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Self-Checking Deep Neural Networks for
Anomalies and Adversaries in Deployment

Yan Xiao, Ivan Beschastnikh, Yun Lin*, Rajdeep Singh Hundal,
Xiaofei Xie, David S. Rosenblum, Jin Song Dong

Abstract—Deep Neural Networks (DNNs) have been widely adopted, yet DNN models are surprisingly unreliable, which raises
significant concerns about their use in critical domains. In this work, we propose that runtime DNN mistakes can be quickly detected
and properly dealt with in deployment, especially in settings like self-driving vehicles. Just as software engineering (SE) community has
developed effective mechanisms and techniques to monitor and check programmed components, our previous work, SelfChecker, is
designed to monitor and correct DNN predictions given unintended abnormal test data. SelfChecker triggers an alarm if the decisions
given by the internal layer features of the model are inconsistent with the final prediction and provides advice in the form of an
alternative prediction. In this paper, we extend SelfChecker to the security domain. Specifically, we describe SelfChecker++, which we
designed to target both unintended abnormal test data and intended adversarial samples. Technically, we develop a technique which
can transform any runtime inputs triggering alarms into semantically equivalent inputs, then we feed those transformed inputs to the
model. Such runtime transformation nullifies any intended crafted samples, making the model immune to adversarial attacks that craft
adversarial samples. We evaluated the alarm accuracy of SelfChecker++ on three DNN models and four popular image datasets, and
found that SelfChecker++ triggers correct alarms on 63.10% of wrong DNN predictions, and triggers false alarms on 5.77% of correct
DNN predictions. We also evaluated the effectiveness of SelfChecker++ in detecting adversarial examples and found it detects on
average 70.09% of such samples with advice accuracy that is 20.89% higher than the original DNN model and 18.37% higher than
SelfChecker.

Index Terms—self-checking system, trustworthiness, deep neural networks, adversarial examples, deployment
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1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved high
performance across many domains, such as speech pro-
cessing [1], image classification [2], medical diagnostics [3],
and social media [4]. DNNs have been deployed to support
many mission-critical applications, including malware de-
tection [5], aircraft detection systems [6] and autonomous
vehicles [7]. There are increasing concerns about the gen-
erality of deep learning models, i.e., their limited perfor-
mance on unseen samples beyond the training dataset. For
example, such models may behave in unexpected ways
when processing either unintended anomalies or adversar-
ial inputs. In safety- and security-critical applications an
incorrect DNN decision could be costly. We believe that such
applications must include deployment-time logic to:

1) check the trustworthiness of a DNN’s prediction,
2) raise an alarm when there is low confidence in the output,

e.g., when encountering adversarial examples, and
3) provide an alternative prediction that we term advice, just

as software engineering (SE) community has developed
such methods for programmed components [8], [9].
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Trustworthiness of simple DNNs can be estimated with
mutual information [10] and softmax probabilities [11].
However, softmax probabilities are unreliable confidence
estimators of the prediction in complex DNNs with many
layers and neurons [12], [13] since DNNs may still produce
overconfident posterior probabilities even for abnormal
samples. To address unexpected runtime samples, intended
or unintended, existing state-of-the-art can be classified into
three categories.
Auxiliary Model Construction. Several prior projects con-
sidered the problem of evaluating the trustworthiness of
a deployed DNN by introducing new auxiliary models.
Stocco et al. [14] built a collection of autoencoder models
to check the confidence of a decision from a self-driving car
model. Their approach, however, is specific to self-driving
car models whose inputs are image frame sequences from
videos that change little over time. DISSECTOR, proposed by
Wang et al. [15] validates inputs that represent deviations
from normal inputs. This work does not describe how to set
the deviation threshold, which will vary for different models
and datasets. Several projects in the deep learning (DL)
community [13], [16], [17] developed new learning-based
models to measure the confidence of original pre-trained
DL models. ConfidNet, proposed by Corbière et al. [13] is
a new confidence model learning the confidence criterion
for failure prediction built on top of the pre-trained model.
ConfidNet models may also be untrustworthy and may
suffer from overfitting. However, none of above techniques
contend with an input instance that triggers an alarm. Only
in [14] is human interference introduced to consider the
alarm. We propose that, though human involvement is



ideal, humans are not always available to provide input.
Instead, we believe that automatically generated advice is
an important and necessary way of coping with runtime
alarms triggered by deviating inputs.
Model Training. Data augmentation [18], [19] and adver-
sarial training [20], [21] are popular techniques. However,
it is impossible to include all kinds of adversarial examples
with data augmentation and all possible perturbations with
adversarial training. Therefore, data augmentation cannot
defend against unseen adversarial examples. And both tech-
niques significantly increase the training cost.
Anomaly Assumption. Wang et al. [22] proposed mMu-
tant to distinguish adversarial from normal inputs. They
make an assumption that adversarial samples usually lie
around classification boundaries. This work was superseded
by DISSECTOR which also has a threshold assumption of
its own. In our work we observed that the assumptions
supporting these techniques fail to hold in practice (see
Section 5.3 for more details). Besides, neither mMutant nor
DISSECTOR provide advice once an adversarial example is
detected.

Our goal is to build a general-purpose system that (1)
checks a deployed DNN’s predictions in deployment, (2)
raises an alarm if there are any anomalies, and (3) provides
an alternative prediction that we term advice. The first key
challenge in building such a system is finding a source of
additional information to check DNN outputs. The second
challenge is how to make the system immune to attacks
while preserving model prediction accuracy.

In our previous work we developed SelfChecker [23],
which works only on unintended samples with limited
distribution shift from the training dataset. In this paper
we propose a novel self-checking system, SelfChecker++, to
address the challenges raised by both unintended anomalies
and intentional adversaries. Similar to SelfChecker, Self-
Checker++ (1) triggers an alarm if the classes inferred by
most internal layer features of the model are inconsistent
with the final prediction, and (2) provides advice in the form
of an alternative prediction. However, unlike SelfChecker,
SelfChecker++ (1) relaxes the assumption of SelfChecker
that the training and validation datasets come from a dis-
tribution similar to that of the inputs that the DNN model
will face in deployment, and (2) makes the model immune
to adversarial attacks in which an adversary crafts adver-
sarial inputs. We designed SelfChecker++ by introducing
a GAN-based (Generative Adversarial Network) transfor-
mation technique to learn the distribution of the training
data to differentiate samples from a different distribution,
and synthesize a sample from the latent space (avoiding the
processing of any potential adversarial samples).

To evaluate SelfChecker++’s alarm and advice mecha-
nisms in the image classification domain, we conducted ex-
periments to check three neural networks on four datasets.
The networks in particular were ConvNet, VGG-16, and
ResNet-20. The datasets on the other hand were MNIST, FM-
NIST, CIFAR-10, and CIFAR-100. Moreover, these datasets
are widely used and available to the public. Furthermore,
we compared SelfChecker++ against three existing ap-
proaches (SELFORACLE [14], ConfidNet [13], and DISSEC-
TOR [15]). From the results we attained, SelfChecker++ has
an F1-score of 67.92%. This is also the best score, 9.15% more

than the runner up, ConfidNet. With respect to self-driving
cars, SelfChecker++ was also put to the test against state-
of-the-art techniques like SELFORACLE [14]. It was then
observed that SelfChecker++ raised more right alarms and
were comparable in wrong alarms. Lastly, our evaluation
of detecting adversarial examples, SelfChecker++ achieves
34.54% higher F1-score than DISSECTOR. For the advice
accuracy, SelfChecker++ (average 69.57%) performs much
better than SelfChecker (average 51.20%).
Differences from SelfChecker. This work extends our pre-
vious work on SelfChecker [23] in the following ways:
1) We introduce a new technique that uses a GAN to

provide more accurate advice. To learn additional in-
formation from the training dataset, we train a GAN
to synthesize inputs which conform to the distribution
of the training dataset given random latent vectors.
For input instances that trigger an alarm, we use this
GAN to generate alternative inputs that are semantically-
preserving and conform to the training data distribution
(Section 4.3). We add corresponding background and
motivating examples to Section 3.

2) We discuss the threat model for our work and our objec-
tives (Section 2).

3) We add the alarm accuracies of checking ResNet-20 and
ConvNet on MNIST and CIFAR-100 (Section 5.3.1).

