
1

Deep Learning for Coverage-Guided Fuzzing:
How Far Are We?

Siqi Li, Xiaofei Xie, Yun Lin, Yuekang Li, Ruitao Feng, Xiaohong Li, Weimin Ge, and Jin Song Dong

Abstract—Fuzzing is a widely-used software vulnerability discovery technology, many of which are optimized using
coverage-feedback. Recently, some techniques propose to train deep learning (DL) models to predict the branch coverage of an
arbitrary input owing to its always-available gradients etc. as a guide. Those techniques have proved their success in improving
coverage and discovering bugs under different experimental settings. However, DL models, usually as a magic black-box, are
notoriously lack of explanation. Moreover, their performance can be sensitive to the collected runtime coverage information for training,
indicating potentially unstable performance. In this work, we conduct a systematic empirical study on 4 types of DL models across 6
projects to (1) revisit the performance of DL models on predicting branch coverage (2) demystify what specific knowledge do the
models exactly learn, (3) study the scenarios where the DL models can outperform and underperform the traditional fuzzers, and (4)
gain insight into the challenges of applying DL models on fuzzing. Our empirical results reveal that existing DL-based fuzzers do not
perform well as expected, which is largely affected by the dependencies between branches, unbalanced sample distribution, and the
limited model expressiveness. In addition, the estimated gradient information tends to be less helpful in our experiments. Finally, we
further pinpoint the research directions based on our summarized challenges.

Index Terms—Deep Learning, Testing, Fuzzing, Mutation, Coverage.

✦

1 INTRODUCTION

Fuzzing is an indispensable key technology to locate vul-
nerabilities in binary programs, which has been used in
many applications such as network communications [8],
web development [10], and browser kernels [11]. Given a
binary program, fuzzers feed it with randomly generated
inputs. A potential vulnerability is located if any inputs can
either cause it to crash [12] or trigger it to violate general
specification (e.g., use after free, heap buffer overflow, mem-
ory leak, etc.) [13].

Most fuzzers pursue to achieve maximized branch cov-
erage within limited budget, with the assumption that ex-
ploring more program branches can potentially lead to the
discovery of more vulnerabilities. To this end, many fuzzers
adopt various strategies, usually including SE (Symbolic
Execution)-based fuzzing [14] and guided fuzzing [16], to
cover more new branches. SE-based fuzzing considers the
branch coverage as a constraint-solving problem. Given a
branch, it transforms the branch conditions into a set of

• Siqi Li, Xiaohong Li, and Weimin Ge are with College of Intelligence and
Computing, Tianjin University, Tianjin, China.
E-mail:siqili@tju.edu.cn, xiaohongli@tju.edu.cn, gewm@tju.edu.cn

• Yun Lin are with Shanghai Jiao Tong University and National University
of Singapore.

• Jin Song Dong are with School of Computing, National University of
Singapore.
E-mail:dcsliny@nus.edu.sg, dcsdjs@nus.edu.sg

• Xiaofei Xie is with School of Computing and Information Systems,
Singapore Management University, Singapore.
E-mail:xfxie@smu.edu.sg

• Ruitao Feng and Yuekang Li are with School of Computer Science and
Engineering, Nanyang Technological University.
E-mail: rtfeng@ntu.edu.sg, yuekang.li@ntu.edu.sg

• Yun Lin (dcsliny@nus.edu.sg) and Ruitao Feng (rtfeng@ntu.edu.sg) are
the corresponding authors.

path conditions and leverage SMT solvers (e.g., Z3 [9],
CVC4 [17], etc.) to solve the solution as an input. In contrast,
guided fuzzing regards the branch coverage problem as an
optimization problem. Given a branch and a seed input, it
measures how promising the input can cover the branch.
Based on the measurement, an evolutionary algorithm (e.g.,
genetic algorithm [18], hill-climbing algorithm [19], simu-
lated annealing algorithm [20], etc.) is used to select and mu-
tate a seed to optimize the branch coverage. Comparing to
SE-based fuzzing which has stronger assumptions on (1) the
feasibility of retrieving sophisticated path conditions and
(2) the solvability of the path conditions fed to SMT solver,
guided fuzzing only requires additional instrumentation to
evaluate the measurement. Thus, it is adopted in almost all
the fuzzers in practice [1], [21], [22], [23], [24], [34], [35].

As an optimization solution, the effectiveness of guided
fuzzing largely depend on the estimated gradients (or feed-
back) in the fuzzing search space. However, it is challenging
to ensure (1) the estimated feedback is available or accurate
and (2) the search space is continuous and smooth. For
example, for each covered branch, AFL (American Fuzzy
Lop) [1] maintains a queue of inputs covering it. As for
the feedback, AFL will allocate different computational re-
sources to evolve a test input i by evaluating (1) how likely
new the branches i discovers and (2) how efficient i can be
executed. Such heuristic-based feedback can miss covering a
lot of hard albeit important branches. A increasing number
of research is proposed to improve the feedback mechanism
during fuzzing (e.g., AFLFast [37], Steelix [25], Angora,
Greyone [26]).

Recently, some researchers proposed to adopt the DL
(Deep Learning) models to estimate the input-evolving
gradients towards branch coverage [6], [32], [33]. Given a
dataset of test inputs X, labelled by its coverage information

on the set of branches B in a subject program, a deep learn-
ing model is trained to learn a mapping function f : X→ B.
Given b = f(x) where x ∈ X, and b is a vector where each
dimension bi represents whether the branch is covered or
not by the input x. Given that neural networks are usually
equipped with the property of continuity and smoothness,
the partial derivative ∂f(bi)

∂xi
can be naturally used as the

feedback towards updating an arbitrary input x to cover
any branches bi. Neuzz is a representative work of learning
the mapping relation from test input to branch coverage,
which uses a fully connected neural network as the mapping
relation. SampleFuzz [32] and GanFuzz [33] are different
from the work of Neuzz and they use LSTM and GAN as
the mapping relation, respectively.

More specifically, consider the example in Listing 1,
where the rare branch (i.e., the one in line 5) can be success-
fully covered by Neuzz. In Listing 1, the input consists of
two variables a and b. Given the effect of power function
(line 1), there is a narrow range of a and b to sample
(i.e., a + b ∈ (0, log3 2)) to exercise the true branch in
line 5. By learning the branch coverage when a + b is in
other range (e.g., (−∞, 0) and (1,+∞)), Neuzz can train
a neural network f(.), extrapolating the relation between
the input (i.e., a and b) and the branch coverage. Updating
a ← a + η ∂f(b5)

∂a and b ← b + η ∂f(b5)
∂b allows us to calculate

an input to cover the true branch in line 5, where b5 = 1
represents the true branch at line 5 is covered.

1 z = pow(3, a+b);
2 if(z<1){
3 return 1;
4 }
5 else if(z<2){
6 //vulnerability
7 return 2;
8 }
9 else if(z<4){

10 return 4;

Listing 1: An example which can be solved by Neuzz [6].

Novel as those approaches, they use off-the-shelf mod-
els (e.g., fully connected network, LSTM, and GAN) in
computer vision or natural language processing commu-
nity to estimate the semantic program runtime behaviors.
Although DL-based fuzzing has achieved success [6], [7], it
is still unclear how those models perform when fitting the
behaviors of non-continuous program operation (e.g., mod,
function, checking string-containing, etc.). Moreover, com-
paring to samples, such as images or sentences in a dataset,
the types of program branches are far more diversified. For
example, exercising one branch may only require satisfying
one constraint (shallow branch) while exercising another
can require satisfying over 10 constraints (deep branch).
Thus, it is also unclear whether a unified deep learning
model can be expressive enough to capture the semantics of
all the branches. Last, many inherent issues of deep learning
models (e.g., over-fitting, quality of training data, etc.) are
still unexplored.

To better understand the effect of deep learning models
for the coverage-guided fuzzing, in this work, we conduct
a systematic empirical study on four types of deep learning
models across six projects with the following research goals:

• revisit the performance of various DL models on predict-
ing branch coverage on a large scale of subject programs,

• demystify what coverage information the DL models can
exactly extrapolate,

• study the scenarios where the deep models can outper-
form and underperform the traditional fuzzers, and

• gain insight into the challenges of applying deep models
on fuzzing.

