑖𝑥 , following constructs defined in Tables 1 and 3.

⟨Mix⟩ ::= ⟨Spec⟩ | ⟨Prog⟩
⟨MixProg⟩ ::= pass | ⟨Variable⟩ = ⟨Expr⟩ | ⟨Mix⟩; ⟨Mix⟩

| assert(⟨Expr⟩)
| while (⟨Expr⟩): ⟨Mix⟩ endwhile
| if (⟨Expr⟩): ⟨Mix⟩ else ⟨Mix⟩ endif
| def ⟨Name⟩ (⟨Name⟩ : ⟨Type⟩)*:⟨Mix⟩ enddef

5.2 The Program Language
Our program language is mainly based on the While language and Guarded Command Lan-

guage [25]. The formal semantics follows the semantics of the While language with regard to the

standard interpretation of validity [51]. The language is kept simple to make it easier for the LLM

to understand and generate. The complete syntax of our program language is given in Table 3. Our

programming language is imperative and has data types for booleans, natural numbers, integers,

float, characters, and arrays. We include the extension of Array and Assert statements. The array

has a natural number index type and the reading, updating, and slicing operations. To control

the size and structure of programming, we also incorporate the use of procedures. The procedure

is declared by a name, some parameters, and an associated program. This core language can be

implemented as one of the most common programming languages, such as C and Python.

Lastly, we define the mixed programming language 𝐿𝑚𝑖𝑥 for the program refinement procedure,

which is a mixture of 𝐿𝑠𝑝𝑒𝑐 and 𝐿𝑝𝑙 . Formally, its main construct is a variant of ⟨Prog⟩ where part
of the program may be a specification, as defined in Table 4. This “intermediate” language is used

in the middle of the refinement process, where parts of the specifications are refined into programs,

and the other parts are still specifications. We may loosely call such a program a “mixed program”.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

69:12 Yufan Cai, Zhé Hóu, David Sanan, Xiaokun Luan, Yun Lin, Jun Sun, and Jin Song Dong

Fig. 7. The Framework of Law Learning Algorithm. The refinement trees come from the examples that have
been refined to program. The token END means there are no more specifications.

6 Refine4LLM’s Refinement Calculus
This section introduces the law learning algorithm to extend the refinement laws and Refine4LLM’s

extended refinement calculus.

6.1 Law Learning Algorithm
The learning algorithm first inputs a small dataset of problems and the core laws defined in Section

2. The core laws should be low-level but expressive to refine the specifications in the dataset. The

algorithm grows the library of the refinement calculus by reviewing the examples from the dataset,

finding common law patterns from the refinement trees, and abstracting common specification

patterns into new laws.

Law Pattern. We first apply the Refine4LLM to refine all the problems in the dataset with the

core laws. As shown in Figure 7, the refinement process is organized in a tree structure called

refinement trees, where the node represents a specification, and the edge denotes a refinement law

connecting these specifications. Given this constraint, we systematically traverse the tree via the

edges, converting this traversal into a sequential representation of the refinement process. The

algorithm identifies common sub-sequences within these sequences derived from the refinement

tree. By analyzing these sub-sequences, we can extract patterns and repetitive refinement laws.

Specification Pattern. After extracting the law pattern, we follow its frequency to extract the

specification pattern. The specification language is defined in Section 5. We build the E-graph [24]

to manage the specification patterns and find equivalences among different expressions efficiently

from the high-level abstraction to the low-level element. To reduce the complexity, we first define

some rewriting rules with high-level abstraction based on the semantics of the base laws:

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑒𝑛 − 𝑝𝑜𝑠𝑡𝑐𝑜𝑛𝑑𝑖𝑡𝑜𝑛 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] → [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡 ′]
𝑊𝑒𝑎𝑘𝑒𝑛 − 𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑜𝑛 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] → [𝑝𝑟𝑒′, 𝑝𝑜𝑠𝑡]
𝑆𝑘𝑖𝑝 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] → 𝐸𝑁𝐷

𝐴𝑠𝑠𝑖𝑔𝑛 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] → 𝐸𝑁𝐷

𝑆𝑒𝑞 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] → [𝑝𝑟𝑒,𝑚𝑖𝑑]; [𝑚𝑖𝑑, 𝑝𝑜𝑠𝑡]
𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛 : [𝑝𝑟𝑒,𝑚𝑖𝑑] → [𝑝𝑟𝑒 ∧𝐺1, 𝑝𝑜𝑠𝑡]; [𝑝𝑟𝑒 ∧𝐺2, 𝑝𝑜𝑠𝑡]; ...
𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 : [𝐼 , 𝐼 ∧ ¬𝐺] → [𝐼 ∧𝐺, 𝐼 ∧𝐺 ′]

(5)

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

Automated Program Refinement: Guide and Verify Code Large Language Model with Refinement Calculus 69:13

where 𝐸𝑁𝐷 means that there are no more specifications, and the refinement process ends.

The E-graph data structure allows us to represent and reason about multiple equivalent expres-

sions simultaneously, facilitating the application of rewriting rules in a structured and systematic

way. We create an initial E-graph with nodes representing each unique specification. Then, we

identify nodes that can be merged based on the rewriting rules and merge them. Finally, system-

atically apply the rewriting rules to the E-graph, expanding and merging nodes as needed. After

applying all the rules, we extract the most common sub-components from the E-graph. Then, we

expand the specification tree to the deeper level. The process of constructing and managing an

E-graph continues iterative from high level to low level.

For example, in Figure 7, Refine4LLM will show that some examples in the dataset can be

refined by sequential composition law, assignment law, and iteration law. Intuitively, the refinement

process first initializes the variable to satisfy the invariant and then builds the iteration structure

with the invariant. The refinement trees contain two sub-trees: the first part will be refined using

assignment law, while the second part will be refined using iteration law. Based on the iteration

law, the mid-condition is the invariant, and the postcondition can be regarded as a conjunction of

an invariant and a guard condition. We conclude the pattern and derive the initialized iteration

law in Theorem 6.6. Generally, the base laws could complete the equivalent refinements, but those

produced by the final learned laws are much shorter and reduce the verification effort. Besides, we

only derive frequently used laws for efficiency, not for completeness. The detailed pseudo-code of

the learning algorithm is presented in [3].

6.2 Extended Laws
Skip. The new skip law gives the variant an initial value, utilizing the fact that the initial and

final variables have the same value.

Lemma 6.1 (Initialised Skip Law). Let 𝑥0 denote the initial value of variant 𝑥 , if (𝑥 = 𝑥0)∧𝑃 ⇛ 𝑄 ,
then the specification 𝑥 : [𝑃,𝑄] ⊑ Skip.

Proof. Directly from the skip law in Lemma 2.3 as 𝑃 ⇛ 𝑄 . □

Seq. We extend a new sequential composition law to flexibly divide one specification into two

parts based on the Strengthen-Postcondition and Weaken-Precondition laws.

Lemma 6.2 (Flexible Seqential Composition Law). Let P, Q, A, B, C, D be some formulate,
if (𝑃 ⇛ 𝐴) ∧ (𝐵 ⇛ 𝐶) ∧ (𝑄 ⇛ 𝐷), then the specification 𝑥 : [𝑃,𝑄] ⊑ 𝑥 : [𝐴, 𝐵]; 𝑥 : [𝐶, 𝐷].

Proof. First, use the sequential composition law in Lemma 2.4, 𝑥 : [𝑃,𝑄] ⊑ 𝑥 : [𝑃, 𝐵];𝑥 : [𝐵,𝑄].
Then refine the two parts with the weaken-precondition law in Lemma 2.2, 𝑥 : [𝑃, 𝐵] ⊑ 𝑥 :

[𝐴, 𝐵];𝑥 : [𝐵,𝑄] ⊑ 𝑥 : [𝐶,𝑄]. Finally, refine the second part with the strengthen-postcondition law

in Lemma 2.1, 𝑥 : [𝐶,𝑄] ⊑ 𝑥 : [𝐶, 𝐷]. □

Assign. We extend two assignment laws. The initialized assignment law utilizes the initial values

of the variants to simplify the further proof for 𝑝𝑟𝑒 ⇛ 𝑝𝑜𝑠𝑡 ⟨𝑥 := 𝐸⟩. The following assignment

law allows any assignment in its second half, provided the changed variants.

Lemma 6.3 (Initialized Assignment Law). Let 𝐸 be any 𝐸𝑥𝑝𝑟 in the programming language,
𝑝𝑜𝑠𝑡 ⟨𝑥 := 𝐸⟩ replaces every x in the formula 𝑝𝑜𝑠𝑡 with 𝐸. If (𝑥 = 𝑥0) ∧ (𝑦 = 𝑦0) ∧ 𝑝𝑟𝑒 ⇛ 𝑝𝑜𝑠𝑡 ⟨𝑥 :=

𝐸⟩, 𝑡ℎ𝑒𝑛 𝑥,𝑦 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] ⊑ x = E.

Proof. Use the assignment law in Lemma 2.5 as 𝑝𝑟𝑒 ⇛ 𝑝𝑜𝑠𝑡 ⟨𝑥 := 𝐸⟩. □

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

69:14 Yufan Cai, Zhé Hóu, David Sanan, Xiaokun Luan, Yun Lin, Jun Sun, and Jin Song Dong

Lemma 6.4 (Following Assignment Law). Let 𝐸 be any 𝐸𝑥𝑝𝑟 in the programming language,
𝑝𝑜𝑠𝑡 ⟨𝑥 := 𝐸⟩ replaces every x in the formula 𝑝𝑜𝑠𝑡 with 𝐸. 𝑥 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] ⊑ 𝑥 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡 ⟨𝑥 :=

𝐸⟩] ; x = E.

Proof. First use the sequential composition law, 𝑥 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] ⊑ 𝑥 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡 ⟨𝑥 := 𝐸⟩]; 𝑥 :

[𝑝𝑜𝑠𝑡 ⟨𝑥 := 𝐸⟩, 𝑝𝑜𝑠𝑡]. Then, refine the second part using the assignment law, 𝑥 : [𝑝𝑜𝑠𝑡 ⟨𝑥 :=

𝐸⟩, 𝑝𝑜𝑠𝑡] ⊑ x = E. □

Alternate. The if-else alternation law is a simplified version of the original one without further

proof of the guard condition.