4) We empirically present SelfChecker++’s effectiveness in
detecting adversarial examples and explain how it differs
from existing work (Section 5.3.2), report new advice
accuracies on not only normal test data but also adver-
sarial examples (Section 5.3.3), and discuss the necessity
of alarm analysis (Section 5.3.4).

5) We survey studies related to adversarial examples (Sec-
tion 6) and discuss threats to validity of our work (Section
7).
In summary, our paper makes the following three con-

tributions:
? We present the design of SelfChecker++, which uses den-

sity distributions of layer features and a search-based
layer selection strategy to trigger an alarm if a DNN
model output has low confidence. We show that Self-
Checker++ achieves better alarm accuracy than previous
work on both unintended anomalies and adversarial in-
puts.

? Unlike existing work, SelfChecker++ provides advice in
the form of an alternative prediction. This prediction is
generated from a semantically-preserving input that is
synthesized by a GAN model.

? We demonstrate the effectiveness of SelfChecker++’s
alarms and advice on publicly available DNNs, rang-
ing from small models (ConvNet) to large and complex
models (VGG-16 and ResNet-20), and self-driving car
scenarios. Our implementation is open-source1.

2 THREAT MODEL
We consider the following threat model in this work.

Our work focuses on victim DNN models in the image
classification domain. Let f be a learned function by a DNN
model M , which is an image classifier. Given an image
input instance x whose DNN’s output is y, i.e., y = f(x)

1. https://github.com/yanxiao6/SelfCheckerPlusPlus
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an attacker can intentionally or unintentionally make the
model fail in two ways.
Intentional Attack. The attacker can design an adversarial
example (x + δ) to fool M into making a wrong decision
y′ (i.e., y′ = f(x + δ)) where y′ 6= y. However, to a
human observer [24], [25], [26], the image (x + δ) will not
semantically differ from x.
Unintentional Attack. The attacker can unintentionally
send an input x̂, which is sampled from a different distri-
bution than the one used for training M . From a human
perspective [24], [25], [26], x̂ has a semantical label y while
y′ = f(x̂) and y′ 6= y. In other words, such a distribution
shift causes M to fail on the sample x̂.

Our first goal is to detect such adversarial examples and
trigger alarms. Our second goal is to synthesize images that
are similar to the original ones (x+ δ and x̂) but conform to
the distribution of the training data. We use these generated
images to provide an alternative prediction (we call this an
advice) as a defense mechanism.

3 BACKGROUND AND MOTIVATION
3.1 Deep Learning

Deep learning comprises of neural networks that are
built with three basic layers. Firstly, we have the input
layer and it is, as it is so adequately named, where the
input goes. Secondly, we have the hidden layer and it is
where activation functions on top of neurons extract the
desired features from the given input. The third and final
layer is called the output layer which tries to generate a
prediction for the given problem. Moreover, there are many
approaches used to generate the prediction, with the com-
mon ones being classification and regression. Classification
utilizes categorical classes whereas regression utilizes real-
valued ordinals. Each layer except the input layer, extracts
more abstract features than the preceding layer.

A DNN can be thought of as a mapping function F .
Given an input vector x, it is then mapped to an output
vector in a cascading system of non-linear activation func-
tions, f1...L, of L hidden layers and corresponding weight
parameters (W1...L and b1 . . . L)

F (x) = f1(W1f2(...WL−1fL(WLx+bL)+bL-1...)+b1) (1)

The weights for a typical network are discovered during
the training phase (i.e., with training data) using an itera-
tive training process, such as stochastic gradient descent in
conjunction with backward propagation [27]. Internally, the
computation of the decision function involves each neuron
in one layer computing its activation function over the
outputs of the previous layer. A layer’s activation outputs
describe the exact behavior of that particular layer during
the inference phase. In this paper, layer features are with
reference to the vectors of activation outputs from the layers
in a network.

3.2 Generative Adversarial Network (GAN)
Goodfellow et al. [28] proposed GANs to synthesize

realistic data. A GAN contains two neural networks, a
generative net G to generate images and a discriminator
net D to classify the generated images as either real or fake.
Both models are trained adversarially in order to continually
improve images generated by G that can fool D while D

tries to differentiate the generated images from the real
ones. In the training phase, random vectors z (assumed to
be isotropic Gaussian) and training data samples x are fed
into G so that the generated samples G(z ) would attain a
distribution that is almost identical to x . The discriminator
D then learns to distinguish G(z ) from x (i.e., fake from real
samples). To correctly classify G(z ) as fake and x as real, the
GAN is trained to minimize a loss function:

minGmaxDV (D,G) =Ex∼pr(x)[log(D(x))]

+ Ez∼pg(z)[log(1−D(G(z)))]
(2)

where pr and pg are the real and generated distributions
respectively. Essentially, the training goal here is to make pg
close to pr .

However, in general, it can be hard to strike a balance
between G and D during training. When D becomes too
good too fast, G fails to learn efficiently and its loss function
saturates. To mitigate this, the original authors proposed to
train G to instead maximize logD(G(z)). This is known as
the non-saturating loss.

DCGAN proposed by Radford et al. [29], is an extension
which uses deep convolutional networks instead of multi-
layer perceptrons. It is by far the most commonly used GAN
variation as it tends to be more stable in practice.

Lastly, when it comes to the evaluation of GANs, there
are two metrics commonly used in practice. Salimans et
al. [30] proposed the Inception Score (IS) which essen-
tially utilizes a pre-trained network to classify a substantial
amount of generated images. Heusel et al. [31] later sug-
gested the Fréchet Inception Distance (FID) which utilizes
a pre-trained network along with a substantial amount of
generated and real images. By incorporating real images, the
FID metric more accurately captures the similarity between
generated and real images.

3.3 The Promise of Using Layer Features
A neural network fundamentally uses the features it

has learnt from training to make the appropriate decisions
during testing. The question then has to be asked as to how
is it possible to determine if a model decides incorrectly
for any given instance x during testing? A simple approach
is to determine if a similar training instance x′ has been
seen by the model before. However, how would one then
measure the similarity between x and x′? A majority of the
current methods utilize a distance-based measure [32]. Some
examples of this are Lp and cosine similarity. In contrast, we
think that this approach is not optimal because the inputs
are already incredibly complex to the point where DNNs are
employed to learn features from it. Therefore, it is doubtful
that input similarity can be adequately represented from just
a distance measure itself.

Our solution to capturing similarity is to utilize DNN
internal layer features. In particular, similarity is now the
probability that a DNN saw similar layer features before-
hand (i.e., whilst training). Using probability density distri-
butions, we are able to measure the similarity between x and
x′. These distributions were extrapolated from the training
phase.

Fig. 1 depicts a motivating scenario, a typical Convolu-
tional Neural Network (CNN) whose architecture consists
of three convolutional layers followed by a fully connected
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Fig. 1. The topmost portion of the figure depicts a typical trained Convo-
lutional Neural Network whilst the bottom two rows shows the attention
heatmaps for each convolutional layer with respect to the input images.

and softmax layer. The dataset used in Fig. 1 is MNIST (i.e.,
digit images) and in short, the model attempts to classify
these images. In order to further aid our understanding
on the difference between each layer’s features, we employ
Grad-CAM [33] to picture the attention each layer has with
respect to the input via heatmaps. Looking closely at the
heatmaps, it can be observed that the area of focus varies
from layer to layer. More specifically, considering the first
row (i.e., digit 3), we can observe that the last image resem-
bles digit 2 instead. For the second row (i.e., digit 6), we can
observe that the first image resembles digit 1 instead.

From Fig. 1 we can see that, digit 6 is incorrectly
predicted as digit 1. However, most of the hidden layers
disagree with the finial prediction and recognize the digit
as 1 correctly. Similarly, most of the hidden layers recognize
digit 3 correctly as well. Thus, this shows that using layer
features to further scrutinize or confirm a model’s prediction
is indeed applicable.

There are multiple variations of DNNs and they can also
be merged together to increase the overall complexity of the
networks. One such scenario where this happens is urban
flow prediction [34]. Networks here are from a combination
of convolutional, graph and recurrent networks. It should be
noted that all these networks utilize internal layers in order
to learn useful features, which is the basis of our research.

The technique we detail is more tailored towards clas-
sification networks which include convolutional and fully-
connected layers. That being said, it is also applicable to-
wards regression networks by simply modifying the re-
gression into binary classification. Furthermore, because our
technique utilizes layer features, it is bound to work on
other network variations as well (e.g., recurrent networks).
However, we evaluate our technique on other network
variations in future work.