The results of our large-scale empirical study reveal that
the deep learning models is effective in limited scenarios,
which are largely restrained by training data imbalance,
dependant relation among branches, and the insufficient
expressiveness of the state-of-the-art models. Moreover, we
observe that carelessly applying the model gradients can
sometimes cause a phenomenon of contradicting feedback
during the fuzzing. Consequently, the estimated gradients
by the models towards covering a branch can be incorrect
in many scenarios. Based on our findings, we propose a
general guideline of applying DL models on fuzzing, and
further pinpoint some research directions based on our
summarized challenges.

In summary, we make the following main contributions:

• Large-scale study. We conduct a large-scale empiri-
cal study on how the deep learning can improve the
coverage-guided fuzzers. Specifically, we conduct a sys-
tematic comparison 1) among various DL-based fuzzers
and 2) across deep-learning and non deep-learning
fuzzers. We publish all the experimental settings and
results in [47].

• Findings. We find that many limitations to apply the
off-the-shelf DL models on guided fuzzing. Specifically,
1) Despite that the DL models may predict well on
the coverage of those trivial branches (i.e., the branches
covered by almost all the inputs), they are challenging
to predict that of those non-trivial branches (i.e., the
branches that are only covered by a few or not cov-
ered); 2) the feedback generated by the DL models can
provide limited impact on fuzzing, i.e., the feedback
information is not accurate in terms of the higher-
ranked gradient bytes for mutating.

• Summarized challenges. Based on the results, we sum-
marize the main challenges that cause the poor per-
formance to predict the coverage of input including 1)
imbalanced training dataset in terms of branch cover-
age (i.e., label), 2) dependency relation among branches
(i.e., dependant label problem), and 3) the insufficient
expressiveness of the state-of-the-art DL models. In
addition, we also provide some preliminary strategies
to mitigate some of the challenges.

• Research directions. We further pinpoint the future
research directions on applying deep learning/ma-
chine learning approaches under the fuzzing scenarios,
including designing a better embedding of labelled
branch coverage, designing more expressive deep
learning model structures, and developing a hybrid
learning strategy combining DL-based fuzzing with
symbolic execution and traditional guided-fuzzing
strategies.

2

Mutation

Seed
Queue

Seed
Selection

Deterministic
Mutation

Random
Mutation

Coverage
AnalysisCrash?

New
Coverage?

Seed

Gradient-guided
Mutation

Gradient
Calculation

Failed
Tests

Y

N

Y

Coverage-guided Fuzzing

DL-based Fuzzing

RQ2
Accuracy of DL Model

RQ3
Guidance of Gradient

RQ4
Challenges

RQ1
Effectiveness

Benchmarks

Fuzzers

● nm
● objdump
● readelf
● size
● strip
● zlib

● AFL
● FairFuzz
● Neuzz
● MTFuzz
● Angora
● Vuzzer

Models
● FNN
● RNN
● Seq2Seq

Training

Fig. 1: Overview of our study. DL-based fuzzing can be regarded as a “plugin” into the coverage-guided fuzzing (gree
region), which takes runtime coverage information as the dataset to train a deep learning model, and use the model
gradients to guide mutation (blue region). In this study, we ask research questions (RQ1-4) revolving around different
aspects of DL-based fuzzing (purple region), i.e., overall effectiveness on coverage (RQ1), the model prediction accuracy
(RQ2), the effectiveness of gradient to provide feedback (RQ3), and the summarized challenges (RQ4).

2 OVERVIEW

Figure 1 shows an overview of (1) how DL-based fuzzing is
integrated into general coverage-guided fuzzing, and (2) the
rationale to design our study (through research questions)
based on such a structure.

Structure: DL-based fuzzing as another coverage-guided
fuzzing The general workflow of existing coverage-guided
fuzzing framework is showed in green region. During the
fuzzing process, a seed will be selected from a seed queue to
mutate new test inputs. If any input can cause the program
to crash, it will be kept as a failure-inducing case revealing
the vulnerability. Otherwise, it will be added into the seed
queue if discovering any new program branches. The whole
process will continue until a user-defined budget runs out.
Different fuzzers will define their own ways to mutate the
seeds. For example, AFL fuzzer can use deterministic and
random mutation, and FairFuzz can protect some bytes in
some seeds to avoid being mutated.

DL-based fuzzing (shown in blue region) is integrated
into such coverage-guided fuzzing by (1) taking the runtime
coverage as the training data to train a deep learning model
and (2) providing feedback to guide mutation via the cal-
culated gradients from the model. As shown in the blue re-
gion, the DL-based fuzzing process consists of training data
collection, model training, and gradient calculation as the
feedback to mutate seed inputs. Different DL-based fuzzers
can use different learning strategies with different types of
deep learning models (e.g., fully connected network, RNN,
etc.).

Empirical study design: Therefore, we design our empir-
ical study by asking research questions revolving around
different aspects of DL-based fuzzing. The aspect-question
relations are shown by the links between the blue and
purple region in Figure 1).

• RQ1: The effectiveness of DL-based fuzzers. Com-
pared with traditional fuzzers, how effective are DL-
based fuzzers in maximizing code coverage? How do

different DL models impact the performance of the DL-
based fuzzers?

• RQ2: The accuracy of DL models. How accurate are
the DL models on approximating the target program’s
branching semantics, i.e., the accuracy of predicting the
branch coverage of a given test input? And, under
what scenarios can DL models achieve high coverage-
prediction accuracy?

• RQ3: The feedback used to guide fuzzing. Since the
gradient of the DL model is used as the feedback for
guided fuzzing, whether the models with high coverage-
prediction accuracy can really result in high coverage
performance? And, what program-specific semantic infor-
mation does the gradient (i.e., feedback) represent?

• RQ4: The challenges of DL-based fuzzing. What are the
main challenges that limit the performance of the DL-
based fuzzers? What are the potential remedies?

To answer the above questions, we choose 6 benchmarks,
5 fuzzers (3 for traditional fuzzing and 2 for DL-based
fuzzing), and 3 types of deep learning models for this study,
as showed in the yellow region in Figure 1). The details of
fuzzers are shown in Table 1.

2.1 Subject benchmarks
To evaluate the effectiveness of DL-based fuzzers, we select
6 widely-used benchmarks (i.e., nm, objdump, readelf, size,
strip and zlib) in Binutils (version 2.24). We select those
benchmarks because: 1) they are widely used to evalu-
ate both traditional fuzzing [1], [43] and the DL-based
fuzzing [6], [7], [32] and 2) the inputs of these programs
have specific syntax checking that is expected to be aware
by the models in DL-based fuzzers. More details about the
number of lines of code and the number of covered edges of
initial seeds are shown in Table 2.

2.2 Selected fuzzers
Traditional fuzzers. We select 4 traditional fuzzers: AFL [1],
Fairfuzz [43], Angora [22] and Vuzzer [30]. For AFL, we

3

TABLE 1: An overview of the fuzzers. The fuzzers with the asteroid ∗ are the investigated fuzzers in this study.
Fuzzers Type Configuration/Model

Specification Description

AFL∗ Traditional default
AFL [1] is fuzzer which uses genetic algorithm to keep generating inputs by mutating bytes
on existing seed inputs. In this mode, AFL generate inputs by repetitively mutating through
all the input bytes of an individual seed input.

-d (i.e., remove det-
erministic mutation) In this mode, AFL generate inputs by randomly mutating some bytes of an individual seed input.

FairFuzz∗ Traditional /

FairFuzz [43] can verify and learn the dynamic taint relation between certain positional bytes
of an individual seed to cover a (rare) branch. The learned relation between input bytes
and branch coverage can allow FairFuzz to avoid mutating relevant bytes when exploring the
children branches of those branches.

Angora∗ Traditional / Angora [22] is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase
branch coverage by solving path constraints without symbolic execution.

Vuzzer∗ Traditional / In order to maximize coverage and explore deeper paths, Vuzzer [30] leverage control and dataflow
features based on static and dynamic analysis to infer fundamental properties of the application.

Neuzz∗ DL-based 3-layer fully
connected network

Neuzz [6] takes as input as a vector of seed bytes and generate output as a vector of branch
coverage. Each dimension in the output vector indicates whether a branch is covered or not.
By selecting a few dimensions on the output vector, indicating the intent that we would like
some branches to be covered (or not covered), Neuzz calculate the input bytes with their la-
rgest gradients to update.

MTFuzz∗ DL-based 5-layer fully
connected network

Different from Neuzz which uses seed bytes as model input, MTFuzz [7] first learns a “input
embedding” based on diverse training samples for multiple related tasks (e.g., predicting di-
fferent types of coverage, etc.). Then, the input embedding vector is
used to predict the branch coverage, as what Neuzz does.