Lemma 6.5 (If-else Alternation Law). Let P, Q, and G be some formulae, then the specification
𝑥 : [𝑃, 𝑄] ⊑ 𝑖 𝑓 (𝐺) (𝑥 : [𝑃 ∧𝐺, 𝑄]) 𝑒𝑙𝑠𝑒 (𝑥 : [𝑃 ∧ ¬𝐺, 𝑄]).

Proof. As 𝑃𝑟𝑒 ⇛ 𝐺 ∨ ¬𝐺 based on the law of excluded middle, the lemma can be directly

implied from the alternation law in Lemma 2.6. □

Iterate. The new initialized iteration law first assigns the initial value to the invariant, and the

second specification preserves the invariant and changes the variant during iteration until the

negated guard condition is reached. In practice, based on the convergence of monotonic sequences

of real numbers, we replace the existing condition with the monotonic and bounded condition

given in Lemma 6.7. To avoid infinite loops, we add the assertion to check whether the expression

𝑉 decreases by at least the error bound of the floating-point precision.

Lemma 6.6 (Initialised Iteration Law). Let P, I, and G be some formulae, V be any vari-
ant expression, and i and M are positive integers, then the specification 𝑥 : [𝑃, 𝐼 ∧ ¬𝐺] ⊑ 𝑥 :

[𝑃, 𝐼] ;𝑤ℎ𝑖𝑙𝑒 (𝐺) 𝑑𝑜 (𝑥 : [𝐼 ∧𝐺, 𝐼 ∧ (∃𝑖 < 𝑀, 𝑉𝑖 → ¬𝐺))].
Proof. First, using the sequential composition law in Lemma 2.4, 𝑥 : [𝑃, 𝐼 ∧¬𝐺] ⊑ 𝑥 : [𝑃, 𝐼]; 𝑥 :

[𝐼 , 𝐼 ∧ ¬𝐺]. Then, refine the second part with the iteration law in Lemma 2.7. Note that we replace

the condition for integer-valued variants with any variant expression for scalability. To guarantee

the termination of the iteration, a state of variant should exist to negate the guard condition after

finite iterations. □

Lemma 6.7 (Assertion Iteration Law). Let P, I, and G be some formulae, V be any variant
expression, then the specification 𝑥 : [𝑃, 𝐼 ∧ ¬𝐺] ⊑ 𝑥 : [𝑃, 𝐼] ; 𝑤ℎ𝑖𝑙𝑒 (𝐺) 𝑑𝑜 (𝑥 : [𝐼 ∧ 𝐺, 𝐼 ∧ 𝑉 <

𝑉0];𝑎𝑠𝑠𝑒𝑟𝑡 𝑉 ≠ 𝑉0).
Proof. First, follow the initialized Iteration Law. Then, note that the float precision error is 𝑒 ,

then we have ∃𝑖 = ⌈𝑉0

𝑒
⌉ < 𝑀,𝑉 < 0 → ¬𝐺 . □

Traverse. We build a traverse law to facilitate the problems related to the array. The formula

𝑃 contains the variants 𝑙 and 𝑖 , which can be equations that recursively define a sequence. Note

that the following refinement should preserve the invariant 𝑃 (𝑙, 𝑖) and make progress to 𝑃 (𝑙, 𝑖 + 1)
following induction.

Lemma 6.8 (Traverse Law). Let l be the list of type T, natural numbers m and n denote the range,
pre and P be some formula, 𝑙 : [𝑝𝑟𝑒,∀𝑖 : 𝑛𝑎𝑡 ∧𝑚 ≤ 𝑖 < 𝑛 → 𝑃 (𝑙, 𝑖)] ⊑ 𝑙, 𝑖 : [𝑝𝑟𝑒, 𝑙 [𝑚]]; 𝑖 =

𝑚 ;𝑤ℎ𝑖𝑙𝑒 (𝑖 < 𝑛) 𝑑𝑜 (𝑙, 𝑖 : [𝑃 (𝑙, 𝑖), 𝑃 (𝑙, 𝑖 + 1)]; 𝑖 = 𝑖 + 1).
Proof. First, using the expand law and sequential composition law in Lemma 2.4, 𝑙, 𝑖 : [𝑝𝑟𝑒, 𝑙 [𝑖]∧

𝑖 =𝑚]; 𝑙, 𝑖 : [𝑙 [𝑖]∧𝑖 =𝑚, 𝑙 [𝑖]∧𝑖 = 𝑛]. Then refine the second part with the initialised assignment law

Lemma 6.3 and iteration law in Lemma 2.7, we have 𝑖 =𝑚 ;𝑤ℎ𝑖𝑙𝑒 (𝑖 < 𝑛) 𝑑𝑜 (𝑙, 𝑖 : [𝑃 (𝑙, 𝑖), 𝑃 (𝑙, 𝑖)∧0 ≤
𝑛 − 𝑖 < 𝑛 − 𝑖0]. Finally, using the following assignment law in Lemma 6.4 for the specification,

[𝑃 (𝑙, 𝑖), 𝑃 (𝑙, 𝑖 + 1) ∧ 0 ≤ 𝑛 − (𝑖 + 1) < 𝑛 − 𝑖]; 𝑖 = 𝑖 + 1 and can be simplified to the target. □

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

Automated Program Refinement: Guide and Verify Code Large Language Model with Refinement Calculus 69:15

Fig. 8. Refinement laws w.r.t. the specification language and program language. The detailed notations are
defined in Section 6.

The law learning algorithm can derive new laws not covered in this section. We transform the

extended refinement calculus as background knowledge in the prompts to guide the LLM. The

detailed instructions in the refinement laws can facilitate both LLM interaction and ATP verification.

All the new laws are built upon the core refinement laws, and their correctness can also be derived.

We summarize the above refinement laws in Figure 8.

Theorem 6.9 (Soundness of Derived Refinement Laws). If ®𝑥 : [𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡] ⊑ 𝑝𝑟𝑜𝑔 is derivable
from the laws in Section 2 and Section 6.1, then {𝑝𝑟𝑒}𝑝𝑟𝑜𝑔{𝑝𝑜𝑠𝑡} holds.

Proof. Immediate from the proof of individual laws. □

7 Formal System: Refine and Verify
This section details the formal methods part of Refine4LLM, including the program refinement

system and verification system.

7.1 Program Refinement System
A formal program refinement system leverages LLMs and automatic theorem provers (ATPs).

The system automatically derives the proof obligations required to show that the refined program

satisfies the original specification. The process iterates: new proof obligations are generated, refined,

and submitted to the ATP until all obligations are proven. Once all proof obligations are satisfied,

the system outputs the verified, refined program along with its formal specification. We list the

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

69:16 Yufan Cai, Zhé Hóu, David Sanan, Xiaokun Luan, Yun Lin, Jun Sun, and Jin Song Dong

Law LLM Refine4LLM
Skip - verify 𝑃 ⇛ 𝑄

Sequence 𝑀 new spec [𝑃,𝑀]; [𝑀,𝑄]
Assignment 𝑥 = 𝐸𝑥𝑝𝑟 verify 𝑃 ⇛ 𝑄 ⟨𝑥 := 𝐸𝑥𝑝𝑟 ⟩
Alternation 𝐺 new spec if (𝐺) (𝑥 : [𝑃 ∧𝐺,𝑄]) else (𝑥 : [𝑃 ∧ ¬𝐺,𝑄])
Iteration 𝐼 ,𝐺 new spec 𝑥 : [𝑃, 𝐼]; while(𝐺) do(𝑥 : [𝐼 ∧𝐺, 𝐼 ∧ (∃𝑖 < 𝑀, 𝑉𝑖 →

¬𝐺)])
Traverse 𝑃 new spec 𝑙 : [𝑝𝑟𝑒, 𝑙 [𝑚]]; i = m; while(i < n) do (𝑙, 𝑖 :

[𝑃 (𝑙, 𝑖), 𝑃 (𝑙, 𝑖 + 1)]; 𝑖 = 𝑖 + 1)

Table 5. The schemes of specifications and conditions that the LLM and Refine4LLM generate for further
verification in ATP. For the former four laws, the origin specification is 𝑥 : [𝑃,𝑄]. For the iteration law, the
origin specification is 𝑥 : [𝑃, 𝐼];𝑥 : [𝐼 , 𝐼 ∧ ¬𝐺].

schema of the relationships among the refinement laws, the LLM-generated code, and Refine4LLM’s

output in Table 5.

7.2 Verification System with ATPs
Passively Verify. After the LLM generates the choice of the law and the associated code, Re-

fine4LLM will verify them using ATPs to justify whether the code satisfies the constraints based

on the condition of the selected refinement law. If the ATP confirms that the constraints are met,

Refine4LLM will apply the refinement law to the current specification, leading to the generation

of a new formal specification and the verified code. If the verification fails, the LLM will receive

the failure message and the possible counterexamples. It then attempts to generate an alternative

set of code, and the retry process has a defined limit. If repeated attempts fail, Refine4LLM will

revert to the previous successful refinement step and the specification that was valid before the

failed attempt. The LLM receives detailed feedback about the failures and the counterexamples,

along with the last valid specification. For proof obligations that the ATP cannot automatically

resolve, the LLM can provide human-readable explanations, suggest lemmas, or even generate

proof sketches to assist the user in manual intervention.

Modular Verification. Refine4LLM implements modular verification by dividing the program

refinement into small steps and splitting the specification into smaller, independent modules. Each

module, with its own constraints, is verified separately by the ATPs, allowing for more efficient

identification of errors localized to specific parts of the system. This method also facilitates parallel

verification processes, speeding up the overall verification time. If a module fails verification, the

LLM receives feedback specific to that module, including failure reasons and counterexamples. If all

modules pass their respective verifications, Refine4LLM then integrates them to form a complete

and verified refinement step.

8 Informal System: Interaction with LLM
This section describes the part of our system that uses informal LLM instead of formal methods

and how the LLM and formal methods interact.

8.1 Specification Formalization
The formalization process involves breaking down complex specifications into smaller sub-specifications

and refining them bottom-up to build the high-level specification. We build a top-down algorithm

to split the specification and a bottom-up algorithm to synthesize the program into functional

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

Automated Program Refinement: Guide and Verify Code Large Language Model with Refinement Calculus 69:17

abstractions. The user needs to check the correctness of the formalized specification. We assume

that all the formal specifications from the user are correct and meet the requirements.