3.4 The Challenges of Using Layer Features
Fig. 1 also brings about some challenges to address when

utilizing layer features:
• Which layers are to be used when checking if a predic-

tion is correct? For instance, does the amount of layers

used matter?
• Feature aggregation from multiple layers — how

should it be done when triggering an alarm and pro-
viding advice?

Answering the aforementioned questions to optimize alarm
and advice accuracy on a single dataset and a specific DNN
architecture is sufficiently difficult. We go a step further and
design SelfChecker++ to both yield high performance and
also generalize across datasets and DNN architectures (dif-
ferent number of layers, neurons in a layer). The generality
of our approach is the key contribution of our paper.

Problem statement. Our goal is to come up with a
systematic method named SelfChecker++ which would be
used for detecting if a trained DNN incorrectly classified
a test instance. SelfChecker++ accomplishes this by doing
a thorough check on the network’s internal features. Self-
Checker++ first is tasked with raising an alarm if it deems
that an instance was incorrectly classified. Following the
alarm and going beyond existing works [13], [14], [15],
SelfChecker++ is then tasked with giving advice (i.e., an
alternative prediction). SelfChecker++ should also attain
high accuracies when it comes to raising alarms and giving
advice.

3.5 Using a GAN to synthesize improved inputs
An input instance in deployment may contain noise

perturbations or large distribution shifts (e.g., blurry im-
ages). Even though the deployed DNN model may be
well-trained, it may still make wrong predictions on such
inputs. However, if these instances can be transformed by
preserving their semantic information into inputs that better
conform to the training data distribution, the DNN model
can make better predictions on these transformed instances.
This is the key idea behind our use of a GAN in this work.

Input "7" Input "7"

Predicted 
as "1"

Predicted 
as "7"

Transform Transform

Input "2" Input "2"

Predicted 
as "6"

Predicted 
as "2"

Fig. 2. Examples of improved inputs generated by a GAN.

Figure 2 presents two motivating examples that are
generated by a GAN we designed for input images of
digits "7" and "2". The original input image of a "7" has
a crooked middle horizontal line and a curved up line
leading to the wrong prediction of "1". The GAN-generated
transformation, however, is correctly predicted by the model
as "7" since the middle line became straighter and the edge
between the top line and vertical line became sharper. The
right column shows a blurry "2" image. The DNN model
wrongly classifies this image as a "6", but correctly classifies
the rightmost, GAN transformed, image as a "2". These
two examples motivate the power of the GAN-based input
transformation process.

4 DESIGN OF SELFCHECKER++
SelfChecker++ has three primary goals — to analyze a

DNN’s prediction, trigger an alarm should the prediction be
deemed wrong and give advice following the alarm.
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Fig. 3. The design of SelfChecker++ and its integration with a trained model and model predictions. The bold parts are the main differences between
SelfChecker and SelfChecker++.

SelfChecker++ has two modules. The training module is
used in conjunction with the already trained DNN model
and utilizes both training and validation datasets in order
to set the necessary configurations for deployment. These
configurations would directly affect how SelfChecker++ be-
haves. The DCGAN is also trained in the training module.

The deployment module on the other hand is utilized
in conjunction with the inference process. In particular, it
checks the DNN’s internal features with respect to a test
instance and raises an alarm if the DNN’s prediction is
deemed to be inconsistent. It accomplishes this with the aid
of the configuration from the training module. The trained
DCGAN is used to provide the advice for the input instances
that raise alarms.

Even though SelfChecker++ checks the internal features
of a DNN, the network need not undergo any modifications
or retraining. The prime reason for this stems from the
fact that the training module is independent from DNN
architectures. In contrast, the deployment module is DNN
specific.

The framework of SelfChecker++ is depicted in Fig. 3.
Its initial basis is the network M that is trained and
validated using datasets Dtrain and Dvalid respectively.
Firstly, the training module utilizes kernel density estima-
tion (KDE) [35] to (1) calculate the density distributions
for each class at every layer with respect to Dtrain (see
Section 4.1 for more information). Subsequently, with the
aid of the distributions in (1), (2) SelfChecker++ is now able
to, for every class, approximate the density values for any
instance (i.e., either from the validation or test dataset). The
key idea here is that, given an instance, large density values
for a specific class at a layer would indicate that the features
of the current instance at that layer are similar to that of the
class. Once SelfChecker++ attains the density values of the

entire validation dataset (for every layer), it then (3) searches
for the optimal layer combinations. Optimality here is with
reference to attaining the best accuracies for both alarm
and advice. Moreover, global search is utilized to locate
these layer combinations for each class (see Section 4.2 for
more information). This is because, the feature behaviors
for different classes at different layers vary and are quite
unique. To provide advice for those input triggering alarms,
(4) DCGAN is trained on Dtrain .

Lastly, during deployment, the deployment module de-
termines if it should raise an alarm and subsequently give
advice for a test instance. It does this by utilizing both
density values and selected layer combinations as seen in (5)
and (6) respectively (see Section 4.4 for more information).
If an alarm is triggered, (7) this test instance is fed into the
trained DCGAN to generate a transformed instance, which
is (8) then input into M to obtain the alternative prediction.

Next we detail each step in SelfChecker++.

4.1 KDE of the Training Set
Let M , L and C represent a trained classifier, number of

layers (excluding the input layer) and number of classes re-
spectively. Moreover, with respect to training dataset Dtrain ,
let the inputs X t and ground truth labels Yt be represented
as {x1, . . . ,xn} and {y1, . . . , yn} respectively. The same is
also set for validation dataset Dvalid where X v , Yv , and Ŷv
represent inputs, ground truth labels and classifier predic-
tions respectively.

Furthermore, following the execution of M on an in-
stance, the feature vectors are attainable. The feature vectors
of every layer (i.e., layer output from training dataset) are
represented as Vt = {vt1, . . . ,vtL} where vtl ∈ Rnl and nl
represents the number of neurons at layer l. Usually, it is
observed that the attention of features varies depending on
the class and layers. The goal of SelfChecker++ is, whilst
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Fig. 4. An example to illustrate KDE computation with (a) showing the set of input 1D points, (b) showing how to obtain the distribution using a KDE,
and (c) showing the distributions obtained by using different bandwidths.

utilizing Dtrain and its feature vectors, to calculate the per
layer and per class density probabilities. Once the density
probabilities are attained, SelfChecker++ uses them to ap-
proximate the similarity between the feature vectors at a
particular layer based on an input and the feature vectors at
the same layer based on the training dataset.

Utilizing a finite amount of samples from a given pop-
ulation, one is able to approximate the probability den-
sity function (PDF) using KDE [35]. This is because KDE
does not make any distribution assumptions and is non-
parametric. With the PDF, approximation on a random
variable’s relative likelihood is straight forward. Here, we
utilize a Gaussian kernel because it has good performance
when it comes to multivariate data (which most datasets
inadvertently are). In addition, it also outputs smooth func-
tions. With samples {x1, x2, . . . , xm}, SelfChecker++ ap-
proximates the KDE function f with the following:

f̂(x) =
1

mh

m∑
i=1

K(
x− xi
h

) (3)

where K and h represents the Gaussian kernel function and
bandwidth respectively.

To get an idea of how this function operates, consider
Fig. 4. Initially, every single observation is fitted with a
Gaussian curve at it’s center. Naturally, this is the kernel.
These curves are then added to calculate the density value
per point. In Fig. 4(b), the red curve depicts the normalized
curve with an area under the curve of 1. Moreover, h deter-
mines the tightness of the approximation onto the samples.
It can be thought of as the kernel’s width. From Fig. 4(c),
it can be observed that the bigger h is, the curve becomes
smoother and flatter. In contrast, the smaller h becomes, the
curve becomes rougher and sharper. Lastly, the decision on
h′s value is determined by the amount of samples as well
as their dimensions.

For every class at every layer, SelfChecker++ utilizes the
Gaussian KDE to approximate the PDF that the training
data for a particular class induces on the feature vector of a
layer. After the PDFs are attained, with a test instance, Self-
Checker++ is able to approximate the probability densities
for every class at every layer. Lastly, SelfChecker++ utilizes
these probability densities for layer inference:
Definition 1 (Inferred class for a layer). Given a test instance,

the inferred class for layer l is the class for which the test
instance induces the maximum estimated probability
density among l ’s per-class density functions.