Sample-
Fuzz DL-based Seq2seq Samplefuzz [32] uses RNN to learn the same generative statistical input model: it can be used

to generate new inputs based on the probability distribution of the learning model.
The Neural
Augmented
AFL

DL-based RNN The fuzzer [45] using RNN proposes a learning technique that uses neural networks to learn the
patterns in the input file for fuzzy exploration in the past to guide future fuzzy exploration.

FuzzGuard DL-based CNN
FuzzGuard [46] uses a deep learning method to predict whether the seed file is reachable to
the targeted test target before executing an input, and helps targeted gray box fuzzing to
filter invalid seeds to improve the efficiency of fuzzing.

TABLE 2: Benchmark Information
Benchmark nm objdump readelf size strip zlib

#Lines 1678 3424 11463 611 2643 1432
Edges 1326 2700 2321 1108 3092 584

use two configurations: the default setting including the de-
terministic mutation stage and the random setting without
deterministic mutation (denoted as AFL-d).

Note that instead of comparing with all state-of-the-
art fuzzing techniques (such as AFL-fast [37], AFLGo [38],
Hawkeye [28] and LTL-Fuzzer [27], etc.), we choose AFL,
Fairfuzz, Angora and Vuzzer as baselines in our experi-
ments because their mechanisms are more suitable to be
compared with the DL-based fuzzing techniques. The rea-
son is that the selected baselines leverage taint information
to guide the mutation process, which is similar to how the
DL-based fuzzing techniques work. Therefore, comparing
the DL-based fuzzing techniques against the selected base-
lines is more meaningful than comparing against general
fuzzing techniques and the experiments can provide infor-
mative and conclusive evidence (see Section 3 for details).
DL-based fuzzers. For the DL-based fuzzers, we select
Neuzz [6] and MTFuzz [7], which are the state-of-the-art DL
based fuzzing approaches, and more importantly, publicly
available. In addition, the deep neural networks in these
two tools are used to capture the relationship between
the input bytes and the internal branches of the program.
For the study, we also select four popular deep learning
models, i.e., the the feedforward neural network (FNN) with
3 layers [6], the FNN with 5 layers [7], the RNN [44], and
the Seq2Seq [32].

2.3 Study Design

2.3.1 RQ1 (Effectiveness of DL-based fuzzers)

In this paper, we use the integrated tool [48] with the
principle of AFL’s afl-showmap to measure the edge cov-
erage in the experiment. Edge coverage is a commonly used
metric [15], [43] to measure the performance of fuzzing. We
use edge coverage as the measurement for the same reason
justified in [43]. Specifically, the program can be represented
as a control flow graph (CFG), where each node of the graph
represents a basic block and edges represent transitions be-
tween basic blocks. Existing fuzzing techniques often evolve
(or mutate) test cases based on the feedback of the covered
edges. Hence, edge coverage is a direct metric to measure
the performance of fuzzing.

Moreover, to make the comparison fair, we equip all the
fuzzers with the same initial seeds. We run each fuzzer
for 12 hours and repeat the experiment for 5 times. We
then calculate an average of the edge coverage for the
comparison.

2.3.2 RQ2 (Accuracy of DL models)

Accuracy is an important indicator in deep learning for
measuring the performance of the trained model. For the
DL-based fuzzing, it is important to train an accurate model
that can precisely capture the relationship between the input
space (i.e., input bytes) and the program space (i.e., the
program branches). Intuitively, the DL-based fuzzer can
only be effective if the learned model is accurate. Hence, we
investigate whether the relationship can be really captured
by the DL models. We formally define the trained surrogate
model as follows:

4

Definition 1 (Surrogate Model). A surrogate model is a deep
neural network f : X → C, where x ∈ X is a test
input and c ∈ C is a coverage vector that represents
the coverage of each branch. If cb is 1, the branch b is
covered. Otherwise, b is not covered.

Given a branch b, and an input x, we denote model’s
coverage prediction with x on b as f(x)[b].

Moreover, we use p(.) to denote the ground truth map-
ping from the test inputs to the branch coverage: p : X→ C.
Intuitively, p(.) represents the behavior of a target program
p. We use Bp to represent the set of branches, covered at least
once by test inputs, in p Similarly, we denote groundtruth
coverage of x on the branch b ∈ Bp as p(x)[b].

We equip Neuzz and MTFuzz with four trained models
(FNN-3, FNN-5, RNN and Seq2Seq). We follow the setting
described in [6], [7] to collect the training data. Specifically,
we first run AFL for an hour to generate the test inputs.
Then, we randomly split them into a training dataset (80%)
and testing a dataset (20%). We measure the performance of
each model by (1) the accuracy (denoted as Acc) and (2) the
recall (denoted as Rec). We define both as follows:
Definition 2 (Acc). Given a test set X for the program p, the

test accuracy (Acc) of the DL model f is defined as:

Acc =

∑
b∈Bp

BAccb

|Bp|

BAccb =
|{x|∀x ∈ X, f(x)[b] == p(x)[b]}|

|X|

where BAccb defines the branch-wise accuracy of the model
on the branch b.

For the trained model, the output of “covered” (i.e., 1) is
treated as positive. We define the recall (Rec) to evaluate the
performance on predicting the branches that are covered,
i.e., whether the model really knows which branches can be
executed for a given input.
Definition 3 (Rec). Given a test set X for the program p, the

overall recall (Rec) of the DL model f is defined as:

Rec =
|{(x, b)|∀x ∈ X,∀b ∈ Bp, f(x)[b] == 1}|
|{(x, b)|∀x ∈ X,∀b ∈ Bp,p(x)[b] == 1}|

In short, the branch-wise accuracy measures how likely
the model’s prediction aligns with the ground-truth branch
coverage, in contrast, the recall measures how accurate the
model’s prediction on the covered branches.

2.3.3 RQ3 (Effectiveness of gradient feedback)
For DL-based fuzzers, the trained model that captures the
relationship between input bytes and program branches will
be used to provide the feedback for the mutation, making
it more likely to cover new branches. Therefore, we will
further investigate whether the learned model can provide
helpful feedback for fuzzing. Specifically, we consider the
gradients that are used to provide the feedback in Neuzz
and MTFuzz. We first select various models with different
accuracy to evaluate their impact on the fuzzing effective-
ness. Intuitively, the more accurate the model, the more use-
ful the feedback it can provide. Then, we further study the
impact of the ranking of input bytes based on the gradient
feedback. We select bytes with different rankings to mutate

TABLE 3: Differences in the coverage of different models
running different times

Projects Fuzzers Max Min Standard deviation

nm

AFL 4,146 4,162 6.52
AFL-d 9,783 8,864 357.68

FairFuzz 4,997 4,775 100.03
Angora 6,237 5,973 23.17
Vuzzer 4,301 4,018 37.42
Neuzz 4,416 4,025 178.83

MTFuzz 4,997 3,924 601.61

objdump

AFL 5,218 5,103 52.52
AFL-d 8,545 8,291 121.77

FairFuzz 5,672 5,483 85.10
Angora 6,132 5,765 64.93
Vuzzer 5,314 5,212 79.80
Neuzz 5,335 4,967 170.10

MTFuzz 6,829 5,487 758.62

readelf

AFL 6,066 6,043 13.74
AFL-d 13,391 11,507 834.66

FairFuzz 8,665 7,883 300.29
Angora 7,812 7,433 43.92
Vuzzer 7,935 7,677 78.39
Neuzz 9,457 7,854 662.47

MTFuzz 9,119 8,374 417.22

size

AFL 3,306 3,161 56.85
AFL-d 4,839 4,675 72.24

FairFuzz 4,045 3,583 195.02
Angora 4,006 3,509 158.35
Vuzzer 3,928 3,630 132.17
Neuzz 4,242 3,811 183.44

MTFuzz 4,515 3,851 490.80

strip

AFL 6007 5840 68.09
AFL-d 9,708 9,567 62.16

FairFuzz 7,444 6,952 184.67
Angora 7,472 6,537 200.78
Vuzzer 7,549 6,472 213.56
Neuzz 7,431 5,942 797.01

MTFuzz 7,132 4,916 991.55

zlib

AFL 1789 1663 57.26
AFL-d 2,023 1,963 24.22

FairFuzz 1,879 1,837 16.38
Angora 1,853 1,793 20.17
Vuzzer 1,809 1,620 88.71
Neuzz 1,805 1,641 81.79

MTFuzz 1,963 1,811 77.95

the seed inputs and evaluate the fuzzing performance. The
assumption is that the higher ranked bytes should achieve
better results.