Top-down Specification Split. We assume that all the formal specifications checked by the user

are correct and meet the user’s requirements. Refine4LLM will interact with the users to formalize

the user’s requirements. The algorithm starts with a comprehensive, high-level specification of the

system or software to be developed. Some functions in the specification may have been refined and

stored in the library in the past, and some may not. Each sub-specification has its own specification,

and they will be split into smaller specifications until all elements defined in their specifications

have been refined or atomic elements in the language defined in Section 5. We retrieve similar

specifications from the library to match the refined and stored specifications. We first ask the LLM

to retrieve the possible equivalent specification in the library and then verify it using the logic

laws based on the strengthen-postcondition Theorem 2.1 and Theorem 2.2 law. Intuitively, weaker

preconditions necessitate handling a broader range of potential inputs during implementation,

thereby reducing the flexibility of the approach. Additionally, stronger postconditions further

restrict the implementation’s freedom, demanding a closer adherence to specified outputs. The

retrieved similar specification will replace the origin sub-specification. Finally, Refine4LLM will

share all the specifications, including the sub-specifications, with the user to ensure correctness.

Bottom-up Refinement. For those sub-specifications that are not refined, we formalize the sub-

specifications and refine them from the bottom. Each sub-specification is refined and validated

independently, ensuring that every module functions correctly before it is integrated into the larger

system. The bottom-up refinement allows for deep focus on each component’s details, ensuring

high-quality development with rigorous refinement and validation at each stage. Refine4LLM will

save the refinement steps and the associated programs in the refinement library. The refinement

procedures can be reused when meeting the new specifications that contain the same precondition

and postcondition. The top-down and bottom-up methods not only save development time by

avoiding redundant specifications from scratch but also ensure consistency and reliability by using

previously validated, refined specifications.

8.2 Code Generation with LLMs
Retrieval Augmented LLM. We provide the LLM with the refinement calculus as background

knowledge so that the LLM can utilize the refinement laws with the retrieval augmented techniques.

We also customize our LLM for program refinement tasks by crafting instructions based on the

formal specification language 𝐿𝑠𝑝𝑒𝑐 and our program language 𝐿𝑝𝑙 defined above. Our LLM has been

instruct-tuned with the examples in Morgan’s book [44]. This tailoring ensures that the LLM is

well-equipped to handle the complexities of program refinement, drawing from a robust foundation

of relevant examples and formal definitions.

Actively Guide. A prompt for the LLM, like GPT-4, refers to the instruction given to the model

to elicit a response. The traditional prompts design always follows static templates like Program
Refinement for the following specification. Instead of relying on static, template-based prompts, this

approach treats the LLM as a constraint solver that actively constructs prompts that include logical

formulae representing the specifications. These formulae detail the constraints the LLM’s outputs

must satisfy, ensuring that the generated code or refinement steps are aligned with the specific

requirements of the task. The LLM will select the refinement law and generate the associated code

based on the given prompts. As each step has its generated specification, there is no need to add the

previous refinement as history based on the congruence of Hoare Logic. This method enhances the

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

69:18 Yufan Cai, Zhé Hóu, David Sanan, Xiaokun Luan, Yun Lin, Jun Sun, and Jin Song Dong

LLM’s utility by focusing its computational efforts on solving well-defined problems, leveraging its

capabilities to generate precise and accurate refinements.

Prompt Engineering. Prompt refers to the art of crafting queries or inputs that are optimized to

elicit the best or most relevant responses from an AI model. This practice is particularly prevalent

in the field of machine learning and AI-driven interactive systems. Our prompt is relatively straight-

forward yet comprehensive and includes all the details of the refinement rules and specifications:

Given the refinement rule ... The previous code ... is not correct since ...

Provide a correct code satisfying the specification [pre, post].

Or to decide which refinement laws to use:

Choose a proper rule to refine the current specification [pre, post].

where all the rules are included in the context. This approach minimizes ambiguity and maximizes

the relevance and accuracy of the LLM’s responses, thereby enhancing the overall efficiency of the

program refinement process.

9 Evaluation
This section shows the quantitative analysis of the most popular benchmarks compared to the

state-of-the-art LLMs and a program refinement baseline.

9.1 Experiment Setting
We evaluate Refine4LLM to answer the following research questions:

• RQ1: Whether Refine4LLM can generate more robust programs than the baselines?

• RQ2: Can the learning algorithm and the associated extended refinement calculus reduce the

time and depth of the refinement process?

• RQ3: Whether the top-down splitting and bottom-up refining method for building a library

of program refinement can enhance Refine4LLM for complex problems?

• RQ4: How does the performance of Refine4LLM vary with different components?

9.1.1 baselines.

GPT-4. Generative Pre-trained Transformer 4 (GPT-4) [47] is a multi-modal large language model

created by OpenAI and the fourth in its GPT foundation models. As a transformer-based model,

GPT-4 uses a paradigm where pre-training using both public data and "data licensed from third-

party providers" is used to predict the next token. After this step, the model was fine-tuned with

reinforcement learning feedback from humans.

CorC. CorC [39, 54] is a graphical and textual IDE to create programs in a simple while-language

following the Correctness-by-Construction approach. Starting with a specification, the open-source

tool supports CbC developers in refining a program through a sequence of refinement steps and

verifying the correctness of these steps using the theorem prover KeY [34].

9.1.2 Benchmarks. We choose the example programs in the baseline [54] and 164 benchmarks

in the HumanEval dataset, widely used in evaluating code generation [18, 47, 62]. Besides, to test

the correctness and robustness of the generated code, we adopt the EvalPlus [41] dataset with
the same 164 benchmarks but has an average of more than 80 times the number of origin test

cases to test the robustness of the generated code. We adapted the formal specifications from the

Bigcode Project [8], which includes 18 programming languages for the origin 164 problems in

the HumanEval dataset. The dataset contains the golden codes to solve the problem, which does

not contain complex program language features beyond our language 𝐿𝑝𝑙 . These golden codes

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

Automated Program Refinement: Guide and Verify Code Large Language Model with Refinement Calculus 69:19

Model LLama3 GPT-3.5 Claude-3 GPT-4 Refine4LLM

Input Specification NL NL NL NL NL+ FS FS

HumanEval Passed 125 126 136 145 148 150
EvalPlus Passed 116 116 126 128 142 150

Table 6. A comparison of Refine4LLM and popular LLMs on the number of generated programs that passed
the test cases in HumanEval and EvalPlus 164 benchmarks. NL means natural language inputs, and FS means
formal specification inputs.

can be used to validate the correctness of the formal specifications. We manually check all the

specifications in the dataset, which is necessary for establishing correctness criteria in any case

and should not be a hurdle for program verification.

9.1.3 Implementation. We implement our approach based on Coq [6], CoqHammer [21], and

GPT-4. The automatic verification is based on the open-source automated reasoning tool called

CoqHammer. We follow the CoqHammer to incorporate four automated theorem provers, including

cvc4 [7], vampire [40], Eprover [56] and Z3 [22] to facilitate the automation of verification. We

input informal and formal specifications to the state-of-the-art LLM - GPT-4 to generate the code

snippet and test in the test case. We choose GPT-4 as the base model of Refine4LLM and use

instruction tuning [67] to customize the LLM with classic refinement examples from [44] and learn

the extended version of the refinement calculus. Since our 𝐿𝑝𝑙 language only contains the most

common language constructs in popular imperative languages, there’s a straightforward translation

from 𝐿𝑝𝑙 to, e.g., python. We then evaluate the converted Python program against the test cases

following the Evalplus framework. The artifact is available online [3].

9.2 Experiment Results
In this section, we present the outcomes of our experiments, detailing the performance of Re-

fine4LLM. The analysis aims to provide insights into the effectiveness and limitations of the

approach under investigation.

9.2.1 RQ1: Performance of Program Generation. Table 6 shows the evaluation results on the Hu-

maneval benchmarks. We choose the state-of-the-art LLMs include LLama3 [53], GPT-3.5, claude-

3 [30] and GPT-4 as our baselines. The baselines’ results follow the work [41]. The numbers in

Table 6 indicate how many generated programs passed all the test cases in the datasets. EvalPlus

has the same number of programs as HumanEval but more test cases for each program. Therefore,

if a program has bugs, it may pass HumanEval but fail EvalPlus. Since LLM-generated code may

contain bugs, EvalPlus generally reduces the pass rate on pure LLMs [41]. However, our method

ensures correctness by design; thus, our pass rate does not drop, which is the key point of the

comparison and represents a qualitative leap in improvement.

We add experiments to the GPT-4 that incorporate the formal specifications with the natural

language descriptions because GPT-4 is the state-of-the-art model among all other LLMs. With only

the natural language descriptions as input, GPT-4 shows the best overall performance of all the

LLMs. We further analyze the error situation of the GPT-4 and Refine4LLM. GPT-4 may generate

a program that passes all EvalPlus test cases, but our method can’t because some code can’t be

verified. However, if we add more test cases, the LLM-generated programs may fail. By contrast,

programs generated by our method can pass as many test cases as one can devise. In detail, GPT-4

sometimes ignores some exceptional cases like negative numbers or zero, which also interprets

the experiment result that incorporating formal specifications enhances the GPT-4 since formal

specifications contain helpful constraints.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

69:20 Yufan Cai, Zhé Hóu, David Sanan, Xiaokun Luan, Yun Lin, Jun Sun, and Jin Song Dong

Metrics # Refinement Steps Proof Time(s)

Approach CorC Initial Refine4LLM CorC Initial Refine4LLM

Linear Search 5 5 4 0.4 0.2 0.1

Max Element 9 10 5 1.2 1.0 0.2

Pattern Matching 14 16 8 54.9 35.8 24.5

Exponentiation 7 7 5 15.2 14.4 10.4

Log Approximation 5 5 4 42.7 22.9 20.1

Dutch Flag Sort 8 9 5 5.7 4.3 4.1

Factorial 5 5 3 3.6 1.5 0.4

Table 7. A comparison of Refine4LLM and baseline CorC on classic program refinement problems. initial
means the Refine4LLM system before the extension of the law. # Refinement Steps represents the number of
steps required to refine the specification. Proof Time(s) measures the time taken to prove the correctness.

9.2.2 Failure Analysis. In the case of EvalPlus benchmarks that Refine4LLM failed to solve, we

categorize the failures into three specific reasons with detailed explanations and promising direction

for future improvements.