The steps for KDE estimation as well as inference is
shown in Algorithm 1. Firstly, for every class at every

Algorithm 1: KDE Estimation and Inference
Input: Input instances in Dtrain , Dvalid : X t, Xv , true labels in Dtrain :

Yt;
Trained model M with L layers and C classes;
Variance threshold: tvar
Output: KDE functions for each combination of class and layer: kdes ;
Inferred classes for all layers on Dvalid : kdeInferLv

1 # Estimation
2 for c in C do
3 Obtain instances X t

c whose true label is c;
4 for l in L do
5 vt

lc = M.outputl(X t
c );

6 Remove elements in vt
lc whose variance is less than tvar ;

7 f̂(x) = 1
|vt

lc
|h

∑|vt
lc|

i=1 K(
x−vt

lc[i]

h );

8 kdes[l][c] = f̂(x);
9 end

10 end
11 # Inference
12 for x in Xv do
13 for l in L do
14 vl = M.outputl(x);
15 Remove values of the neurons filtered in the training set from

vl;
16 for c in C do
17 kde_values[c] = kdes[l][c](vl );
18 end
19 kdeInferLv [x.index ][l] = max(kde_values).index ;
20 end
21 end

layer, their density distribution functions with respect to
feature vectors of Dtrain are found. Specifically, this happens
in Lines 1-10 where a Gaussian KDE was utilized when
extrapolating them. Previously demonstrated in Fig. 1, our
aim is to extrapolate the attention patterns with respect
to the input. Moreover, an important factor to consider is
that the performance of an instance at a layer varies from
class to class. For example, in Fig. 1, it is observed that
the heatmaps at the fist convolutional layer are different
for both digits 3 and 6. In addition, the heatmaps for digit
6 differ between the fist and second convolutional layers
as well. Because of this, in Line 3, the training dataset
Dtrain undergoes class-level partitioning. Following which,
SelfChecker++ then attains the outputs at every layer for
a class in Line 5. In order to reduce the dimensions, two
techniques are employed. In particular, mean-pooling and
variance thresholding as shown in Line 6. Mean-pooling is
utilized on the convolutional layers and neurons with values
of variance less than tvar are discarded. This is because these
neurons have minimal impact to the KDE. Lastly, in Line 7,
the feature vectors which conform to tvar are utilized when
extrapolating the per class and per layer density functions.
In Line 8, these density functions are stored for future use
(e.g., Line 17).

Given an inference instance, the per layer outputs are
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attained in Line 14. Following that, in Line 15, the neurons
discarded previously in Line 6 are similarly discarded. In
Line 17, SelfChecker++ approximates the per class density
values using density functions kdes previously attained in
Line 8. Line 19 shows how the inference for a layer is
calculated. It is basically the class with the highest density
value. This shows that the feature vectors of the instance at
the layer in question are similar to the feature vectors from
Dtrain that belong to the class with the highest density value.
An example of this is shown in Fig. 1 where the inference
for digit 3 is 3 for the first layer, 3 for the second layer and 2
for the third layer.

4.2 Layer Selection
In Section 3 it was observed that attentions vary from

layer to layer. Moreover, some of these attentions might
be incorrect. One such scenario is Fig. 1 where for digit 6,
there are two layers that disagree with the final prediction.
If SelfChecker++ chooses to evaluate the outputs of the
layers in this example, it is most likely that SelfChecker++
would agree with the fact that the model’s prediction is of
low confidence. As such, it is key to establish a robust layer
selection technique in order to trigger alarms accurately.

Firstly, we shall define precisely what the confidence of
a prediction represents. The definition stemmed from this
particular observation: given a test instance, if the inferred
classes of DNN layers are different from the final prediction,
then the decision made by the model on the test instance will
tend to be incorrect. This can be observed in Fig. 1, where
for digit 6, the last two layers disagree with the prediction
of 1. We utilized the following techniques when evaluating
our observation: Spearman rank-order correlation coeffi-
cient and p-values [36]. More specifically, Spearman rank-
order measures the relationship between the prediction
correctness and the consistency of inferred layer classes
and final predictions. Generally, a p-value of 0.05 (5%) or
less is considered statistically significant [36]. As shown in
Table 1, the values indicate that, for all dataset and model
combinations, p-value << 0.05.

TABLE 1
p-value

p-value ConvNet VGG-16 ResNet-20
MNIST 7.38e-62 4.61e-105 3.09e-26

FMNIST 0.0 9.93e-251 1.42e-281
CIFAR-10 0.0 1.71e-267 1.03e-232
CIFAR-100 0.0 0.0 0.0

In equation (4), the confidence δ with respect to a
model’s prediction is formally defined.

δ =
NkdeInferLx==ŷ

NselectedLayerCalarm[ŷ]
(4)

Here, x and ŷ refer to the test instance and model’s
prediction respectively. Moreover, NkdeInferLx==ŷ and
NselectedLayerCalarm[ŷ] refer to the number of selected layers.
The former are the ones which agree with ŷ whilst the latter
are the ones specifically for class ŷ. From the concept of
maximum voting, when δ < 0.5, it is said that the model’s
prediction is of low confidence.

Algorithm 2: Layer Selection for Alarm
Input: Input instances in Dvalid : Xv , true labels and predictions: Yv ,

Ŷv ;
Total classes: C;
Inferred classes for all layers on Dvalid : kdeInferLv

Output: Selected layers for all classes: selectedLayerCalarm

1 for c in C do
2 Obtain the indexes idxc of instances Xv

c whose prediction Ŷv is c;
3 Generate all kinds of layer combinations combL;
4 for layers ls in combL do
5 for l in ls do
6 ys .add(kdeInferLv [idxc ][l]);
7 end
8 KdePredPos .add(index of sum(ys !=

Ŷv [idxc]) >= sum(ys == Ŷv [idxc]));
9 TrueMisBehavior .add(index of Ŷv[idxc]! = c);

10 TP = TrueMisBehavior & KdePredPos ;
11 FP = ¬TrueMisBehavior & KdePredPos ;
12 FN = TrueMisBehavior & ¬KdePredPos ;
13 F1 = 2 ∗ TP/(2 ∗ TP + FN + FP);
14 if F1 is max then
15 selectedLayerCalarm [c] = ls ;
16 end
17 end
18 end

Algorithm 2 details the layer selection process for ev-
ery class. The goal when it comes to layer selection here
is to attain high alarm accuracies. As aforementioned in
Algorithm 1, the training dataset was utilized in order to
approximate the density functions which allowed us to
infer classes for every layer with respect to an instance.
Previously discussed in Section 3, attentions vary from layer
to layer and might be deceptive at times. Hence, validation
dataset Dvalid is utilized in order to choose layers. With
Dvalid , SelfChecker++ partitions the data with respect to
their predictions as shown in Line 2. Following which in
Lines 4-17, for every class, every layer combination is tested
in order to locate the combination that attains the best
accuracy. In order to achieve this, for a specific combination,
the inferred class for every layer within the combination is
attained with the aid of kdeInferLv at Line 6. In particular,
kdeInferLv refers to the KDE inferences attained in Algo-
rithm 1. In order to check if M provides an incorrect predic-
tion for an instance, SelfChecker++ looks at every layer in
the specific combination. In the case where there are more
layers disagreeing with the model’s prediction than there
are agreeing (i.e., δ < 0.5), the model’s prediction is then
said to be incorrect as detailed in Line 8. A layer disagrees
with the model’s prediction when it’s inferred class is not
that of the prediction. Furthermore, if this happens and the
prediction is not the same as the true label, the alarm is
correct and this indicates a True Positive. In contrast, if the
prediction is the same as the true label, the alarm is wrong
and this indicates a False Positive instead. The F1-score is
utilized in order to calculate the accuracy of alarm, detailed
in Line 13. The layer combination ls which attains the best
F1-score would be the selected layers with respect to the
current class, detailed in Line 15.