2.3.4 RQ4 (Challenges)
We qualitatively analyze the results where the DL models
show limited effectiveness. Then, we simplify the programs
and design a set of benchmarks to replicate those poor
performance, which can be used to evaluate the coming DL-
based fuzzers in the SE/Security community. Furthermore,
we propose some preliminary strategies to mitigate some of
these challenges.

3 STUDY RESULTS

In this section, we will introduce the experimental results to
answer the 4 research questions highlighted in Section 2.

3.1 RQ1: Effectiveness of DL-based Fuzzers
We evaluate the effectiveness of DL-based fuzzers by com-
paring the edge coverage with the traditional fuzzers. Fig-
ure 2 shows the average results of edge coverage in 12 hours.
Based on the results, we have the following observation:

5

0 2 4 6 8 10
time (hour)

1000
2000
3000
4000
5000
6000
7000
8000
9000

ed
ge

 N
.O

.
AFL
AFL-d
FairFuzz
Neuzz
MTfuzz
Angora
Vuzzer

(a) nm

0 2 4 6 8 10
time (hour)

3000

4000

5000

6000

7000

8000

ed
ge

 N
.O

.

(b) objdump

0 2 4 6 8 10
time (hour)

0

2000

4000

6000

8000

10000

12000

ed
ge

 N
.O

.

(c) readelf

0 2 4 6 8 10
time (hour)

1000

1500

2000

2500

3000

3500

4000

4500

ed
ge

 N
.O

.

(d) size

0 2 4 6 8 10
time (hour)

3000

4000

5000

6000

7000

8000

9000

ed
ge

 N
.O

.

(e) strip

0 2 4 6 8 10
time (hour)

1000

1200

1400

1600

1800

2000

ed
ge

 N
.O

.

(f) zlib

Fig. 2: The branch coverage of different fuzzers running for 12 hours

• Large performance overhead caused by deterministic
mutation strategy. AFL-d (without deterministic muta-
tion) significantly outperforms other fuzzers, while the
default AFL (with deterministic mutation) underforms
the other fuzzers. It indicates that deterministic mutation
strategy takes a large overhead on the performance of
coverage.

• Limited improvement of DL models. Deep learning
does not introduce obvious improvement as expected.
Specifically, MTFuzz and Neuzz only outperform AFL,
which largely suffers from the negative impact of the de-
terministic mutation strategy. However, their performance
is comparable with FairuFuzz and much worse than AFL-
d. We will illustrate the reasons in Section 3.4.

• MTFuzz trumps Neuzz. Comparing two DL-based
fuzzers, MTFuzz achieves better results, potentially indi-
cating that the input embedding learned through multi-
task learning by MTFuzz has positive impact on the
performance of the coverage.

• Angora slightly outperforms other traditional fuzzers.
Considering the results of traditional fuzzers, we are
surprised that AFL-d significantly outperforms others, in-
dicating that the random mutation (without deterministic
mutation) is much efficient. In addition, Angora overall
slightly outperforms other fuzzers, especially in nm and
objdump.

We compared the results of multiple repeated experi-
ments on the same programs. Table 3 shows the maximum,
minimum, and standard deviation coverage comparison
among the fuzzers for each program. We found that the
results of AFL default mode are more stable, while others
such as that of multiple AFL-d mode experiment are more
changeable. The reason lies in that AFL-d and DL-based
fuzzers adopt more randomness (e.g., through random mu-

tation and model weights initialization) in their fuzzing
process. Note that the results of Neuzz and MTFuzz are not
exactly same as the results reported in the original paper
because of two reasons: 1) the unavoidable randomness
of the fuzzing process and 2) the methods for calculating
edge coverage are different. Neuzz and MTFuzz calculate
edge coverage by checking the trace bits data structure in
AFL, while we use afl-showmap to count the edge cov-
erage in this paper. The results of afl-showmap are more
precise since afl-showmap will perform extra calibration
when counting the edge coverage. Directly obtaining the
result from trace bits could have redundancy. Thus, the
edge coverage results reported in the Neuzz and MTFuzz
papers are generally higher.

Conclusion: In this study, we observe that the per-
formance of DL-based fuzzers do not significantly
outperform other fuzzers. Overall, the AFL default
mode does not perform as well as others and AFL-
d outperforms the other approaches in covering more
program branches.

3.2 RQ2: The accuracy of DL models

To further investigate the performance of DL-based fuzzers,
we conduct a fine-grained analysis on the model accu-
racy (see definition in Section 2.3.2). Specifically, we use
Neuzz and MTFuzz to train deep learning models (with 100
epochs) from the collected test inputs generated by AFL in
one hour. Then, we evaluate their overall model accuracy
(Definition 2) and overall recall (Definition 3).

Table 5 shows the results. We can observe that both
Neuzz and MTFuzz can achieve high model accuracy al-
beit low model recalls. Specifically, Neuzz achieves 92.47%,

6

TABLE 4: The Overall accuracy of different models on the projects with Neuzz.
nm objdump readelf

Model FNN-3 FNN-5 Seq2seq RNN FNN-3 FNN-5 Seq2seq RNN FNN-3 FNN-5 Seq2seq RNN
Acc 92.47 93.13 72.63 92.24 95.01 95.27 59.45 94.00 96.15 95.83 77.69 95.42
Rec 55.47 53.44 19.01 58.60 61.45 65.37 16.08 59.79 51.97 51.26 20.04 51.61

strip size zlib
Model FNN-3 FNN-5 Seq2seq RNN FNN-3 FNN-5 Seq2seq RNN FNN-3 FNN-5 Seq2seq RNN

Acc 88.07 89.33 59.98 90.01 89.87 88.97 72.00 88.34 84.77 83.83 73.06 83.61
Rec 61.36 63.15 14.15 62.38 63.37 57.55 18.83 56.71 41.00 39.50 12.43 40.23

TABLE 5: Results of accuracy on different projects (%)
nm objdump readelf strip size zlib

Neuzz Acc 92.47 95.01 96.15 88.07 89.87 84.77
Rec 55.47 61.45 51.97 61.36 63.37 41.00

MTFuzz Acc 91.23 94.65 95.49 89.79 89.32 87.33
Rec 57.06 59.84 50.82 62.76 56.97 36.72

(a) Accuracy (b) Recall

Fig. 3: The impact of training data distribution on accura-
cy/recall of each branch. Each point indicate a branch. In
terms of overall model accuracy, the overall branch-wise
accuracy is very high when a branch is either rarely covered
(e.g., between 0 and 0.2) or almost always covered (e.g.,
between 0.8 and 1). In contrast, the branches with coverage
frequency between 0.2 and 0.8 have much lower accuracy.
In terms of recall, the branches with high recall are usually
because they are “easy” branches. For the branches that are
less covered by training data, the recall is low.

95.01% and 96.15% accuracy on nm, objdump and readelf, re-
spectively. In contrast, Neuzz and MTFuzz can only achieve
63.37% and 62.76% respectively, as their best recall.
High overall accuracy and effect of majority votes. We ob-
serve that the model tends to predict 0 (i.e., the branch is not
covered) for most branches, just because most of branches
are less covered or uncovered. Thus, the trained model is
more likely to predict “uncover” label for any branches,
which significantly suppress those branches can be covered
by some test inputs. As a result, the model suffers from
low recall, i.e., with limited performance on predicting the
covered branches. The above investigation indicates that
the statistical measurement used in the loss function of
deep learning model may miss important causal program
relation. As a result, the model can lack the capability of
predicting the most interested branches during fuzzing.
Imbalanced training dataset. Moreover, we further found
that the training dataset are very imbalanced regarding the
labels (i.e., branches). Figure 3 shows the results of Neuzz
on the project readelf (More results could be found in our
website [47]). Each dot in the figure represents one branch in

the program. The X axis shows the frequency of the branch
to be covered. For example, 0.0 means that the branch is
never covered while 1.0 means that the branch is covered in
all training data. The Y axis shows the accuracy of predicting
each branch. We can see that the training data is highly
biased, most branches are either frequently covered or very
difficult to cover (e.g., most dots are located in the upper
left or upper right corner). During fuzzing, some shallow
branches can be easily covered, which occupy the majority
of the training/testing set. In contrast, some deep branches
(probably the most interested branches) occupy the minority
of the training/testing set. For the latter, the model has very
poor performance of predicting their coverage.
Model performance of different neural networks. We also
evaluate the performance of different neural networks on
the same project. We replace the model architecture of
Neuzz with other architectures and measure the accuracy.
As shown in Table 4, Seq2Seq achieves the worst results
while other models have similar performance. Seq2seq is a
model for input and output variable-length tasks, and it is
precisely because of this feature that it has a wide range of
application scenarios, such as neural machine translation,
text summarization, speech recognition, text generation, etc.
However, the deep learning task studied in this paper is
a multi-label problem that performs multi-branch coverage
prediction for input sequences of indeterminate lengths, so
Seq2seq performs very poorly on such research problems.