Complex Specifications. Eight problems have too complex specifications that Refine4LLM can not

split and refine the specifications effectively. This complexity can arise from intricate mathematical

conditions, nested logical expressions, or requirements that involve sophisticated relationships.

For example, three problems in the Humaneval dataset involve parentheses matching, which may

contain the subspecifications of a balanced pair of parentheses and non-overlapping parentheses.

Some specifications are hard to refine without domain-specific knowledge requirements. One

possible solution is to allow the user to define the domain-specific helper functions and include

axioms or lemmas about their properties to guide the LLM and Refine4LLM.

Fail to Verify. Three problems fail to generate verified code due to the failures in the program

verification. The automatic theorem prover may be unable to verify the generated code and the

proof obligations due to limitations in its reasoning power or incomplete knowledge about the

domain. We may use LLMs to suggest potential lemmas, auxiliary invariants, or transformations

that could simplify the proof obligations. Besides, Refine4LLM also allows the user to check the

proof failures and include axioms or lemmas to guide the theorem prover.

Lack of Laws for Some Data Structures. Three problems contain special data structures that

Refine4LLM can not generate and verify the associated code. The system lacks built-in support for

some special data structures, such as dictionaries or graphs, that are used in some problems. Our

future work will extend the refinement calculus to support more complex data structures.

9.2.3 RQ2: Performance of Program Refinement and Verification. Table 7 shows the evaluation

results on the example programs in the CorC baseline [54]. Since the baseline is not automated,

we assume the user has completed all the refinement steps. Across all algorithms, Refine4LLM

generally has fewer refinement steps and lower proof times than the CorC and Initial variants,

which only contain the core refinement laws. The variability in refinement steps and proof times

across different algorithms suggests differing complexity levels and optimization challenges. Due

to their inherently complex nature, algorithms like pattern matching and log approximation may

benefit more from advanced laws and optimizations. The experiment shows a significant difference

in proof time for complex algorithms with Refine4LLM taking much less time than CorC and Initial.

9.2.4 RQ3: Performance of Refinement Library. Table 8 compares two scenarios: one our Re-

fine4LLM and the other without any program-refined library based on the top-down splitting

and bottom-up refining algorithm. We extract 50 examples from the HumanEval benchmarks

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

Automated Program Refinement: Guide and Verify Code Large Language Model with Refinement Calculus 69:21

Model No Library Refine4LLM

#Refinement step 21.4 5.6

Refinement time(s) ∼514 ∼275
Proof time(s) ∼215 ∼87
Fall-Back rate(%) 26.87 9.45

Program size 41.3 14.1

Pass rate(%) 52 82

Table 8. A comparison of Refine4LLM and a variant without the library of program refinement on EvalPlus
benchmarks. Fall-back rate means the LLM fails to generate the code and falls back to the last specification. #
Program size represents the number of lines generated.

that contain more than two sub-questions. We design the comparison with a maximum allowable

duration of 600 seconds for the program refinement process. The top-down splitting of speci-

fications has dramatically reduced the number of refinement steps required—from 21.4 to 5.6—

and has decreased the refinement time from approximately 514 seconds to about 275 seconds.

Additionally, the program size decreases with Refine4LLM, illustrating that bottom-up refining

yields more compact programs in the libraries. Moreover, the library’s modular verification not only

reduces proof time but also decreases the fall-back rate of the LLM. This indicates that Refine4LLM

effectively guides the LLM in generating accurate code that meets the constraints and refines the

specification. Overall, Refine4LLM significantly enhances program refinement by incorporating

the library, which simplifies the process and enhances both reliability and success rates.

9.2.5 RQ4: Ablation Study. We have conducted an ablation study to evaluate the impact of the

extended laws and instruction fine-tuning on the performance of Refine4LLM by removing these

components and measuring the effect on key metrics in the EvalPlus benchmarks. For the version of

core law, we use the original version of GPT-4 without any extended refinement laws or instruction

fine-tuning. In each interaction with GPT-4, we only give the core refinement laws to get the answer

of the law selection and the code. For the extended law version, we further give all the refinement

laws in each interaction. For the instruction tuning version, we apply instruction tuning to the

GPT-4, which will be tuned on the dataset of refinement problems and relevant instructions about

the core refinement laws.

The ablation study results shown in Table 9 indicate that both instruction fine-tuning and

extended laws impact the performance and efficiency of Refine4LLM in distinct ways: Without

instruction fine-tuning, the system’s performance drops, and refinement time increases because

the LLM is more likely to select inappropriate laws or require multiple iterations to identify the

correct refinement approach. As a result, Refine4LLM struggles to generate correct code or to

effectively refine some complex specifications, leading to more manual intervention and potential

verification failure to complete the refinement. On the other hand, the refinement process takes

longer in the absence of extended laws due to the need for additional refinement steps and iterations.

Refine4LLM requires more interaction with the LLM and failure feedback loops before arriving at a

valid solution.

Setting Pass rate(%) Refinement time(s)

Core Law 87.8 305

Extended Law 87.8 261

Instruct Tuning 91.5 234

Refine4LLM 91.5 215

Table 9. The Ablation Study Results.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

69:22 Yufan Cai, Zhé Hóu, David Sanan, Xiaokun Luan, Yun Lin, Jun Sun, and Jin Song Dong

// pre: (N:float)(e: float) := N >= 0

/\ e > 0

// post: (x:float)(y: float) := x*x <=

N < y*y /\ y <= x+e

N, e = input ()

LLM selects Sequential Composition

Law

// pre_1 := N >= 0 /\ e > 0

// post_1 := x*x <= N < y*y

LLM selects Assignment law

x = 0

y = N+1

verify pre_1 -> post_1(x := 0; y :=

N+1)

// pre_2 := x*x <= N < y*y

// post_2 := x*x <= N < y*y /\ y <= x+e

LLM selects Iteration law: Inv(pre_2

) Guard (~(y <= x+e))

while y > x+e:

// pre_2_1 := pre_2 /\ y > x+e

// post_2_1 := pre_2 /\ (...)

LLM selects Alternation law G((x+y)/2*(

x+y)/2 > N)

if (x+y)/2*(x+y)/2 > N:

// pre_2_1_1 := pre_2_1 /\ (x+y)/2*(x+y)

/2 > N

// post_2_1_1 := post_2_1 /\ (...)

LLM selects Assignment law

y = (x+y)/2

verify pre_2_1_1 -> post_2_1_1(y := (

x+y)/2)

else:

// pre_2_1_2 := pre_2_1 /\ (x+y)/2*(x+y

)/2 <= N

// post_2_1_2 := post_2_1 /\ (...)

LLM selects Assignment law

x = (x+y)/2

verify pre_2_1_2 -> post_2_1_2(x := (

x+y)/2)

Fig. 9. The generated code of the square root algorithm with program refinement. The statements tagged
with a double slash // are the target specifications, tagged with # LLM are the LLM decisions, and tagged
with # verify are the proof obligations. The type of the variables can be extracted from the specification.

10 Case Studies
This section illustrates four problems and their associated refinement procedure. First, we give

the running code snippet of the motivation example - the square root algorithm to show how the

Refine4LLM generates the verified code with proof obligations. Second, we illustrate the sorting

problem’s refinement procedure with the bubble sort algorithm and quick sort algorithm to show

how the extended laws benefit program refinement. Thirdly, we present the program refinement of

the prime factorization problem to show how Refine4LLM splits the complex specifications and

involves functional abstraction and modular verification. We finally show a real-world example

calledmask distribution to illustrate how Refine4LLM formalizes a real-world problem and generates

the program with the recurrence relation and the dynamic programming algorithm.

10.1 Square Root Algorithm
We show how Refine4LLM generates the program to solve the motivating example in Figure 9.

The statements tagged with a double slash // are the target specifications, tagged with # LLM are

the LLM decision, and tagged with # verify are the proof obligations. The proof obligations are

the proviso condition to apply the associated refinement law. Note that we removed the iteration

termination condition in (...) for a concise presentation. In detail, the LLM first sequentially splits

the original specification into two parts. Informally, the first specification defines 𝑥 , 𝑦 such that

𝑥2 ≤ 𝑁 < 𝑦2, which can be implemented by assignment. Note that the assignment of 𝑦 needs

to satisfy the constraints in the postcondition of the specification, that is, 𝑁 < 𝑦2, eliminating

the possibility of bugs of LLMs like 𝑦 = 𝑁 . The second specification preserves the invariant

𝑥2 ≤ 𝑁 < 𝑦2 and makes the variants 𝑥 , 𝑦 closer until 𝑥 + 𝑒 ≥ 𝑦, which can be implemented

with the iteration. The invariant, the guard condition, and the variant can be extracted from the

specification. The LLM uses the alternation law to add another constraint and reduces the distance

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

Automated Program Refinement: Guide and Verify Code Large Language Model with Refinement Calculus 69:23

Fig. 10. Bubble sort algorithm with program refinement and the generated pseudo-code. The type of the
variables can be extracted from the specification. The generated pseudo code can be translated to a domain-
specific language with the formal specification.

between 𝑥 and 𝑦 to assign x or y with the mean of 𝑥 and 𝑦. The proofs, including the invariants

preserving and loop termination, are detailed in [3]. Compared to the standalone LLM-generated

code, Refine4LLM verifies the code with its associated specifications. On the other hand, LLMs

are prompted by the refinement laws and specifications. LLM selects the proper refinement law

and generates the associated code automatically. The new specification will be formally generated

based on the refinement laws by Refine4LLM after the ATPs verify the code.