Similarly, there is also a need to find the optimal layer
combinations when providing advice once an alarm is trig-
gered. Algorithm 3 shows the steps taken by SelfChecker++
in order to find these optimal combinations so as to attain
the highest advice accuracy. In Line 2, Dvalid is partitioned
C times. Following which, for every partition, the best
combination is found. Utilizing selectedLayerCalarm from
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Algorithm 3: Layer Selection for Advice
Input: Input instances in Dvalid : Xv , true labels and predictions: Yv ,

Ŷv ;
Total classes: C;
Inferred classes for all layers on Dvalid : kdeInferLv ;
Selected layers for all classes: selectedLayerCalarm

Output: Selected layers and weights per class:
selectedLayerPosCadvice , Wpos , selectedLayerNegCadvice ,
Wneg ;

1 for cp in C do
2 Obtain the indexes idxcp of instances Xv

cp
whose prediction Ŷv is

cp;
3 Generate ys given selectedLayerCalarm [cp ];
4 Generate all kinds of layer combinations combL;
5 KdePredPos .add(index of sum(ys !=

Ŷv[idxcp ]) >= sum(ys == Ŷv[idxcp ]));
6 TrueMisBehavior .add(index of Yv [idxcp ]! = cp);
7 FP = ¬TrueMisBehavior & KdePredPos ;
8 for ct in C do
9 idxct .add(index of KdePredPos where

Yv [KdePredPos] = ct);
10 Select layers selectedLayerPosCadvice with highest accuracy

accmax from combL;
11 if ct = cp then
12 Wpos [cp][ct] = len(idxct )∗accmax/len(KdePredPos)
13 else
14 Wpos [cp][ct] =

len(idxct ) ∗ accmax/(len(KdePredPos)− FP)
15 end
16 end
17 KdePredNeg .add(index of sum(ys !=

Ŷv[idxcp ]) < sum(ys == Ŷv[idxcp ]));
18 TN = ¬TrueMisBehavior & KdePredNeg ;
19 Iterate Lines 8-16 to obtain selectedLayerNegCadvice and Wneg

20 end

Algorithm 2, in Line 3 based on the current class cp, the
selected layer’s inferred classes are calculated similar to Line
6 of Algorithm 2. And like Algorithm 2, in Line 5 of Algo-
rithm 3, if δ < 0.5, the model is said to have misbehaved.
In Lines 9-10, the best layer combination is found. More
specifically, it is where the instance with label ct is predicted
as cp. From the fact that not every class has correlations, for
each class combination, weights are attained in Lines 12 and
14. A scenario illustrating this is that digit 1 is misclassified
as digit 7 much more than it is misclassified as digit 2.
Finally in Lines 17-19, the combination of layers which
attains the best accuracy is found. More specifically, this is
on the situation where the layers selected from Algorithm 2
exhibit a negative decision (i.e., whereby the model behaved
normally).

Boosting strategy: Utilizing the selected layers in Al-
gorithm 2, both positive and negative decisions which are
made by these layers are considered by SelfChecker++. This
is imperative as it raises the alarm’s quality. More specif-
ically, if these selected layers suggest triggering an alarm
but advice from selectedLayerPosCadvice in Line 10 has the
same class with the prediction, an alarm is ultimately not
triggered. Conversely, if these layers suggest that the pre-
diction is correct but advice from selectedLayerNegCadvice

in Line 19 is not the same as the prediction, an alarm is
ultimately triggered.

4.3 GAN-based Transformation
To "denoise" the unintentional abnormal and intentional

adversarial examples, we train a DCGAN on the training
dataset to generate images similar to these examples but
conform to the distribution of the training data. To train
the DCGAN, random vectors are fed into the generative

net G to generate images with similar distributions, while
the discriminator D classifies the generated images as real
or fake. G and D are trained in an adversarial fashion
to minimize the loss function (Equation 2 in Section 3.2).
The aim is to gradually improve images generated by G
until they successfully fool D (i.e., D trains to differentiate
generated and real images).

Since we want to design a general transformation frame-
work for all DNN models, it would be ideal if the DCGAN-
based transformation approach shared some connections
(e.g., architecture) with the original DNN model to remove
the overhead of searching for the optimal generator and
discriminator combinations. This is because the search is
notoriously difficult for GANs. Furthermore, there is a need
to maintain fairness by ensuring that any improvement in
accuracies from SelfChecker++ are not due to architectural
differences. We thus design the generative model G and the
discriminative model D to follow a similar architectures as
the original DNN model.

When an alarm is triggered by a given test instance,
SelfChecker++ uses a trained DCGAN to synthesize a
semantically-preserving input w.r.t the given instance from
the latent space. It uses this generated input instead of the
original input for the DNN model M during deployment.

We propose to use the representative power of the DC-
GAN trained in the training phase so as to diminish the
effect of noise perturbations that lead to wrong predictions.
The DCGAN projects the input instance x onto a range of
the DCGAN’s generator G to generate x ′ before feeding it
to the deployed DNN M .

To preserve the semantics of x, SelfChecker++ needs to
find a proper latent vector z such that G(z) is close to x. We
use gradient descent to find this z with a minimization:

minz||G(z)− x||2 (5)

Similar to prior work [37], we approximate the above
formulation with L gradient descent steps and use R mul-
tiple random starts to search in Z0 = {z01, . . . , zR0 } so as
to minimize (5). Based on the selected z∗, the transformed
instance will be x′ = G(z∗).

Projecting the original instance onto the range of G can
have the desirable effect of reducing the noise perturbation
and making the sample conform further to the distribution
of training data. This helps to make the model more robust
to crafted adversarial samples. The generated x ′ is then fed
into the deployed DNN M instead of the original instance
x, and the output of M is returned as the alternative
prediction.

4.4 Checking the Model in Deployment
Algorithm 4 details the steps SelfChecker++ takes when

checking a deployed network. Based on a test instance,
should SelfChecker++ deem the network’s prediction as
incorrect, an alarm would be triggered and advice would
then be given.

Algorithm 1 provides kdes (i.e., the KDE functions for
every layer and class combination) which Algorithm 4 then
uses in conjunction with the current layer outputs to attain,
for every layer, the inferred classes for the current test
instance, kdeInferL. Following which, in Lines 2-3, Self-
Checker++ attains ys which is basically the inferred classes
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Algorithm 4: Checking Model in Deployment
Input: Input instance and its prediction by M with L layers: x, ŷ;
KDE functions for all layers and classes: kdes ;
Selected layers for all classes: selectedLayerCalarm ,
selectedLayerPosCadvice , selectedLayerNegCadvice ;
Weights for advice: Wpos , Wneg ;
Trained generator in WGAN: G;
Gradient descent steps and number of random starts: L,R
Output: alarm and advice c′

1 Generate inferred class for each layer kdeInferL using KDE functions
kdes ;

2 Lalarm = selectedLayerCalarm [ŷ];
3 Generate ys given Lalarm and kdeInferL;
4 if sum(ys != ŷ) >= sum(ys == ŷ)) then
5 initialize prob with C dimensions;
6 for c in C do
7 Ladvice = selectedLayerPosCadvice [ŷ][c];
8 for l in Ladvice do
9 prob[c] = sum(kdeInferL[l] == c);

10 end
11 prob[c] = prob[c] ∗Wpos [ŷ][c]/len(Ladvice)
12 end
13 advice = max(prob[c]).index ;
14 if advice != ŷ then
15 alarm = True;
16 Z0 = random_initializer({z1, . . . , zR});
17 for zi in Z0 do
18 while e < L do
19 e = e+ 1;
20 zie = zie−1 − γ∇||G(zie−1)− x||2;
21 end
22 ZL = {z1, . . . , zR};
23 end
24 z∗ = argminz∈ZL

||G(z)− x||2;
25 c′ = M.output(G(z∗));
26 else
27 alarm = False
28 end
29 else
30 Iterate 5-28 if the alarm is not triggered initially;
31 end

for layers in Lalarm (i.e., layers selected with respect to the
prediction). In Line 4, if it is seen that amongst the inferred
classes in ys, class ŷ is not of the majority, SelfChecker++
raises an initial alarm which is still subjected to the Boosting
strategy (i.e., where the alarm might not be raised eventu-
ally).

Furthermore as detailed in Lines 5-12, with the aid
of selectedLayerPosCadvice [ŷ ] and Wpos , the per class
weighted probabilities are attained. In Lines 13-25, an alarm
is raised should ŷ continue to differ from the class with
the highest probability. x′, a semantically preserving input
which conforms more towards the training data distribution
is then found with (5) from Section 4.3. In contrast, detailed
in Line 27, an alarm is not raised if ŷ does not differ from the
class with the highest probability. Lastly, in the case where
an alarm is not initially raised in Line 4, a strategy similar
to the aforementioned one will be utilized as well.