Conclusion: We observe that DL-based fuzzers can often
suffer from the problem of imbalanced training data,
which makes the model predict branches as “uncovered”
blindly, simply based on statistical evidence.

3.3 RQ3: Feedback from neural networks

Furthermore, we study the effectiveness of the neural net-
work to provide the guidance for the mutation. Specifi-
cally, we conduct two experiments to evaluate 1) whether
the model with higher/lower overall prediction accuracy
can achieve better/worse coverage performance? and 2)
whether the model with higher overall prediction accuracy
can provide correct feedback to guide mutation?

3.3.1 Coverage with the models with different accuracy.
For each project, we first train a Neuzz model for 100 epochs
until it achieves a high accuracy on the testing dataset (the
accuracy of 95.0% in this study), denoted as Model95. We
choose Neuzz as it is simple to configure comparing to
MTFuzz while two fuzzers have comparable performance.
Then, we adopt the mutation testing technique [5] on
Model95 to randomly generate a set of models with different

7

TABLE 6: The number of edges covered by mutating differ-
ent bytes after 12 hours

Bytes nm objdump readelf size strip zlib
Top-64 4330 5504 9250 3142 6042 1724

Second-64 4025 5609 9286 3605 6098 1664
Bottom-64 4092 5433 8474 3361 6013 1675

accuracy on the testing dataset. We sample the models with
accuracy of 45%, 60%, 75%, denoted as Model45, Model60,
and Model75. In addition, we create a dummy model, which
adopt a random strategy which mutate some bytes randomly
on seeds. We equip Neuzz with those models as a Neuzz
variant. Each run of a Neuzz variant takes for 5 hours, and
we conduct 5 runs for each variant.

Figure 4 shows the results of different Neuzz variants
on readelf program. Readers can see [47] for the results of
more programs, which are similar to the results in Figure 4.
Overall, we observe little correlation between the model
accuracy and the coverage performance. Model75 can out-
perform Model95, and Model45 is no worse than Model60.
Even the dummy network can have comparable results with
Model95 after fuzzing for three hours. The results indicate
that the model provides limited or less significant feedback
even if it achieves high model prediction accuracy.

3.3.2 Correctness of the feedback provided by the neural
network
DL-based fuzzers adopt the gradient to identify key bytes
to mutate. The feedback is provided in the form of reported
bytes to mutate on a given seed, and each byte is ranked by
the gradient score. In order to fully evaluate the quality of
feedback, we further modified Neuzz so that it can only use
the feedback generated by the model to mutate1. We design
multiple experiments to let Neuzz use feedback generated
from the top K most important bytes (Top-K), the second
K most important bytes (Second-K) and K least important
bytes (Bottom-K). In this study, we let K be 64.

Table 6 shows the result on the covered branches by
different Neuzz variants for 12 hours. We can see that the
provided feedback is overall effective, as the feedback of
Top-64 outperforms Second-64 and Bottom-64 in general.
Nevertheless, the improvement is limited in project like
size. Through experimental data we further found that the
top-ranked bytes in the gradient computed by the neural
network do not always align with the really important bytes,
which we will illustrate in the next subsection.

Conclusion: In the current DL-based fuzzers, the neural
network models provides effective feedbacks to guide
the mutations. Nevertheless, the improvement some-
times is not significant in some projects.

3.4 RQ4: Technical challenges for DL-based fuzzing

To further understand the challenges of DL-based fuzzers,
in this section, we conduct a more detailed qualitative
analysis by demonstrating several examples simplified from
our study, where neural network models are challenging

1. Neuzz combines gradient and random strategy to mutate [6].

0 1 2 3 4 5
time (hour)

5000

6000

7000

8000

9000

10000

11000

ed
ge

 N
.O

.

Accuracy-45
Accuracy-60
Accuracy-75
Accuracy-95
Without_neural_network

Fig. 4: The influence of different accuracy neural networks
on the Neuzz

to predict the coverage of a test input. The challenges
include dependant labels, model over-generalization, and
model inexpressiveness. For each challenge, we describe
its impact and propose some of its preliminary remedy.
Further potential systematic solutions will be discussed in
Section 3.5.

3.4.1 Dependent labels
Given a conventional deep learning model f : X → Y
where X represents the input space where Y represents the
label space, the dimensions of any y ∈ Y are assumed
to be independent. Nevertheless, such an assumption can
hardly be held when branch coverage is used as the label.
The reason lies in that the coverage of a non-root branch
always depends on the coverage of its parent branch. Such
dependant labels can cause (1) unbalanced the training
dataset and (2) contradicting gradients (or feedback).

1 int status = 0;
2 else if (str[10] == ’F’) {
3 status = 1;
4 if (str[11] == ’u’) {
5 status = 2;
6 if (str[12] == ’z’)
7 status = 3;
8 else
9 status = 4;

10 }
11 }

Listing 2: Example for data imbalance and unreliable gradi-
ents

Listing 2 shows a simplified example where dependant
labels happen. The input is a string, which will be trans-
formed into a model input vector where each dimension
represents a character. There are 6 branches in Listing 2, and
we use bl,p to denote the p (true or false) branch defined
on line l. For example, b2,true represents the true branch
defined in line 2, i.e., from line 2 to line 3. Thus, we have
output vector of length of 6 in this example, where four
of them are involved in the control dependency relation.
Figure 5 shows the details.

We have counted this type of label-dependent situation
in the real world. Taking the Benchmark we use as an
example, we make the following definition:
Definition 4 (Dependent branch). If a branch has sibling

branches or sub-branches, the dependent branches of the

8

b2,true

b2,false

b4,true

b4,false

b6,true

b6,false

str[0]

str[1]

str[10]

str[11]

...

str[12]

...

...

...

...

...

...

Fig. 5: A deep learning model applied to predict the cover-
age of an input string in Listing 2. The solid lines represent
the feedforward relation of the network, and the dashed
lines represent the dependant relation between the dimen-
sions of the output layers.

TABLE 7: The proportion of dependent branches in the
actual project

nm objdump readelf size strip zlib
Number
of Labels 1,064 1,742 2,211 814 1,705 582

Number of
Dependent

Labels
425 823 1,237 251 959 141

Ratio (%) 39.94 47.24 55.95 30.83 56.25 24.23

branch include sub-branches, sibling branches, and sub-
branches of sibling branches.

Since Neuzz and MTFuzz use the data after running AFL for
a period of time as the training set, we calculated the ratio
of dependent branches (labels with dependencies) in the
seeds used for training to all training branches (all labels)
on each benchmark. The data in Table 7 shows that there are
dependencies among many labels in the training set data
used by Neuzz and MTFuzz.

Imbalanced data. Here, we have the label relations such as
b6,true = 1 → b4,true = 1 as b6,true is control-dependant on
b4,true. Moreover, such dependency is transitive. As a result,
the inputs with label b6,true = 1 will always be with label
b4,true = 1 and b2,true = 1. Such an asymmetric relation
causes the number of inputs with label b6,true = 1 is smaller
than that with label b4,true = 1 and b2,true = 1. The deeper
the branch, the larger the gap.

Sampling arbitrary string with a traditional guided-
fuzzing can cause huge training data imbalance on labels
b6,true = 1, b4,true = 1, and b2,true = 1. Thus, we con-
trol the “balance level” of the training inputs to exercise
above labels and observe their impact on the model pre-
diction accuracy on testing inputs. Given a set of branches
B = {b1, b2, ..., bn} and a set of training inputs I , let the
set of training inputs exercising bi be I(bi) ⊂ I , we let the
balance level of I on B be |I(b1)| : |I(b2)| : ... : |I(bn)|.
Here, we compare the branch-wise prediction accuracy
when sampling inputs exercising b2,true, b4,true, and b6,true
with different balance level from (8:4:1 to 1:1:1). Table 8
preliminarily shows that more balanced training data leads
to more accurate model prediction accuracy. As the distri-
bution trend of training samples is gradually balanced, the

TABLE 8: Model prediction accuracy with changed balance
level

Balance level b2,true b4,true b6,true
8:4:1 91.2% 56.2% 53.2%
6:3:1 90.8% 58.4% 52.9%
3:2:1 90.2% 62.1% 53.7%
2:2:1 91.7% 63.0% 55.8%
1:1:1 94.6% 66.7% 61.3%

prediction accuracy of the included labels is improved to a
certain extent. However, in the real program environment,
the relationship between program branches is complex, and
the situations between program branches are full of tricks.
Adjusting the training samples of two unbalanced labels
often leads to an unbalanced proportion of some other
branch labels, for example, for two branch labels with an
inclusion relationship, if the number of positive samples of
the inner label is increased, the number of positive samples
of the outer label will also increase.