10.2 Sorting Algorithm
The sorting algorithm is a classic problem in program refinement literature [14, 44]. We follow the

definition in [14] to define a new type of array called SwapList that only allows swap operations:

𝑠𝑤𝑎𝑝 : 𝑆𝑤𝑎𝑝𝐿𝑖𝑠𝑡 → 𝑛𝑢𝑚 → 𝑛𝑢𝑚 → 𝑆𝑤𝑎𝑝𝐿𝑖𝑠𝑡 (6)

Bubble Sort. We use the bubble sort and quick sort algorithms as examples to illustrate the

extensibility of our refinement framework. For the bubble sort shown in Figure 10, the specification

includes a SwapList, the length 𝑁 of the SwapList, and the postcondition that the list elements

should be sorted in ascending order. One refinement direction begins by adopting the traverse

law that initializes variable 𝑖 = 0, establishing that the sublist 𝐿[0 : 𝑖] is a sorted list. Then,

the refinement progresses by incrementally expanding this sorted list 𝐿[0 : 𝑖] to 𝐿[0 : 𝑖 + 1],
simultaneously decreasing the variant 𝑁 − 𝑖 . The traverse law can also be applied to refine the

remaining specification, highlighting the iterative nature of both integer variables 𝑖 and 𝑗 , which

iterates from a left bound to a right bound governed by constraints. Finally, LLM applies the

alternation law to compare 𝐿[𝑖] and 𝐿[𝑗] to guarantee that 𝐿[𝑖] is always the smallest element in

the remaining list. The traverse law, which combines the sequential composition law, iteration law,

and assignment law, shows the advantages of deriving new advanced refinement laws based on

the correctness-by-constructions [11]. The traverse law (detailed in Theorem 6.8) is derived for

traversing the array elements from one index to another. It also simplifies the proof obligation by

removing the requirement to decrease the variant. Note that the generated pseudo code can be

translated to a domain-specific language with the formal specification.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

69:24 Yufan Cai, Zhé Hóu, David Sanan, Xiaokun Luan, Yun Lin, Jun Sun, and Jin Song Dong

Fig. 11. Quick sort algorithm with program refinement and the generated pseudo-code.

Quick Sort. Another refinement direction involves decomposing the original problem into smaller

but similar sub-problems, a method commonly recognized as recursion. As shown in Figure 11,

the strengthen-post-condition law divides the SwapList into two parts, where the elements in

the first part are less than or equal to 𝐿[𝑘] and those in the second part are greater or equal to

𝐿[𝑘]. Each part is then sorted independently. The base situation is one-element sorting, which is

trivial. The associated proof obligation for applying the strengthen-post-condition law involves

demonstrating that these three new postconditions imply the original postcondition, which can

be proved by structural induction. Further refinement seeks to disentangle the quantifiers 𝑖, 𝑗

with the strengthen-post-condition law again and prove that the new postcondition can imply

the original postcondition. The traverse laws can be applied with the invariant that 𝐿[𝑖] ≤ 𝐿[𝑘]
and 𝐿[𝑘] ≤ 𝐿[𝑗] should be preserved when 𝐿[𝑘] changes. The algorithm will traverse the variable

𝑗 with the invariant ∀𝑖 (𝑙 ≤ 𝑖 ≤ 𝑘 → 𝐿[𝑖] ≤ 𝐿[𝑘]) ∧ ∀𝑝 (𝑘 < 𝑝 < 𝑗 → 𝐿[𝑘] ≤ 𝐿[𝑝]). Then, the
LLM generates the code to initialize 𝑘 = 𝑙 ; 𝑗 = 𝑘 + 1 to satisfy the invariant and then assign 𝑗

with 𝑗 + 1 to decrease the variant 𝑟 − 𝑗 . Finally, the LLM uses the alternation law to compare the

𝐿[𝑘] and 𝐿[𝑗], similar to the bubble sort algorithm. The key difference is to reorder the sequence

𝐿[𝑘], 𝐿[𝑘 + 1], 𝐿[𝑗] in the ascending order to preserve the invariant. If 𝐿[𝑘] > 𝐿[𝑗], then after

swapping the value of 𝐿[𝑘] 𝑎𝑛𝑑 𝐿[𝑗] and the value of 𝐿[𝑘 +1] 𝑎𝑛𝑑 𝐿[𝑗], the new sequence will be in

the ascending order. The swap operation for the list here is just a value swap, but we acknowledge

that features such as pointers are important, and we will extend our method to consider such

features, e.g., through separate logic, in future work.

10.3 Prime Factorization Problem
Functional abstractions are a common way for programmers to manage complexity. The program

refinement specification naturally defines a functional abstraction’s input and output. Besides, the

sub-specifications in the program refinement procedure can also be regarded as small functional

abstractions. For example, shown in Figure 12, the prime factorization problem may involve

several sub-problems: prime number problem, factor number problem, and list product problem.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

Automated Program Refinement: Guide and Verify Code Large Language Model with Refinement Calculus 69:25

Fig. 12. Prime Factorization Problem with Program Refinement. It involves several sub-problems: prime
number problem, factor number problem, modulo problem and list product problem.

Refine4LLM first interacts with the user to formalize the natural language specification. The

description of the prime factorization problem is as follows:

Prime factorization is to break down the positive number into its factors until all are prime numbers.

The LLM auto-formalizes the problem with functional abstractions like IsPrime, IsFactor, and
ListProduct. Some functions in the specification may have been refined and stored in the library in

the past, and some may not. Each sub-specification has its precondition and postcondition, and they

can be split into smaller specifications like modulo until all elements defined in their preconditions

and postconditions have been refined to atomic elements in the defined language in Section 5. After

formalizing the high-level specification, Refine4LLM will first search in the library to match the

same specification and reuse the refined program if it exists. Then, a bottom-up algorithm will refine

the remaining sub-specifications, synthesize the programs, and store them in the library from the

smallest specification to the high-level specification. In this example, Refine4LLM will first refine

the smallest specification of the problem modulo 𝑚𝑜𝑑 (𝑥,𝑦), which can be used for refining the

factor number problem and prime number problem. The refined programs with the specifications

will be stored in the library and reused in future refinement.

For refining the prime factorization problem shown in Figure 12, the LLM first selects the

initialized iteration law to initialize the variable 𝑛 with 𝑁 and ListP with an empty array satisfying

the condition 𝑛 · 𝐿𝑖𝑠𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡 (𝐿𝑖𝑠𝑡𝑃) = 𝑁 . Secondly, the LLM selects the alternation law with the

condition IsFactor(i,n). Although the condition ignores the IsPrime(i,n), it can be proved that:

𝐼𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 ∧ 𝑖𝑠𝐹𝑎𝑐𝑡𝑜𝑟 (𝑖, 𝑛) → 𝑖𝑠𝑃𝑟𝑖𝑚𝑒 (𝑖) (7)

The intuitive proof is that if 𝑖 is not a prime, there must exist 𝑘 such that 𝑘 is less than 𝑖 and 𝑘

is a factor of 𝑖 . Because 𝑖 is a factor of 𝑛, and 𝑛 is a factor of 𝑁 , 𝑘 will also be a factor of 𝑁 . This

conclusion contradicts the invariant that all factors of 𝑁 that are less than 𝑖 have been considered

and put into the 𝐿𝑖𝑠𝑡𝑃 , which means 𝑖 must be a prime number if it is a factor of 𝑛. It is a non-trivial

resolution for the prime factorization algorithm to reduce the time of calculating the prime number.

Finally, the LLM assigns the 𝑛 with 𝑛/𝑝 and appends the 𝑝 to the 𝐿𝑖𝑠𝑡𝑃 to preserve the invariant.

If 𝑝 is not a factor of 𝑛, the LLM will increase the 𝑝 to keep the variant 𝑛 − 𝑝 decreasing. The

generated pseudo-code is shown in Figure 13. Overall, this example illustrates that Refine4LLM

can not only utilize the flexibility and rich knowledge of the LLM to generate better algorithms but

also use the ATPs to generate verified code.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

69:26 Yufan Cai, Zhé Hóu, David Sanan, Xiaokun Luan, Yun Lin, Jun Sun, and Jin Song Dong

Fig. 13. The pseudo-code of the prime factorization problem and the mask distribution problem.

10.4 Mask Distribution Problem
One challenge in applying program refinement to real-world scenarios is translating requirements,

typically described in natural languages, into formal specifications. This translation process is

often complex and can be a barrier to effectively using formal methods. However, the strength

of LLMs sheds light on auto-formalization, which is the ability to interpret and analyze natural

language. Leveraging this capability, Refine4LLM can minimize the effort required by users to

engage with formal tools, making these processes more accessible and user-friendly. By utilizing

the LLM’s proficiency in natural language processing, Refine4LLM can bridge the gap between

informal requirements and formal specifications, thereby streamlining the initial stages of program

refinement. To demonstrate this approach, we illustrate a real-world example:

One company operates N factories, each with a specific production capacity for manufacturing

masks. The company aims to distribute the masks equally between two countries, B and C, to
ensure fairness. Each factory’s production can only be assigned to one country for mask

specification differences. We need to determine whether assigning the factories is possible so that

each country receives an equal share of the total mask production.

With the description of the problem as the prompt, the GPT-4 [47] answers: To determine if the
masks from the factories can be evenly distributed to two countries, such that each factory’s output
is assigned to one country, we are effectively trying to see if the set of factory production capacities
can be split into two subsets where the sum of each subset is equal. This is known as the "Partition
Problem," which is a well-known problem in computer science.

The GPT-4 automatically formalizes the question as follows:

𝑄 (𝐿,𝑀) = ∃𝑠 (𝑆𝑢𝑏𝐿𝑖𝑠𝑡 (𝑠, 𝐿) ∧ 𝑆𝑢𝑚𝐿𝑖𝑠𝑡 (𝑠) = 𝑀) (8)

where L is a list containing each factory’s output number, M is the target number for one country,

and Q is a bool-type matrix to check whether M masks can be distributed to the front L factories.