5 EVALUATION
In this section, we show the effectiveness and efficiency

of SelfChecker++ with experiments. We first list out the
research questions we aim to address.

5.1 Research Questions
RQ1. Alarm Accuracy: How effective is SelfChecker++ in
detecting DNN misclassifications in deployment?

In order to access SelfChecker++ with respect to raising
alarms on unintended anomalies during deployment, we
use the test dataset and calculate the alarm accuracy to com-
pare with similar applications including, SELFORACLE [14],

ConfidNet [13], and DISSECTOR [15]. With regards to the
comparison, the VAE (variational autoencoder) which is a
variant from SELFORACLE was chosen as it achieved the
best performance amongst other variants, with a confidence
threshold of 0.05. Moreover as ConfidNet’s threshold for
failure prediction was unknown, we found the best thresh-
old between 0 − 1 which had the highest F1-score for
ConfidNet from the validation dataset. Similarly, to distin-
guish beyond-inputs from within-inputs by DISSECTOR, we
found the best threshold which had the highest F1-score
from the validation dataset. Furthermore for DISSECTOR,
the validation dataset was also used to find the best weight
growth type (i.e., linear, logarithmic or exponential [15]) which
had the highest Area Under Curve (AUC) for each DNN
classifier and dataset.
RQ2. Detection of Adversarial Examples: How is the effec-
tiveness of SelfChecker++ in detecting adversarial examples in
deployment?

In order to address this research question, we calculate
the alarm accuracy of SelfChecker++ on test and adver-
sarial examples generated by RobOT [38], ADAPT [39],
FGSM [26], and PGD [40] respectively. In order to judge
the effectiveness of SelfChecker++, we compare its alarm
accuracy with DISSECTOR [15] that claims its usefulness
in detecting adversarial examples. Note that the instances
in the test dataset wrongly predicted by DNN models are
regarded as adversarial samples to answer this research
question. For fair comparisons, we deal with DISSECTOR
the same as in RQ1. We also check ConvNet on MNIST
and FMNIST, and Resnet-20 on CIFAR-10, which are the
conditions used in [38], [39].
RQ3. Advice Accuracy: How does SelfChecker++ compare to
SelfChecker on the advice accuracy?

Apart from raising alarms, there is also a need
to then determine if the advices provided by Self-
Checker++/SelfChecker are accurate. They both use same
alarm mechanism but different advice mechanisms. We thus
compare their final advice accuracies on test and adversarial
examples to check the quality of advice provided by Self-
Checker++ against that by SelfChecker and the accuracy
of M (i.e., the original DNN model). Other techniques
mentioned previously are not designed to provide advice.
RQ4. GAN-based Transformation: Can GAN-based transfor-
mation be used on the entire dataset instead of combined with the
alarm analysis in SelfChecker++?

As discussed in Sections 4.3, we use a GAN-based trans-
formation to transform the inputs triggering alarms into
semantically-preserving inputs that conform to the distribu-
tion of the training data. These transformed inputs will then
be passed through the original DNN model M , attaining al-
ternative predictions. However, whether this transformation
can be used to all inputs without the alarm mechanism to
improve accuracy is unknown. In order to address this, M ’s
accuracy is compared on two types of datasets where all test
inputs are transformed by the GAN versus only those that
trigger an alarm.
RQ5. Deployment Time: What is the time overhead of Self-
Checker++ in deployment for a given test instance?

Taking note of the specifics of different algorithms dur-
ing deployment, we access their respective component’s
computation time during deployment. With the aid of two
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TABLE 2
DNN models and datasets used in the experiments.

Dataset # Class # Train # Valid # Test
DNN models

ConvNet VGG-16 ResNet-20
# Layers Accuracy% # Layers Accuracy% # Layers Accuracy%

MNIST 10 50,000 10,000 10,000 8 99.36 16 98.87 20 99.46
FMNIST 10 50,000 10,000 10,000 8 92.13 16 93.75 20 92.74
CIFAR-10 10 40,000 10,000 10,000 8 80.45 16 92.17 20 92.08
CIFAR-100 100 40,000 10,000 10,000 8 44.04 16 66.79 20 69.52

DAVE-2 and Chauffeur for self-driving cars are regression models so we exclude them in this table.

DNNs, ConfidNet attains the output. SELFORACLE on the
other hand utilizes a reconstructor for the loss and anomaly
detector. DISSECTOR generates probability vectors and per-
forms validity analysis2. SelfChecker and SelfChecker++
perform DNN-based computations, KDE-based inferences,
alarm analysis and advice generation. But they use different
advice mechanisms. We will also compare their deployment
time.
RQ6. Layer Selection: Does the choice of layers for selection by
SelfChecker++ have an impact on its alarm accuracy?

Cases where DNNs are able to attain the correct predic-
tion in layers prior to the final layer, i.e., "over-thinking",
is described as a prevalent weakness of DNNs by Kaya
et al. [41]. As aforementioned in Section 3, this can have
a negative effect as the correct prediction can then change to
the wrong prediction in the final layer. As such, it is of great
importance to select the most appropriate layers for each
class. In order to access the influence layer selections had on
the accuracy of the alarm, we implemented three selection
strategies (see Section 5.3: RQ6).
RQ7. Boosting Strategy: Does the boosting strategy improve
SelfChecker++’s alarm accuracy, particularly in terms of decreas-
ing the number of false alarms?

As aforementioned in Sections 4.2 and 4.4, we employed
a boosting strategy in order to determine if an alarm should
be raised.

5.2 Experimental Setup
We evaluated SelfChecker++ on the following datasets

- MNIST [42], FMNIST [43], CIFAR-10 [44] and CIFAR-
100 [44]. During the evaluation, we made use of three
commonly-used DNN architectures as well - ConvNet [45],
VGG-16 [46] and ResNet-20 [47]. Moreover, in the con-
straints of self-driving car scenarios that were tested on
NVIDIA’s DAVE-2 [7] and Chauffeur [48], we compared
SelfChecker++ against SELFORACLE [14] in terms of alarm
accuracy. To reduce the possibility of fluctuation caused by
randomness, we performed our experiments three times and
present an average of the three results. One exception to
this, however, is that we performed the experiments on the
driving datasets just once as we were using the pre-trained
models which SELFORACLE’s [14] authors released.
5.2.1 Datasets and DNN models

Table 2 depicts our datasets and their respective pa-
rameters (number of classes and dataset size) and their
performance (testing accuracy) on various DNN architec-

2. It should be noted that Wang et al. [15] only incorporated validity
analysis. However, being the input to validity analysis, we think that
probability vector generation should also be done during deployment.

tures. These are commonly-used image datasets and DNN
architectures. The DNNs include both small and large ar-
chitectures with layers ranging from 8 to 20. The accuracies
shown in Table 2 are similar to that of the state-of-the-art.
There are two modules in SelfChecker++ (Section 4). The
training module utilizes the training and validation datasets
whereas the deployment module utilizes the test dataset
when assessing the performance of SelfChecker++.

In experiments involving the driving datasets, the
datasets and models were shared by the authors of SELF-
ORACLE. Both DNN models had 37,947 and 9,486 training
and validation images, respectively. For testing, DAVE-
2 [7] had 134,820 images while Chauffeur [48] had 250,830
images. The reason as to why the testing images differ is
because self-driving cars (with the DNN models) gathered
them. Moreover as collisions and out-of-bound scenarios
halts the process, the number of images collected in the
end are bound to be different for both models. For their
architectures, DAVE-2 and Chauffeur have five and six
convolutional layers respectively. With regards to fully-
connected layers, DAVE-2 and Chauffeur have three and
one respectively.
5.2.2 Configurations

As mentioned in Section 4, all of the neurons which
had activation values with a variance less than tvar in
Algorithm 1 were filtered out. This is because they do not
contribute significantly to the KDE. The setting for all of the
RQ had a default variance threshold of 10−5. Furthermore,
utilizing Scott’s Rule [49], the amount of data points and
dimensions, the KDE’s bandwidth was set accordingly. Gra-
dient descent steps (L) and the number of random starts (R)
in Algorithm 4 are used to approximate the formulation (5)
in Section 4.3 to search for z∗. The default value of L was set
to 200 and R was set to 2. We selected these default values
by balancing the time consumption and accuracy. Increasing
them led to an exponential increase in time consumption
with only a minor improvement in accuracy. All of our
experiments were done on an Ubuntu 18.04 server with an
Intel i9-10900X (10-core) CPU @ 3.70GHz, RTX 2070 SUPER
GPU, and 64GB RAM.
5.2.3 Metrics

SelfChecker++ provides an alarm once it finds that most
of the selected layers do not agree (i.e., their KDE inferences
do not agree) with the output of the model. For mea-
surement, we utilize the standard confusion metrics: True
Positive (TP), False Positive (FP), True Negative (TN) and
False Negative (FN). A TP instance is where SelfChecker++
sets off an alarm when the model’s output is indeed wrong.
Conversely, a FN instance is where there is no alarm from
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TABLE 3
Alarm accuracy on unintended anomalies.