We compare the precision of the feedback from these
two models as follows: given a test input “...FAB...” that
covers b2,true, we aim to cover the branch b4,true. Then we
use the gradient to identify the key bytes (should be ‘A’)
that should be more important for covering b4,true. With the
original model (i.e., 3:2:1), we found that the character ‘A’
has small gradient (5.7 ∗ 10−28) and is ranked as the 13th
important byte. With the improved model (i.e., 1:1:1), the
gradient of ‘A’ is increased (0.096) and is the 3rd important
byte, indicating that high-quality model is helpful.

Contradicting gradients. Given a branch (i.e., label) bi and
an input position xj , DL-based fuzzing can update xj to
cover bi by updating xj = xj + α bi

xj
where α is the learning

rate. In practice, covering a target branch requires covering
a sequence of its parent branches (as the path condition),
denoted by bi1, bi2, ..., bik. Here k is the number of parent
branches. Therefore, we can have k gradients to update an
input position. Our observation is that those k gradients can
contradict with each other if we are to cover an uncovered
branch in the training dataset.

Still with the example in Figure 5, assuming we have the
training inputs for all the labels except b6,true = 1. In other
words, the training inputs cover all the branches except
for the branch b6,true. Given the input position x[10] =‘F’,
x[11] =‘u’, x[12] =‘z’, we have label b6,false = 0, b4,true = 1,
and b2,true = 1. To switch b6,false = 0 to b6,false = 1
(i.e., uncover the true-branch on line 6) while preserving
b4,true = 1, and b2,true = 1, the model will provide two
conflicted solutions: (1) to switch b6,false = 0, the model
suggests to change x[10] to the character other than ‘F’;
in the meantime, (2) to preserve b4,true = 1, the model
suggests to preserve x[10].

Here is the observation. Our experiment shows that
given an input x[10] =‘F’, x[11] =‘u’, x[11] =‘z’ the gradient
∂b6,false

∂x[10] = 0.72, indicating to change the value of x[10] to
a larger character like ‘G’ or ‘H’ (according to the order
of ASCII code), In contrast, the gradient ∂b2,true

∂x[10] = ∂b4,true

∂x[10]
= 0, indicating to preserve the value of x[10]. The same
phenomenon happens to x[11]. We observe that this is a
side effect caused by miss-considering the label dependency,
which is non-trivial in DL-based fuzzing techniques.

9

3.4.2 Over-generalization
Deep learning model can extrapolate the label to the neigh-
bours of a training sample. For example, given an input
x =[1, 1, 1] with label 1, a well learned model can predict
an input x′ =[1.02, 0.99, 1] with label 1 as x′ is the neigh-
bour of x, However, branch conditions sometimes require
exact match, where the model can makes incorrect predic-
tion. Listing 3 shows an example where the model over-
generalize the coverage prediction. The model will predict
the branch b2,true = 1 with an input x with x[10] of value
‘D’ and ‘E’. It is because ‘D’ and ‘E’ have similar ASCII code
with the correct value ‘F’.

A remedy for this situation is to apply data augmenta-
tion. More specifically, we feed inputs by perturbing original
training samples so that x[10] can be of value ‘D’ and ‘E’.
By data augmentation, we improve the model test accuracy
(i.e., branch-wise accuracy) for predicting b2,true in Listing 3
from 80.2% to 88.7%.

1 int status = 0;
2 if (str[10] == ’F’) {
3 status = 1;
4 }
5 else {
6 status = 2;
7 }

Listing 3: An example of over-generalized model

3.4.3 Limited model expressiveness
Finally, we observe that the model can hardly fit the se-
mantics such as substring, contains, prefix, etc. Those oper-
ations require the model make the prediction independent
of the input position, as shown in Listing 4. In contrast, the
existing deep learning model structures (e.g., DNN, CNN,
Transformer, etc.) are highly dependent on the positional
information. The model accuracy to predict branch b2,true
is only 47.7%. Moreover, the longer the training input, the
worse the branch-wise prediction accuracy.

1 int status = 0;
2 else if (str.find(’ABC’) == ’True’) {
3 status = 1;
4 }
5 else {
6 status = 2;
7 }

Listing 4: An example of limited expressive model

3.5 Practice and Research Direction
Based on the qualitative and quantitative analysis, the
state-of-the-art DL-based fuzzing trains and uses the deep
learning model, often with the model assumptions violated.
Therefore, in this section, we first propose a practice to apply
deep learning model for coverage-guided fuzzing, with
maximum conformance to the model training/application
assumption. Then, we pinpoint a few research directions in
the future.

3.5.1 Practice
As shown in Figure 6, we design the practice mainly for
addressing the problem of imbalanced training dataset(see

Runtime Seed

Coverage

Dataset

Training

Data Balancing

Coverage-

prediction

Model

Trustworthiness

Checking

Ready Dataset

Sampling via Active Learning

No

Mutation with

Feedback via

Gradients

Mutation with

Other Feedback

Yes

Fig. 6: Practice to apply deep learning in fuzzing. The
green entities are the suggested enhanced steps for DL-
based fuzzing.

discussion in Section 3.4.1). In Figure 6, the white boxes
(i.e., processes) and ellipses (i.e., artifacts) are inherent in
DL-based fuzzing. We enhance the traditional workflow by
introducing the process of data balancing, trusthworthiness
checking, and an optional active learning (the dashed line
from the training process to runtime seed coverage dataset).

Data balancing. When training the deep learning models,
we can reweight the training samples. For example, we
can increase the number by mutating the seeds covering
a branch with less training samples (i.e., data augmentation).
A balancing measurement can be proposed to guide such
processes. While a perfect balance may not be achieved, a
relative balance can still improve the model performance.

Trustworthiness checking. The goal is to distinguish when
we can believe in the decision of neural network model.
A measurement of trustworthiness is required to avoid the
model to make unreliable predication on some branches. For
example, a neural network usually requires a considerable
number of samples to achieve a good performance, which
means rare-branches (i.e., the branches covered by fewer
training inputs) cannot benefit well from the model. The
measurement can be defined with heuristics or some other
indicators, e.g., the degree of contradicting gradients (see
Section 3.4.1). Once an untrustful decision is detected, we
can switch to other more reliable or traditional feedback to
apply mutation.

Active learning. Last, to avoid over-generalization (see
Section 3.4.2), model learning process can keep refining, by
sampling or generating informative inputs to fine-tune the
model. For neural network model, we can achieve the clas-
sification decision boundaries via many methodologies [2],
[3], [4]. Thus, we can at least force the fuzzer to generate
training inputs lies on the model decision boundaries, so
that retraining the model can be more effective.

3.5.2 Research Directions

In this section, we pinpoint three technical challenges to
address.

Independent output dimensions. First, dependant output
dimensions need to be addressed, either through (1) build-
ing several models each of which is with independent
outputs, or (2) apply dimension reduction techniques (e.g.,
SVD, LDI, etc.) to convert a dependant output vector to an
independent (or less dependant) vector.

10

More expressive model structure. Second, the semantic
of program behaviors is far more complicated and less
continuous in the input space, comparing to images and
sentences in the AI community. In addition, the existing
models (DNN, CNN, Transformer) are position-dependant,
which cannot well address the position-dependant branch
condition such as the containment and substring relation
for string. Thus, a more sophisticated model structure may
be required in the future.

Hybrid learning for DL-based fuzzing. Finally, the limits of
DL-based fuzzing should be well explored. We can be aware
of the limit either through proactive analysis (e.g., defining
heuristics) or runtime detection (verifying the effectiveness
of feedback during the fuzzing process). Thus, exploring
an effective hybrid fuzzing strategy of symbolic execution,
random, and DL-based fuzzing is also required.