This statement asks whether a subset 𝑠 of the list 𝐿 exists such that the sum of the elements in 𝑠

equals𝑀 . The recurrence relation is generated by the GPT-4 as follows:

𝑄 [𝑖] [𝑗] = 𝑄 [𝑖 − 1] [𝑗] ∨𝑄 [𝑖 − 1] [𝑗 − 𝐿[𝑖 − 1]] (9)

where 𝑄 [𝑖] [𝑗] denotes whether there exists a subset of the first 𝑖 elements that sums to 𝑗 and 𝐿[𝑘]
represents the 𝑘𝑡ℎ element in the list 𝐿. The base cases are ∀𝑖,𝑄 [𝑖] [0] = 𝑇𝑟𝑢𝑒 and ∀𝑗, 𝑄 [0] [𝑗] =
𝐹𝑎𝑙𝑠𝑒 . The recurrence relation means that if either 𝑄 [𝑖 − 1] [𝑗] is true (the sum 𝑗 can be achieved

without the 𝑖𝑡ℎ element) or 𝑄 [𝑖 − 1] [𝑗 − 𝐿[𝑖 − 1]] is true (the sum 𝑗 can be achieved by including

the 𝑖𝑡ℎ element, then 𝑄 [𝑖] [𝑗] should be true.) To prove the recurrence relation is correct based on

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

Automated Program Refinement: Guide and Verify Code Large Language Model with Refinement Calculus 69:27

the specification, we need to prove:

∃𝑠 (𝑆𝑢𝑏𝐿𝑖𝑠𝑡 (𝑠, 𝐿[0 : 𝑖]) ∧ 𝑆𝑢𝑚𝐿𝑖𝑠𝑡 (𝑠) = 𝑗) ↔
∃𝑠 (𝑆𝑢𝑏𝐿𝑖𝑠𝑡 (𝑠, 𝐿[0 : 𝑖 − 1]) ∧ 𝑆𝑢𝑚𝐿𝑖𝑠𝑡 (𝑠) = 𝑗)∨

∃𝑠 (𝑆𝑢𝑏𝐿𝑖𝑠𝑡 (𝑠, 𝐿[0 : 𝑖 − 1]) ∧ 𝑆𝑢𝑚𝐿𝑖𝑠𝑡 (𝑠) = 𝑗 − 𝐿[𝑖 − 1])
(10)

The left-hand side states that there exists a subset 𝑠 of the first 𝑖 elements of the list 𝐿 such that

the sum of the elements in 𝑠 equals 𝑗 . The right-hand side states that there are two possible ways to

achieve the sum 𝑗 using the first 𝑖 elements: (1) there exists a subset 𝑠 of the first 𝑖 − 1 elements such

that the sum of 𝑠 is exactly 𝑗 , or (2) there exists a subset 𝑠 of the first 𝑖 − 1 elements such that the

sum of 𝑠 is exactly 𝑗 − 𝐿[𝑖 − 1]. The users need to check the specification and the base cases, while

Refine4LLM can generate the program and perform the program refinement tasks automatically

with the extended traverse law shown in Figure 13. Note that the pseudo-code is not completed and

requires translation to a domain-specific language. The real-world example highlights the practical

application of Refine4LLM and illustrates its potential to make formal methods more approachable.

11 Limitations
This section discusses the limitations of our current approach and potential future improvements.

11.1 Formal Specification
Refine4LLM is primarily designed to assist LLMs in generating robust code, not to develop formal

specifications from scratch. It still relies on human input to provide formalized specifications, as is

common with most formal methods tools. However, LLM significantly reduces the manual effort

required for formalizing specifications and program refinement. While human involvement is

necessary for defining correctness, Refine4LLM accelerates the refinement process and ensures the

generated code adheres to the given specifications.

11.2 Law Selection and Code Generation
Refine4LLM heavily relies on the LLM’s ability to the refinement law selection and the associated

code generation. While Reinforcement learning (RL) techniques can enhance the law selection

and proof search, a complete decoupling of law selection from code generation could result in

inefficient or incorrect code generation. Besides, training a new LLM model for code generation

with RL for law selection may be resource-intensive. Instead, constraints in the specifications need

to guide the search, steering the synthesizer toward solutions that are not only correct but also easy

to verify. Ensuring efficient law selection and code generation remains a challenge, and further

improvements may also depend on the LLM’s ability.

On the other hand, we focus on generating executable and verifiable code for this work. We

mainly depend on the LLM’s knowledge to generate optimized algorithms to pass the test cases in

the specific time and space complexity requirements since synthesizing an optimized algorithm is

challenging and could be our future research direction.

11.3 Verification
One limitation of the current system is the lack of proof for loop termination in some cases. If a

refinement lacks such proof, we still consider the program partially correct. To address this, we

propose additional iterative refinement laws in Section 6 to reduce cases where termination proofs

are required since proving termination is a complex and often undecidable task. While this does

not fully solve the problem, it alleviates the need for explicit termination proofs in many cases.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

69:28 Yufan Cai, Zhé Hóu, David Sanan, Xiaokun Luan, Yun Lin, Jun Sun, and Jin Song Dong

11.4 Scalability
The current implementation of Refine4LLMhas scalability limitations due to the simplicity of its data

structures and refinement laws. Its performance is tied closely to the capabilities of the underlying

LLMs and automated theorem provers (ATPs). To address this, users are encouraged to interact with

the LLM actively during program refinement by selecting appropriate laws, constructing proofs,

and verifying the program’s correctness. In future work, we will include more refinement laws like

separation logic and other complex data structures. Developing more intuitive user interfaces for

interacting with LLMs and ATPs during the refinement process could also enhance usability and

user involvement, facilitating a more interactive and scalable refinement workflow.

12 Related Work
Our work is the first to combine ideas from two areas: program refinement and LLM. Refine4LLM

builds on two core ideas from prior work: program refinement, which refines the high-level

specification into executable code in several correctness-preserving steps, and mitigating LLM’s

hallucination, which involves different techniques to guide and verify LLM.

12.1 Program Refinement
As a long-standing task, program refinement can be traced back to [26, 31, 35]. The related theories [5,

44] are based on Hoare logic and the calculus of weakest preconditions. Some recent works propose

a formalization of the refinement calculus with interactive theorem provers, such as [32] for

Isabelle, and [2, 55] for Coq [6]. The goal of the development presented in [2] is to derive imperative

programs by applying validated refinement rules in proof mode. Therefore, the final program design

entangles the intermediate refinement steps and their proof of correctness. Users must specify loop

invariants in [2]. In contrast, [55] allows the specification loop bodies as input-output relations

and uses the weakest pre-specifications instead of the weakest preconditions to compute the proof

obligations. Other works utilize refinement calculus on different applications, including [28] for

compositional modeling and reasoning about reactive systems and [39] for the development of

correct software product lines on object orientation and feature-oriented programming. However,

Refine4LLM is an automated tool that leverages the creativity of LLMs and rigorous transformation

of program refinement to provide an automatic and reliable code generator.

12.2 Mitigating LLM’s hallucination
One of the critical challenges of LLMs is their tendency to hallucinate, which refers to generating

information that is not only incorrect but often fabricated specious text. Prior works have pro-

posed multiple ways to guide and verify LLMs for mitigating hallucinations. Prompting techniques

like Chain-of-Thought [63], Tree-of-Thought [66], Graph-of-Thoughts [9] have been applied to

provide example reasoning or relevant knowledge passing procedure for LLM. [37] sketches a

self-monitoring and iterative prompting way that uses formal methods to detect the hallucination

and steer the LLM to the correct specification. [16] builds the specialized prompt based on coun-

terexamples provided by model checking and conducts code debugging and repairing based on

LLMs. [10] builds Language Model Programming (LMP) to generalize prompting from pure text

to combining text and scripting. Retrieval-based methods utilize external knowledge graphs or

databases to help correct factual errors in LLMs’ outputs [42, 69]. Some work uses multiple LLMs to

solve one problem and relies on majority voting or consensus after a dialogue among the LLMs in

natural language. Some studies use multiple LLMs to generate various data, including specifications

and test cases, subsequently assessing the consistency [1, 43]. Other approaches involve using

additional LLMs to review the output of a target LLM in a format akin to a debate [68]. Compared

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

Automated Program Refinement: Guide and Verify Code Large Language Model with Refinement Calculus 69:29

to previous methods, Refine4LLM utilizes the formal verification and refinement calculus to avoid

the hallucination formally.

12.3 Functional Synthesis
The program synthesis community has proposed many approaches for functional synthesis. Syn-

thesis based on verification like [59] is an interplay of verification and synthesis in a program that

is converted into some predicates that must hold for all inputs. Counterexample Guided Inductive

Synthesis like Sketch [58] (aka CEGIS [57]) is a form of generate and check, where a synthesizer

generates candidate programs that are checked by an off-the-shelf checking procedure. Synthesis

with refinement types [49] specifies the complex properties of a program and catches errors early,

even when the program has not been completed. The associated round-trip type checking prunes

the search space efficiently at each step, and condition abduction incrementally generates programs.

Deductive synthesis systems are generally challenging since rule selection is usually tricky. The

Spiral system [50], designed for signal processing kernels, incorporates a lot of domain knowledge

into the rules and the application strategies, enabling the fully automated transformation from

high-level specifications to implementations. [23] introduces the Fiat system built on the Coq and

leverages the automation that Coq’s tactic language to provide a high degree of automation. The

recent work [12, 29] synthesizes library functions that capture common functionality from a corpus

of programs. In contrast, Refine4LLM builds high-level refinement laws of synthesizing the program

to guide and verify the LLM since the LLM has great capability for code generation.

12.4 Reinforcement Learning
Several approaches have explored the intersection of reinforcement learning (RL) and formal

methods, particularly in proof search and law selection. For instance, Chen et al. [17] applied

RL to learn heuristics for applying rules in relational verification, demonstrating the potential

for RL to guide complex decision-making processes in formal verification tasks. Additionally,

traditional synthesis techniques have often been employed alongside RL techniques. [19] introduces

Model Predictive Program Synthesis (MPPS), which utilizes program synthesis to generate guiding

programs for program synthesis guided reinforcement learning automatically. Meanwhile, [65]

formulates program synthesis as a reinforcement learning problem and proposes a novel variant of

the policy gradient algorithm that incorporates feedback from a deductive reasoning engine. Such

hybrid methods offer a way to avoid costly repeated interactions with a language model, as RL can

learn efficient rule-application patterns through trial and error. However, the core challenge of

program refinement is verifiable code generation. Whether the selected law is applicable depends

on the code generation ability, but training a new LLM with RL is resource-intensive. Therefore,

Refine4LLM that interacts with the state-of-the-art LLM offers a more approachable solution.

13 Conclusion
We have presented a tool called Refine4LLM for mostly automated generation of verified code with

LLMs, Coq, and ATPs. We formally transform the specifications into code based on our refinement

calculus and LLMs. Our approach extends the formal refinement calculus and builds active prompts

to the LLMs. Refine4LLM uses ATPs to verify the refinement condition and the code based on the

specification. Our experiments show that our method can more efficiently generate more robust

and correct code than the state-of-the-art LLMs.

Acknowledgment
This research is supported by the National Research Foundation Singapore under its AI Singapore

Programme (Award Number: AISG3-RP-2022-030).

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

69:30 Yufan Cai, Zhé Hóu, David Sanan, Xiaokun Luan, Yun Lin, Jun Sun, and Jin Song Dong

References
[1] Pranjal Aggarwal, Aman Madaan, Yiming Yang, and Mausam. 2023. Let’s Sample Step by Step: Adaptive-Consistency

for Efficient Reasoning and Coding with LLMs. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational Linguistics,

Singapore, 12375–12396. https://doi.org/10.18653/v1/2023.emnlp-main.761

[2] João Alpuim andWouter Swierstra. 2018. Embedding the refinement calculus in Coq. Science of Computer Programming
164 (2018), 37–48. https://doi.org/10.1016/j.scico.2017.04.003 Special issue of selected papers from FLOPS 2016.