Dataset DNN ↑ TPR % ↓ FPR % ↑ F1 %
SO DT CN SC++ SO DT CN SC++ SO DT CN SC++

MNIST ConvNet 18.75 60.94 60.94 62.50 4.39 0.24 0.58 0.23 4.69 61.42 48.45 62.99
VGG-16 20.35 68.14 61.95 74.34 4.29 0.32 0.46 0.31 8.21 69.37 61.40 73.68

ResNet-20 33.33 46.30 50.00 59.26 4.45 0.39 0.50 0.32 6.99 42.37 41.22 54.24

FMNIST
ConvNet 9.53 47.65 38.12 41.55 5.60 4.03 0.73 0.51 10.89 48.92 51.99 56.33
VGG-16 8.00 48.48 43.36 46.88 5.75 4.16 0.98 0.86 8.24 45.98 54.86 58.66

ResNet-20 9.64 54.96 47.66 51.79 5.69 3.76 1.14 0.98 10.57 54.14 58.74 63.03

CIFAR-10
ConvNet 5.01 61.43 58.57 61.89 3.97 9.83 2.29 2.04 8.26 60.86 69.73 72.69
VGG-16 6.39 53.77 43.17 49.30 3.94 4.47 3.03 1.16 8.36 52.10 48.29 60.50

ResNet-20 7.07 47.98 49.87 52.15 3.96 4.93 1.03 0.64 9.23 46.74 61.62 65.35

CIFAR-100 ConvNet 30.20 73.20 82.49 92.32 26.98 18.57 63.90 48.46 39.89 77.94 70.87 80.12
VGG-16 10.48 82.78 78.20 84.22 7.88 23.78 16.17 6.57 16.59 71.79 74.22 85.31

ResNet-20 11.25 75.16 61.15 80.97 7.64 21.63 13.56 7.09 17.49 66.96 63.67 82.14

Driving DAVE-2 76.85 - - 99.01 7.29 - - 9.37 46.43 - - 49.88
Chauffeur 81.15 - - 93.44 4.77 - - 4.56 32.25 - - 37.25
SO, DT, CN, and SC++ stand for SELFORACLE, DISSECTOR, ConfidNet, and SelfChecker++, respectively.

SelfChecker++ when the model’s output is indeed wrong.
FP is for when SelfChecker++ wrongly raises an alarm and
TN is for when there isn’t an alarm raised by SelfChecker++
on correct classifications. Our goals are threefold - a high
true positive rate (TPR = TP / (TP+FN)), a low false positive
rate (FPR = FP / (TN+FP)) and a high F1-score (F1 = (2 * TP)
/ ((2 * TP) + FN + FP)).

5.3 Results and Analyses
This subsection now discusses our experimental results

and the research questions in detail.

5.3.1 RQ1. Alarm Accuracy
The TPR, FPR and F1-score for SELFORACLE, ConfidNet,
DISSECTOR and SelfChecker++ on each model and dataset
during deployment are depicted in Table 3. In addition, the
TP, FP, TN and FN metrics with respect to each model and
dataset are shown in Fig. 5. It is observed that compared
to SELFORACLE and ConfidNet, SelfChecker++ comes out
ahead in triggering correct alarms (TP) and misses fewer
true alarms (FN).

Considering average TPR on traditional DNN classifiers,
SelfChecker++, SELFORACLE, ConfidNet and DISSECTOR
attains 63.10%, 14.17%, 56.30% and 60.06% respectively.
This means that for over half of the misclassifications,
SelfChecker++ correctly raises an alarm and outperforms
the rest. More specifically, the highest TPR attained by
SelfChecker++ was 92.32% (i.e., SelfChecker++ found over
90% of the misclassifications). It should be noted that
DISSECTOR does attain a better TPR for four scenarios.
This can be attributed to the fact that like SelfChecker++,
DISSECTOR takes advantage of the internal layer features.
In particular, it uses multiple sub-models retrained on top
of the internal layers which could cause it to learn some
information which SelfChecker++ does not. Nonetheless, as
SelfChecker++ generally is better than DISSECTOR in TPR,
the extra information DISSECTOR has is limited to a cer-
tain extent. Furthermore, SelfChecker++ outperforms both
SELFORACLE and ConfidNet in terms of TPR over every
dataset and DNN combination. Since SELFORACLE does
not have internal information and ConfidNet looks at high-
level representations, we conclude that for the purpose of

identifying misclassifications, internal layer features are key.
Considering FPR, SelfChecker++ attains the lowest amongst
all the competitors except DISSECTOR checking ConvNet on
CIFAR-100. Having a lower FPR basically means that Self-
Checker++ sets off fewer false alarms. This is not surprising
as the boosting strategy mentioned in Section 4.2 allows
SelfChecker++ to be cautious when setting off alarms.

Lastly, SelfChecker++ achieves the highest F1-score for
all dataset and DNN combinations averaging at 67.92%
against 12.45%, 58.77%, and 58.22% for SELFORACLE, Con-
fidNet, and DISSECTOR, respectively. The reason SELFORA-
CLE exhibits poor accuracy on the traditional DNN classi-
fiers stems from the fact that it is primarily made for time
series analysis. More specifically, for video frame sequences
which inadvertently do not differ much over short time
spans. ConfidNet on the other hand suffers from overfit-
ting which would bring about performance limitations. The
original DNN model (which ConfidNet utilizes as a base for
it to be trained on top of) has its weights frozen and has a
loss based on a class’s true probability. Thus, not having a
significant amount of incorrect predictions from the training
dataset after training the original DNN model leads to over-
fitting. Moreover, as mentioned earlier in Section 5.2, due to
the fact that we consider wrong predictions as positive cases
and [13] instead considers correct predictions as positive
cases, the ConfidNet percentages in Table 3 do not match
the ones presented in [13].

With regards to the self-driving car experiments, we
modified the prediction of steering angles via regression
into binary classification of steering angles (i.e., normal
steering angle or anomalous steering angle). ConfidNet was
not used in the self-driving car experiments as true class
probability was its base. Similarly, DISSECTOR was not used
as both the first and second highest class probabilities were
required. With the validation dataset, we fit a distribution
(specifically Gamma) to the MSE of predictions and real-
valued angles, and the per layer density values (attained
from Algorithm 1). Taking ε from the distribution as 0.05
(similar to SELFORACLE), if the error for a single instance is
more than 0.05, it would then be categorized as an anomaly.
The same also goes for the density values which would be
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Fig. 5. Confusion metrics comparing the performance of all approaches.

predicted as an anomaly if less than 0.05. SelfChecker++ is
then utilized to solve the problem via binary classification.
Comparing SelfChecker++ and SELFORACLE in Table 3,
SelfChecker++ attains a better TPR across both driving mod-
els which means that SelfChecker++ sets off more correct
alarms. Furthermore, although SelfChecker++ is seen to set
off more false alarms with respect to DAVE-2, it sets off
more true alarms than SELFORACLE (201 as opposed to 156),
missing only 2 of them. SelfChecker++ also outperforms
SELFORACLE on DAVE-2 and Chauffeur in terms of F1-
score.

For RQ1, we showed that SelfChecker++ effectively triggers
alarms that predict misbehaviors of DNN models in deployment
with high TPR, low FPR and high F1-score.