4 THREAT TO VALIDITY

The selected subjects could be a threat that may cause a
bias when evaluating the effectiveness of fuzzers in RQ1.
We selected 6 projects that are widely used in the other
work including traditional fuzzing and DL-based fuzzing.
The randomness in the fuzzing and the model training is
a threat. To mitigate this factor, we repeat the evaluation
for multiple times to calculate the average. Another threat
is the test cases collected for training the model, which
may affect the results of the model accuracy (RQ2) and the
feedback (RQ3). We follow the setting of Neuzz and collect
the test cases that are generated by AFL. Nevertheless, we
believe that our experimental results have clearly shown the
limitation of the existing DL-based fuzzers, which provide
pinpoint the research directions for the future research.

5 RELATED WORK

Fuzzing Technique In recent years, many state-of-the-art tech-
nologies have been proposed. AFL [1] is one of the repre-
sentative CGF fuzzers, which provides guidance for other
fuzzers. For example, Gan [21] et al. reduce path conflicts
by providing more accurate coverage information while still
maintaining low instrument overhead. Böhme [37] et al.
propose AFLFast to use Markov model to facilitate fuzzing.
It selects the seed of the low-frequency execution path, and
then mutates it to cover more code to find errors. Another
variant of AFL is AFLGo [38], which selects seeds whose
execution paths are closer to the target path and mutates
them to trigger target errors. Many people also improve
AFL from both dynamic and static analysis perspectives.
Chen [29] et al. use dynamic techniques such as colorful
taint analysis to find bugs. Rawat [30] et al. use both static
and dynamic analysis techniques to obtain control flow
and data flow information to improve the effectiveness of
mutations. In addition, there are some fuzzers that use
other novel technologies. MOPT [41] uses a customized
particle swarm optimization algorithm (PSO) to find the
optimal selection probability distribution of the operator
from the perspective of fuzzy validity. You [42] et al. propose
a fuzzing technology called ProFuzzer, which automati-
cally discovers input fields and their semantics through
a lightweight random fuzzing process called ”probing” to

guide the online evolution of seed mutations. We choose
AFL and the fuzzer guided by the input-branch correlation:
FairFuzz as the controlled group for the research.

Application of Learning in Fuzzing. Recently, researchers
start to adopt machine learning techniques in fuzzing. For
example, Skyfire [31] proposed by Wang et al. uses a data-
driven seed generation method to automatically extract
semantic information through PCFG (Probabilistic Context-
Related Grammar, which contains semantic rules and gram-
matical features). The Samplefuzz [32] proposed by Gode-
froid et al. uses neural network-based statistical learning
technology to automatically generate input grammar from
sample inputs. It proposes and evaluates a PDF object
automatic learning generation model based on seq2seq re-
current neural network. The GANFuzz [33] studied by Hu
et al. estimates the basic distribution function of industrial
network protocol messages by training the generated model
in the generative confrontation network, thereby learning
the protocol grammar. Paduraru [36] et al. used different file
formats to cluster the corpus. By treating the corpus of the
input file as a series of characters, the generative model of
each cluster can be learned through seq2seq. DeepFuzz [39]
learned the correct C program syntax from the original GCC
test suite through the seq2seq model. The model continu-
ously generates grammatically correct C programs accord-
ing to the learned grammar. LEFT [40] built a model based
on reinforcement learning to fuzz test the LTE functions
in Android phones. We mainly investigated fuzzers using
models which learn input and branch coverage correlation,
and conducted fine-grained research.

6 CONCLUSION

In this paper, we conducted an empirical study towards
understanding the effect of deep learning in coverage-
guided fuzzing. Our results show that deep learning has
not brought improvements in fuzzing as we expected. The
in-depth study shows that deep neural networks cannot
learn the behavior of programs well, making the feedback
on the mutation inaccurate during the fuzzing. We further
conducted fine-grained case studies to analyze the chal-
lenges and propose some preliminary strategies to mitigate
these challenges. Finally, we pinpoint the future research
directions on improving DL-based fuzzing.

7 ACKNOWLEDGEMENT

This research is supported in part by the Minister
of Education, Singapore (21-SIS-SMU-033, T1-251RES1901,
T2EP20120-0019, MOET32020-0004), the National Research
Foundation, Singapore, and Cyber Security Agency of Sin-
gapore under its National Cybersecurity Research and De-
velopment Programme (Award No. NRF-NCR TAU 2021-
0002) and A*STAR, CISCO Systems (USA) Pte. Ltd and
National University of Singapore under its Cisco-NUS Ac-
celerated Digital Economy Corporate Laboratory (Award
I21001E0002)

REFERENCES

[1] M. Zalewski, “American fuzzy lop: a security-oriented fuzzer,” URl:
http://lcamtuf.coredump.cx/afl/, 2010.

11

[2] W. He, B. Li, and D. Song, “Decision boundary analysis of adversar-
ial examples,” in International Conference on Learning Representations,
2018.

[3] A. Mandelbaum and D. Weinshall, “Distance-based confi-
dence score for neural network classifiers,” arXiv preprint
arXiv:1709.09844, 2017.

[4] R. Yousefzadeh and D. P. O’Leary, “Investigating decision bound-
aries of trained neural networks,” arXiv preprint arXiv:1908.02802,
2019.

[5] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao et al., “Deepmutation: Mutation testing of deep
learning systems,” in 2018 IEEE 29th International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 2018, pp. 100–111.

[6] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana, “Neuzz:
Efficient fuzzing with neural program smoothing,” in 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 2019, pp. 803–817.

[7] D. She, R. Krishna, L. Yan, S. Jana, and B. Ray, “Mtfuzz: fuzzing with
a multi-task neural network,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, pp. 737–749.

[8] H. Gascon, C. Wressnegger, F. Yamaguchi, D. Arp, and K. Rieck,
“Pulsar: Stateful black-box fuzzing of proprietary network pro-
tocols,” in Conference on Security and Privacy in Communication
Networks (SECURECOMM), 2015.

[9] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in
International conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2008, pp. 337–340.

[10] A. Takanen, J. D. Demott, C. Miller, and A. Kettunen, Fuzzing for
software security testing and quality assurance. Artech House, 2018.

[11] C. Chen, B. Cui, J. Ma, R. Wu, J. Guo, and W. Liu, “A systematic
review of fuzzing techniques,” Computers & Security, vol. 75, pp.
118–137, 2018.

[12] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and D. Boneh,
“Hacking blind,” in 2014 IEEE Symposium on Security and Privacy.
IEEE, 2014, pp. 227–242.

[13] C. S. Păsăreanu and W. Visser, “A survey of new trends in
symbolic execution for software testing and analysis,” International
journal on software tools for technology transfer, vol. 11, no. 4, pp. 339–
353, 2009.

[14] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution.” in NDSS, vol. 16,
no. 2016, 2016, pp. 1–16.

[15] Y. Li, Y. Xue, H. Chen, X. Wu, C. Zhang, X. Xie, H. Wang,
and Y. Liu, “Cerebro: Context-aware adaptive fuzzing for effective
vulnerability detection.” In Proceedings of the 2019 13th Joint Meeting
on Foundations of Software Engineering, 2019, pp. 533–544.

[16] G. Zhang, X. Zhou, Y. Luo, X. Wu, and E. Min, “Ptfuzz: Guided
fuzzing with processor trace feedback,” IEEE Access, vol. 6, pp.
37 302–37 313, 2018.

[17] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović,
T. King, A. Reynolds, and C. Tinelli, “Cvc4,” in International Confer-
ence on Computer Aided Verification. Springer, 2011, pp. 171–177.

[18] D. Whitley, “A genetic algorithm tutorial,” Statistics and computing,
vol. 4, no. 2, pp. 65–85, 1994.

[19] M. De La Maza and D. Yuret, “Dynamic hill climbing,” AI expert,
vol. 9, no. 26, p. 26, 1994.

[20] P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in
Simulated annealing: Theory and applications. Springer, 1987, pp. 7–
15.

[21] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “Collafl:
Path sensitive fuzzing,” in 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 2018, pp. 679–696.

[22] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled
search,” in 2018 IEEE Symposium on Security and Privacy (SP). IEEE,
2018, pp. 711–725.

[23] Y. Li, S. Ji, C. Lv, Y. Chen, J. Chen, Q. Gu, and C. Wu, “V-
fuzz: Vulnerability-oriented evolutionary fuzzing,” arXiv preprint
arXiv:1901.01142, 2019.

[24] B. S. Pak, “Hybrid fuzz testing: Discovering software bugs
via fuzzing and symbolic execution,” School of Computer Science
Carnegie Mellon University, 2012.