[3] Anonymous. 2024. LLM aided Program Refinement. https://sites.google.com/view/refine4llm.

[4] Ralph-Johan J. Back, Abo Akademi, J. Von Wright, F. B. Schneider, and D. Gries. 1998. Refinement Calculus: A Systematic
Introduction (1st ed.). Springer-Verlag, Berlin, Heidelberg.

[5] Ralph-Johan R Back and Joakim von Wright. 1990. Refinement concepts formalised in higher order logic. Formal
Aspects of Computing 2 (1990), 247–272.

[6] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Yann Coscoy, David Delahaye, Daniel de Rauglaudre,

Jean-Christophe Filliâtre, Eduardo Giménez, Hugo Herbelin, et al. 1999. The Coq proof assistant reference manual.

INRIA, version 6, 11 (1999), 17–21.

[7] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds,

and Cesare Tinelli. 2011. Cvc4. In Computer Aided Verification: 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings 23. Springer, 171–177.

[8] Loubna Ben Allal, Niklas Muennighoff, Logesh Kumar Umapathi, Ben Lipkin, and Leandro von Werra. 2022. A

framework for the evaluation of code generation models. https://github.com/bigcode-project/bigcode-evaluation-

harness.

[9] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann,

Michał Podstawski, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler. 2024. Graph of Thoughts: Solving

Elaborate Problems with Large Language Models. Proceedings of the AAAI Conference on Artificial Intelligence 38, 16
(Mar 2024), 17682–17690. https://doi.org/10.1609/aaai.v38i16.29720

[10] Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. 2023. Prompting Is Programming: A Query Language for Large

Language Models. Proc. ACM Program. Lang. 7, PLDI, Article 186 (jun 2023), 24 pages. https://doi.org/10.1145/3591300

[11] Tabea Bordis, Tobias Runge, Alexander Kittelmann, and Ina Schaefer. 2023. Correctness-by-Construction: An Overview

of the CorC Ecosystem. Ada Lett. 42, 2 (apr 2023), 75–78. https://doi.org/10.1145/3591335.3591343

[12] Matthew Bowers, Theo X. Olausson, Lionel Wong, Gabriel Grand, Joshua B. Tenenbaum, Kevin Ellis, and Armando

Solar-Lezama. 2023. Top-Down Synthesis for Library Learning. Proc. ACM Program. Lang. 7, POPL, Article 41 (jan
2023), 32 pages. https://doi.org/10.1145/3571234

[13] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2006. What’s Decidable About Arrays?. In Verification, Model
Checking, and Abstract Interpretation, E. Allen Emerson and Kedar S. Namjoshi (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 427–442.

[14] Michael Butler and Thomas Långbacka. 1996. Program derivation using the refinement calculator. In Theorem Proving
in Higher Order Logics, Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, Joakim von Wright, Jim Grundy, and John

Harrison (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 93–108.

[15] DAVID Carrington, I Hayes, Ray Nickson, Geoffrey Watson, and Jim Welsh. 1998. A program refinement tool. Formal
Aspects of Computing 10 (1998), 97–124.

[16] Yiannis Charalambous, Norbert Tihanyi, Ridhi Jain, Youcheng Sun, Mohamed Amine Ferrag, and Lucas C. Cordeiro.

2023. A New Era in Software Security: Towards Self-Healing Software via Large Language Models and Formal

Verification. arXiv:2305.14752 [cs.SE]

[17] Jia Chen, Jiayi Wei, Yu Feng, Osbert Bastani, and Isil Dillig. 2019. Relational verification using reinforcement learning.

Proc. ACM Program. Lang. 3, OOPSLA, Article 141 (Oct. 2019), 30 pages. https://doi.org/10.1145/3360567

[18] Mark Chen et al. 2021. Evaluating Large Language Models Trained on Code. (2021). arXiv:2107.03374 [cs.LG]

[19] Yanju Chen, ChenglongWang, Osbert Bastani, Isil Dillig, and Yu Feng. 2020. Program synthesis using deduction-guided

reinforcement learning. In International Conference on Computer Aided Verification. Springer, 587–610.
[20] Koen Claessen, Reiner Hähnle, and Johan Mårtensson. 2002. Verification of hardware systems with first-order logic. In

Proceedings of the CADE-18 Workshop-Problem and Problem Sets for ATP. Citeseer.
[21] Łukasz Czajka and Cezary Kaliszyk. 2018. Hammer for Coq: Automation for dependent type theory. Journal of

automated reasoning 61 (2018), 423–453.

[22] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In International conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer, 337–340.

[23] Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam Chlipala. 2015. Fiat: Deductive Synthesis of

Abstract Data Types in a Proof Assistant. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (Mumbai, India) (POPL ’15). ACM, New York, NY, USA, 689–700. https:

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

https://doi.org/10.18653/v1/2023.emnlp-main.761
https://doi.org/10.1016/j.scico.2017.04.003
https://sites.google.com/view/refine4llm
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://doi.org/10.1609/aaai.v38i16.29720
https://doi.org/10.1145/3591300
https://doi.org/10.1145/3591335.3591343
https://doi.org/10.1145/3571234
https://arxiv.org/abs/2305.14752
https://doi.org/10.1145/3360567
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/2676726.2677006
https://doi.org/10.1145/2676726.2677006

Automated Program Refinement: Guide and Verify Code Large Language Model with Refinement Calculus 69:31

//doi.org/10.1145/2676726.2677006

[24] David Detlefs, Greg Nelson, and James B. Saxe. 2005. Simplify: a theorem prover for program checking. J. ACM 52, 3

(may 2005), 365–473. https://doi.org/10.1145/1066100.1066102

[25] Edsger W. Dijkstra. 1975. Guarded commands, nondeterminacy and formal derivation of programs. Commun. ACM 18,

8 (aug 1975), 453–457. https://doi.org/10.1145/360933.360975

[26] Edsger W Dijkstra, Edsger Wybe Dijkstra, Edsger Wybe Dijkstra, and Edsger Wybe Dijkstra. 1976. A discipline of
programming. Vol. 613924118. prentice-hall Englewood Cliffs.

[27] Hantian Ding, Varun Kumar, Yuchen Tian, Zijian Wang, Rob Kwiatkowski, Xiaopeng Li, Murali Krishna Ramanathan,

Baishakhi Ray, Parminder Bhatia, Sudipta Sengupta, Dan Roth, and Bing Xiang. 2023. A Static Evaluation of Code

Completion by Large Language Models. arXiv:2306.03203 [cs.CL]

[28] Iulia Dragomir, Viorel Preoteasa, and Stavros Tripakis. 2020. The refinement calculus of reactive systems toolset.

International Journal on Software Tools for Technology Transfer 22 (2020), 689–708.
[29] Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt, Luc Cary, Armando

Solar-Lezama, and Joshua B. Tenenbaum. 2021. DreamCoder: bootstrapping inductive program synthesis with wake-

sleep library learning (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 835–850. https:

//doi.org/10.1145/3453483.3454080

[30] Maxim Enis and Mark Hopkins. 2024. From LLM to NMT: Advancing Low-Resource Machine Translation with Claude.

arXiv:2404.13813 [cs.CL]

[31] Robert W Floyd. 1993. Assigning meanings to programs. In Program Verification: Fundamental Issues in Computer
Science. Springer, 65–81.

[32] Simon Foster, Jonathan Julián Huerta y Munive, and Georg Struth. 2020. Differential Hoare logics and refinement calculi

for hybrid systems with Isabelle/HOL. In Relational and Algebraic Methods in Computer Science: 18th International
Conference, RAMiCS 2020, Palaiseau, France, October 26–29, 2020, Proceedings 18. Springer, 169–186.

[33] GitHub. 2023. GitHub Copilot. https://github.com/features/copilot

[34] Reiner Hähnle. 2016. Quo Vadis Formal Verification? Springer International Publishing, Cham, 1–19. https://doi.org/

10.1007/978-3-319-49812-6_1

[35] Charles Antony Richard Hoare. 1969. An axiomatic basis for computer programming. Commun. ACM 12, 10 (1969),

576–580.

[36] Pei Huang, Haoze Wu, Yuting Yang, Ieva Daukantas, Min Wu, Yedi Zhang, and Clark Barrett. 2024. Towards Efficient

Verification of Quantized Neural Networks. Proceedings of the AAAI Conference on Artificial Intelligence 38, 19 (Mar.

2024), 21152–21160. https://doi.org/10.1609/aaai.v38i19.30108

[37] Susmit Jha, Sumit Kumar Jha, Patrick Lincoln, Nathaniel D. Bastian, Alvaro Velasquez, and Sandeep Neema. 2023.

Dehallucinating Large Language Models Using Formal Methods Guided Iterative Prompting. In 2023 IEEE International
Conference on Assured Autonomy (ICAA). 149–152. https://doi.org/10.1109/ICAA58325.2023.00029

[38] Samia Kabir, David N. Udo-Imeh, Bonan Kou, and Tianyi Zhang. 2024. Is Stack Overflow Obsolete? An Empirical

Study of the Characteristics of ChatGPT Answers to Stack Overflow Questions. In Proceedings of the CHI Conference on
Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’24). Association for Computing Machinery, New York,

NY, USA, Article 935, 17 pages. https://doi.org/10.1145/3613904.3642596

[39] Maximilian Kodetzki, Tabea Bordis, Tobias Runge, and Ina Schaefer. 2024. Partial Proofs to Optimize Deductive

Verification of Feature-Oriented Software Product Lines. In Proceedings of the 18th International Working Conference
on Variability Modelling of Software-Intensive Systems (Bern, Switzerland) (VaMoS ’24). Association for Computing

Machinery, New York, NY, USA, 17–26. https://doi.org/10.1145/3634713.3634714

[40] Laura Kovács and Andrei Voronkov. 2013. First-order theorem proving and Vampire. In International Conference on
Computer Aided Verification. Springer, 1–35.