[25] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu,
“Steelix: program-state based binary fuzzing,” in Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, 2017,
pp. 627–637.

[26] S. Gan, C. Zhang, P. Chen, B. Zhao, X. Qin, D. Wu, and Z. Chen,
“{GREYONE}: Data flow sensitive fuzzing,” in 29th {USENIX}
Security Symposium ({USENIX} Security 20), 2020, pp. 2577–2594.

[27] Meng R, Dong Z, Li J, Beschastnikh I, Roychoudhury A. “Linear-
time Temporal Logic guided Greybox Fuzzing.” in Proceedings of
the IEEE/ACM 44th International Conference on Software Engineering
(ICSE), 2022.

[28] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and Y. Liu, “Hawk-
eye: Towards a desired directed grey-box fuzzer,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 2095–2108.

[29] K. Chen, D. Feng, P. Su, and Y. Zhang, “Black-box testing based on
colorful taint analysis,” Science China Information Sciences, vol. 55,
no. 1, pp. 171–183, 2012.

[30] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and
H. Bos, “Vuzzer: Application-aware evolutionary fuzzing.” in
NDSS, vol. 17, 2017, pp. 1–14.

[31] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed
generation for fuzzing,” in 2017 IEEE Symposium on Security and
Privacy (SP). IEEE, 2017, pp. 579–594.

[32] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine
learning for input fuzzing,” in 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2017,
pp. 50–59.

[33] Z. Hu, J. Shi, Y. Huang, J. Xiong, and X. Bu, “Ganfuzz: a gan-based
industrial network protocol fuzzing framework,” in Proceedings of
the 15th ACM International Conference on Computing Frontiers, 2018,
pp. 138–145.

[34] Y. Lin, Y. Ong, J. Sun, G. Fraser, and J.S. Dong, “Graph-based seed
object synthesis for search-based unit testing” in Proceedings of the
29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2021.

[35] Y. Lin, J. Sun, G. Fraser, Z. Xiu, T. Liu, and J.S. Dong, “Recovering
Fitness Gradients for Interprocedural Boolean Flags in Search-
Based Testing” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2020.

[36] C. Paduraru and M.-C. Melemciuc, “An automatic test data gener-
ation tool using machine learning.” in ICSOFT, 2018, pp. 506–515.

[37] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based
greybox fuzzing as markov chain,” IEEE Transactions on Software
Engineering, vol. 45, no. 5, pp. 489–506, 2017.

[38] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury,
“Directed greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp. 2329–
2344.

[39] K. Böttinger and C. Eckert, “Deepfuzz: Triggering vulnerabilities
deeply hidden in binaries,” in International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment. Springer,
2016, pp. 25–34.

[40] K. Fang and G. Yan, “Emulation-instrumented fuzz testing of
4g/lte android mobile devices guided by reinforcement learning,”
in European Symposium on Research in Computer Security. Springer,
2018, pp. 20–40.

[41] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and R. Beyah,
“{MOPT}: Optimized mutation scheduling for fuzzers,” in 28th
{USENIX} Security Symposium ({USENIX} Security 19), 2019, pp.
1949–1966.

[42] W. You, X. Wang, S. Ma, J. Huang, X. Zhang, X. Wang, and
B. Liang, “Profuzzer: On-the-fly input type probing for better zero-
day vulnerability discovery,” in 2019 IEEE Symposium on Security
and Privacy (SP). IEEE, 2019, pp. 769–786.

[43] C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, 2018, pp. 475–485.

[44] G. J. Saavedra, K. N. Rodhouse, D. M. Dunlavy, and P. W.
Kegelmeyer, “A review of machine learning applications in
fuzzing,” arXiv preprint arXiv:1906.11133, 2019.

[45] M. Rajpal, W. Blum, and R. Singh, “Not all bytes are equal: Neural
byte sieve for fuzzing,” arXiv preprint arXiv:1711.04596, 2017.

[46] P. Zong, T. Lv, D. Wang, Z. Deng, R. Liang, and K. Chen,
“Fuzzguard: Filtering out unreachable inputs in directed grey-
box fuzzing through deep learning,” in 29th {USENIX} Security
Symposium ({USENIX} Security 20), 2020, pp. 2255–2269.

[47] “More results,” https://sites.google.com/view/ai4fuzz/.
[48] “Fuzzer data collector,” https://github.com/ThePatrickStar/

fuzzer-data-collector.

12

https://sites.google.com/view/ai4fuzz/
https://github.com/ThePatrickStar/fuzzer-data-collector
https://github.com/ThePatrickStar/fuzzer-data-collector

Siqi Li received the bachelor’s degree from
Hangzhou Dianzi University, Hangzhou, China.
He is pursuing a master’s degree at Tianjin Uni-
versity, Tianjin, China. Currently, he is conduct-
ing research on software vulnerability analysis,
fuzzing and other related aspects in the Institute
of Software and Information Security Engineer-
ing of Tianjin University.

Xiaofei Xie received his Ph.D, M.E. and B.E.
from Tianjin University. He is currently an as-
sistant professor in Singapore Management Uni-
versity, Singapore. His research mainly focuses
on program analysis, traditional software testing
and quality assurance analysis of artificial intelli-
gence. He has published some top tier confer-
ence/journal papers relevant to software anal-
ysis in ICSE, ISSTA, FSE, ASE, TDSC, TIFS,
TSE, IJCAI, NeurIPS, ICML and CCS. In partic-
ular, he won two ACM SIGSOFT Distinguished

Paper Awards in FSE’16 and ASE’19.

Yun Lin received his Ph.D from Fudan Univer-
sity. He is currently an research assistant pro-
fessor in National University of Singapore. His
research mainly focuses on program analysis,
traditional software testing and quality assur-
ance analysis of artificial intelligence. He has
published some top tier conference/journal pa-
pers relevant to software analysis in ICSE, IS-
STA, FSE, ASE, TIFS, TSE, AAAI, and USENIX
Security. In particular, he won ACM SIGSOFT
Distinguished Paper Awards in ICSE’18.

Yuekang Li received his B.S. degree from the
Nanyang Technological University in 2015 and
his Ph.D. degree from the Nanyang Technolog-
ical University in 2020. He is now a research
assistant professor in Nanyang Technological
University since 2020. His research interests
include fuzzing and other software vulnerability
detection techniques.

Ruitao Feng received his B.S. degree from the
Tianjin University in 2014 and his Ph.D. degree
from the Nanyang Technological University in
2021. He is now a research fellow in Nanyang
Technological University since 2021. Previously,
he was a research assistant in Nanyang Tech-
nological University from 2014 to 2020. His re-
search interests include discovering and solving
security problems on mobile platform, IoT sys-
tem and AI-based cybersecurity system.

Xiaohong Li received the PhD degree from
School of Computer Science and Technology,
Tianjin University, China, in 2005.She is the
director of the Institute of Software and Infor-
mation Security Engineering, Tianjin University.
She is mainly engaged in computer science and
computer application, software engineering and
security software engineering, high-assurance
software and network security and other infor-
mation security fields.

Weimin Ge received the PhD degree from
School of Computer Science and Technology,
Tianjin University, China, in 2008. His current
research interests include computer networking,
mobile computing and information systems de-
velopment and applications.

Jin Song Dong received his PhD degree from
the University of Queensland, Australia. He is
a professor with the School of Computing, Na-
tional University of Singapore. His research in-
terests include software engineering, program
analysis, formal verification, and model check-
ing.

13

	Introduction
	Overview
	Subject benchmarks
	Selected fuzzers
	Study Design
	RQ1 (Effectiveness of DL-based fuzzers)
	RQ2 (Accuracy of DL models)
	RQ3 (Effectiveness of gradient feedback)
	RQ4 (Challenges)

	Study Results
	RQ1: Effectiveness of DL-based Fuzzers
	RQ2: The accuracy of DL models
	RQ3: Feedback from neural networks
	Coverage with the models with different accuracy.
	Correctness of the feedback provided by the neural network

	RQ4: Technical challenges for DL-based fuzzing
	Dependent labels
	Over-generalization
	Limited model expressiveness

	Practice and Research Direction
	Practice
	Research Directions

	Threat to Validity
	Related Work
	Conclusion
	acknowledgement
	References
	Biographies
	Siqi Li
	Xiaofei Xie
	Yun Lin
	Yuekang Li
	Ruitao Feng
	Xiaohong Li
	Weimin Ge
	Jin Song Dong