[41] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is Your Code Generated by ChatGPT Really

Correct? Rigorous Evaluation of Large Language Models for Code Generation. In Thirty-seventh Conference on Neural
Information Processing Systems. https://openreview.net/forum?id=1qvx610Cu7

[42] Ariana Martino, Michael Iannelli, and Coleen Truong. 2023. Knowledge Injection to Counter Large Language Model

(LLM) Hallucination. In The SemanticWeb: ESWC 2023 Satellite Events, Catia Pesquita, Hala Skaf-Molli, Vasilis Efthymiou,

Sabrina Kirrane, Axel Ngonga, Diego Collarana, Renato Cerqueira, Mehwish Alam, Cassia Trojahn, and Sven Hertling

(Eds.). Springer Nature Switzerland, Cham, 182–185.

[43] Marcus J. Min, Yangruibo Ding, Luca Buratti, Saurabh Pujar, Gail Kaiser, Suman Jana, and Baishakhi Ray. 2024. Beyond

Accuracy: Evaluating Self-Consistency of Code Large Language Models with IdentityChain. In The Twelfth International
Conference on Learning Representations. https://openreview.net/forum?id=caW7LdAALh

[44] Carroll Morgan. 1990. Programming from Specifications. Prentice-Hall, Inc., USA.
[45] C. Morgan, K. Robinson, and P. Gardiner. 1988. On the Refinement Calculus. Techllical Monograph. https://web.

comlab.ox.ac.uk/files/3391/PRG70.pdf

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

https://doi.org/10.1145/2676726.2677006
https://doi.org/10.1145/2676726.2677006
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1145/360933.360975
https://arxiv.org/abs/2306.03203
https://doi.org/10.1145/3453483.3454080
https://doi.org/10.1145/3453483.3454080
https://arxiv.org/abs/2404.13813
https://github.com/features/copilot
https://doi.org/10.1007/978-3-319-49812-6_1
https://doi.org/10.1007/978-3-319-49812-6_1
https://doi.org/10.1609/aaai.v38i19.30108
https://doi.org/10.1109/ICAA58325.2023.00029
https://doi.org/10.1145/3613904.3642596
https://doi.org/10.1145/3634713.3634714
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=caW7LdAALh
https://web.comlab.ox.ac.uk/files/3391/PRG70.pdf
https://web.comlab.ox.ac.uk/files/3391/PRG70.pdf

69:32 Yufan Cai, Zhé Hóu, David Sanan, Xiaokun Luan, Yun Lin, Jun Sun, and Jin Song Dong

[46] OpenAI. [n. d.]. Introducing GPTs. https://openai.com/blog/introducing-gpts.

[47] OpenAI and co. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

[48] Ruchika Pandey, Prabhat Singh, Raymond Wei, and Shaila Shankar. 2024. Transforming Software Development:

Evaluating the Efficiency and Challenges of GitHub Copilot in Real-World Projects. arXiv:2406.17910 [cs.SE] https:

//arxiv.org/abs/2406.17910

[49] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program Synthesis from Polymorphic Refinement

Types. SIGPLAN Not. 51, 6 (June 2016), 522–538. https://doi.org/10.1145/2980983.2908093

[50] Markus Püschel, José M. F. Moura, Jeremy R. Johnson, David A. Padua, Manuela M. Veloso, Bryan Singer, Jianxin Xiong,

Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen, Robert W. Johnson, and Nicholas Rizzolo. 2005. SPIRAL:

Code Generation for DSP Transforms. Proc. IEEE 93, 2 (2005), 232–275. https://doi.org/10.1109/JPROC.2004.840306

[51] Bernhard Reus. 2016. The WHILE-Language. Springer International Publishing, Cham, 29–45. https://doi.org/10.1007/

978-3-319-27889-6_3

[52] Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog, M Pawan Kumar, Emilien

Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang, Omar Fawzi, et al. 2023. Mathematical discoveries

from program search with large language models. Nature (2023), 1–3.
[53] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal

Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron

Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,

Thomas Scialom, and Gabriel Synnaeve. 2023. Code Llama: Open FoundationModels for Code. arXiv:2308.12950 [cs.CL]

[54] Tobias Runge, Ina Schaefer, Loek Cleophas, Thomas Thüm, Derrick Kourie, and Bruce W. Watson. 2019. Tool Support

for Correctness-by-Construction. In Fundamental Approaches to Software Engineering, Reiner Hähnle and Wil van der

Aalst (Eds.). Springer International Publishing, Cham, 25–42.

[55] Boubacar Demba Sall, Frédéric Peschanski, and Emmanuel Chailloux. 2019. A Mechanized Theory of Program

Refinement. In Formal Methods and Software Engineering: 21st International Conference on Formal Engineering Methods,
ICFEM 2019, Shenzhen, China, November 5–9, 2019, Proceedings (Shenzhen, China). Springer-Verlag, Berlin, Heidelberg,
305–321. https://doi.org/10.1007/978-3-030-32409-4_19

[56] Stephan Schulz. 2002. E - a Brainiac Theorem Prover. AI Commun. 15, 2,3 (aug 2002), 111–126.
[57] Armando Solar-Lezama. 2018. Lecture 10: Introduction to Functional Synthesis. Available at https://people.csail.mit.

edu/asolar/SynthesisCourse/Lecture10.htm.

[58] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodík. 2008. Sketching concurrent data structures. In

Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language Design and Implementation, Tucson, AZ,
USA, June 7-13, 2008. 136–148. https://doi.org/10.1145/1375581.1375599

[59] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. 2010. From program verification to program synthesis. In

Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010, Madrid,
Spain, January 17-23, 2010. 313–326. https://doi.org/10.1145/1706299.1706337

[60] Wouter Swierstra and Joao Alpuim. 2016. From Proposition to Program: Embedding the Refinement Calculus in

Coq. In Functional and Logic Programming: 13th International Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016,
Proceedings 13. Springer, 29–44.

[61] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation vs. experience: Evaluating the usability

of code generation tools powered by large language models. In Chi conference on human factors in computing systems
extended abstracts. 1–7.

[62] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li, and Steven C. H. Hoi. 2023. CodeT5+: Open

Code Large Language Models for Code Understanding and Generation. arXiv:2305.07922 [cs.CL]

[63] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. 2022.

Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural Information Processing
Systems 35 (2022), 24824–24837.

[64] Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. 2024. Hallucination is Inevitable: An Innate Limitation of Large

Language Models. arXiv:2401.11817 [cs.CL] https://arxiv.org/abs/2401.11817

[65] Yichen Yang, Jeevana Priya Inala, Osbert Bastani, Yewen Pu, Armando Solar-Lezama, and Martin Rinard. 2021. Program

synthesis guided reinforcement learning for partially observed environments. Advances in neural information processing
systems 34 (2021), 29669–29683.

[66] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik Narasimhan. 2023. Tree

of Thoughts: Deliberate Problem Solving with Large Language Models. Advances in Neural Information Processing
Systems 36 (2023). Publisher Copyright: © 2023 Neural information processing systems foundation. All rights reserved.;

37th Conference on Neural Information Processing Systems, NeurIPS 2023 ; Conference date: 10-12-2023 Through

16-12-2023.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

https://openai.com/blog/introducing-gpts
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2406.17910
https://arxiv.org/abs/2406.17910
https://arxiv.org/abs/2406.17910
https://doi.org/10.1145/2980983.2908093
https://doi.org/10.1109/JPROC.2004.840306
https://doi.org/10.1007/978-3-319-27889-6_3
https://doi.org/10.1007/978-3-319-27889-6_3
https://arxiv.org/abs/2308.12950
https://doi.org/10.1007/978-3-030-32409-4_19
https://people.csail.mit.edu/asolar/SynthesisCourse/Lecture10.htm
https://people.csail.mit.edu/asolar/SynthesisCourse/Lecture10.htm
https://doi.org/10.1145/1375581.1375599
https://doi.org/10.1145/1706299.1706337
https://arxiv.org/abs/2305.07922
https://arxiv.org/abs/2401.11817
https://arxiv.org/abs/2401.11817

Automated Program Refinement: Guide and Verify Code Large Language Model with Refinement Calculus 69:33

[67] Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tianwei Zhang,

Fei Wu, and Guoyin Wang. 2024. Instruction Tuning for Large Language Models: A Survey. arXiv:2308.10792 [cs.CL]

https://arxiv.org/abs/2308.10792

[68] Yifan Zhang, Jingqin Yang, Yang Yuan, and Andrew Chi-Chih Yao. 2023. Cumulative Reasoning With Large Language

Models. arXiv preprint arXiv:2308.04371 (2023).
[69] Ruochen Zhao, Xingxuan Li, Shafiq Joty, Chengwei Qin, and Lidong Bing. 2023. Verify-and-Edit: A Knowledge-

Enhanced Chain-of-Thought Framework. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). Association for

Computational Linguistics, Toronto, Canada, 5823–5840. https://doi.org/10.18653/v1/2023.acl-long.320

[70] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang,

Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan

Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023. A Survey of Large Language Models.

arXiv:2303.18223 [cs.CL]

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 69. Publication date: January 2025.

https://arxiv.org/abs/2308.10792
https://arxiv.org/abs/2308.10792
https://doi.org/10.18653/v1/2023.acl-long.320
https://arxiv.org/abs/2303.18223

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 The Basic Refinement Calculus

	3 Motivating Example
	3.1 Guide the LLM
	3.2 Failure Feedback
	3.3 Optimizing the Algorithm with Binary Search
	3.4 Learning Strategies for Extending Refinement Calculus

	4 Overview
	5 Refine4LLM's Languages
	5.1 The Specification Language
	5.2 The Program Language

	6 Refine4LLM's Refinement Calculus
	6.1 Law Learning Algorithm
	6.2 Extended Laws

	7 Formal System: Refine and Verify
	7.1 Program Refinement System
	7.2 Verification System with ATPs

	8 Informal System: Interaction with LLM
	8.1 Specification Formalization
	8.2 Code Generation with LLMs

	9 Evaluation
	9.1 Experiment Setting
	9.2 Experiment Results

	10 Case Studies
	10.1 Square Root Algorithm
	10.2 Sorting Algorithm
	10.3 Prime Factorization Problem
	10.4 Mask Distribution Problem

	11 Limitations
	11.1 Formal Specification
	11.2 Law Selection and Code Generation
	11.3 Verification
	11.4 Scalability

	12 Related Work
	12.1 Program Refinement
	12.2 Mitigating LLM's hallucination
	12.3 Functional Synthesis
	12.4 Reinforcement Learning

	13 Conclusion
	References