5.3.2 RQ2. Detection of Adversarial Examples
Table 4 compares the accuracies of detecting adversarial

examples by DISSECTOR and SelfChecker++. We did not
use SELFORACLE and ConfidNet as baselines since these
tools were not designed to handle adversarial examples. By
contrast, DISSECTOR discussed its efficiency on identifying
adversarial examples with higher and more stable AUC val-
ues than all variants of mMutant [22] and Mahalanobis [50].

With regards to detecting adversarial examples, Table
4 shows that SelfChecker++ achieves much higher accura-
cies (with an average F1-score of 80.07%) than DISSECTOR
(average F1-score of 45.53%). For FPR, even though DIS-
SECTOR achieves lower FPR than SelfChecker++ in several
settings, on average, SelfChecker++ with 4.05% is still lower
than DISSECTOR with 5.79%. And in such settings where
DISSECTOR has lower FPR, its TPR is also very low. These
results indicate that SelfChecker++ can always detect more
adversarial examples (TP, which represents setting off cor-
rect alarms) and overlooks fewer true alarms (FN) than
DISSECTOR, indicating the effectiveness of SelfChecker++.

Even though DISSECTOR obtains good AUC results as
claimed in [15], its alarm accuracies are low and oscillate
when detecting adversarial example generated by different
tools. AUC measures how effective a technique is in dis-
tinguishing two kinds of data. But with a poor threshold,
the technique with higher AUC values will have poor de-
tection accuracy. The significantly different alarm accuracies
of DISSECTOR indicate this problem (we selected thresholds
for both DISSECTOR and SelfChecker++ from the validation

set). DISSECTOR works well when detecting adversarial
examples generated by ADAPT and PGSM on FMNIST and
works fine for RobOT on MNIST and FMNIST, but it works
poorly in other settings. This indicates that DISSECTOR is
sensitive to the selection of thresholds, while SelfChecker++
is much robust.

For RQ2, we conclude that SelfChecker++ is effective at detect-
ing adversarial examples with a high F1-scores and that it is
tolerant for a selection of thresholds.

5.3.3 RQ3. Advice Accuracy
Depicted in Table 5 is the accuracies on test and adversarial
examples for M , M+SC and M+SC++ which represents the
original model, original model with SelfChecker advice and
original model with SelfChecker++ advice respectively.

The results in Table 5 indicate that SelfChecker++ consis-
tently attains the highest advice accuracies with an average
value of 69.57% than M with an average value of 48.68%
and SelfChecker with an average value of 51.20%. The ad-
vice provided by SelfChecker is generated from the internal
layer features without any changes to the original model
(retraining, change of model architecture, etc). Therefore,
the improvement of the advice accuracy against the original
model is not significant. And it uses maximum voting on the
KDE inferred classes of selected layers to generate advice for
input triggering an alarm. This mechanism is unstable when
DNN models are attacked by adversarial examples since
layer outputs will be messy. SelfChecker++ uses GAN-based
transformation to synthesize new images similar to original
ones triggering alarms. And the generated ones retain the
general parts as the training data so that more conforming
to the the distribution of training data than original ones.
Beneficial from this, the perturbations introduced by attack-
ers in the adversarial examples are removed. That’s why
SelfChecker++ significantly improves the accuracy.

For RQ3, we conclude that SelfChecker++’s advice can signifi-
cantly improve the accuracy of the original models.

5.3.4 RQ4. GAN-based Transformation
Table 5 shows the accuracies of using GAN-based transfor-
mation on all test instances (M+GAN) without combining
the GAN with alarm analysis. The results show that the
accuracies of M+GAN average 55.27% and decrease sub-
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TABLE 4
Alarm accuracy on intended adversaries.

Dataset Metrics RobOT ADAPT PGSM PGD
↑TPR ↓FPR ↑F1 ↑TPR ↓FPR ↑F1 ↑TPR ↓FPR ↑F1 ↑TPR ↓FPR ↑F1

MNIST DISSECTOR 5.75 0.59 10.82 20.70 0.30 34.22 12.41 0.79 21.89 1.17 0.57 2.30
SelfChecker++ 55.88 0.74 71.35 73.48 0.76 84.36 64.35 0.93 77.79 39.83 0.71 56.65

FMNIST DISSECTOR 53.69 11.76 65.29 76.94 11.05 82.66 63.66 11.21 73.52 55.07 10.98 67.02
SelfChecker++ 77.28 7.31 84.00 84.59 7.70 88.57 72.31 7.73 80.85 66.73 7.65 77.06

CIFAR-10 DISSECTOR 45.24 5.07 60.54 33.78 5.85 48.73 36.74 5.80 51.16 17.31 5.55 28.19
SelfChecker++ 76.08 3.75 84.91 73.13 3.75 82.98 80.92 4.01 87.16 76.52 3.56 85.13

stantially as compared to SelfChecker++ (M+SC++) and
are sometimes even worse than M . The reason for this
is that the original model M is trained to generalize as
much as possible to all training data by considering some
feature correlations. But, the images generated by the GAN
remove features beyond the common training data distribu-
tion, losing important feature correlations. Therefore, using
GAN-based transformation on all data, especially data on
which M is confident, lowers performance. But, when using
the GAN on only those instances that trigger an alarm, as
SelfChecker++ does, the adversarial perturbations are more
likely to be removed and important feature correlations are
more likely to remain.

For RQ4, we showed that using the GAN-based transformation
on the entire dataset is inadequate. SelfChecker++ combines the
alarm analysis with the GAN-based transformation to achieve
higher accuracies.

5.3.5 RQ5. Deployment Time
In Table 6, we also compared the time needed by these

methods when checking a single inference instance from
each DNN classifier. The values in Table 6 for each DNN
classifier represent the average times across all datasets
mentioned in Table 3 which the classifier is associated with.
It can be observed that both SELFORACLE and ConfidNet
are the fastest. This is because these two methods utilize
two DNN models to compute the outputs. Nonetheless,
when it comes to alarm accuracies, these two methods are
behind the other methods listed in Table 6. On traditional
DNN classifiers, SelfChecker (average of 34.98ms) is faster

TABLE 5
Advice accuracy.

Acc Strategies RobOT ADAPT FGSM PGD

M

M 50.48 49.28 53.65 53.05
M+SC 56.25 52.93 54.93 54.05

M+SC++ 72.98 88.35 85.13 89.20
M+GAN 66.50 81.20 76.93 68.88

F

M 47.85 45.48 45.93 45.75
M+SC 51.50 51.93 46.08 45.73

M+SC++ 70.35 72.88 58.25 69.43
M+GAN 67.90 70.70 56.55 65.63

C

M 45.35 45.30 54.28 47.73
M+SC 47.28 48.00 57.33 48.38

M+SC++ 53.25 53.78 62.85 58.33
M+GAN 25.15 26.18 28.88 28.75

SC and SC++ stand for SelfChecker and SelfChecker++ respectively,
M, F, and C stand for MNIST, FMNIST and CIFAR-10 respectively.

than DISSECTOR (average of 50.47ms). For SelfChecker++,
once an alarm is triggered, the GAN-based transformation
is called to synthesize a similar image where a search is need
to find proper z∗. The time consumption of SelfChecker++
is the sum of triggering an alarm (close to SelfChecker)
and GAN-based transformation (GAN). So, SelfChecker++
costs the longest time where GAN takes the most but it also
achieves the highest accuracy.

TABLE 6
Deployment time.

Time (ms) SO DT CN SC GAN SC++
ConvNet 0.96 29.74 0.98 26.47 41.58 67.9
VGG-16 1.35 58.34 1.02 35.83 144.44 180.17

ResNet-20 1.79 63.33 1.36 42.63 217.26 258.75
DAVE-2 45.80 - - 67.78 - -

Chauffeur 42.66 - - 63.12 - -
SO, DT, CN, SC, and SC++ stand for SELFORACLE, DISSECTOR,

ConfidNet, SelfChecker, and SelfChecker++, respectively

We think that these timings are considered acceptable
over multiple application domains. For example, medical
image-based diagnosis or even airport security screening
can benefit from SelfChecker++. When considering real-time
applications such as self-driving car scenarios, SelfChecker
and SELFORACLE needs to do better in terms of latency.
It should be noted that when it comes to self-driving cars,
time taken to check is naturally high due to the fact that 32
frames are analyzed first before setting off an alarm. Though
efficiency is not the objective of this paper, we understand its
significance in cyber-physical systems. As such, we intend
to parallelize SelfChecker++ to make it more efficient, in
particular, using one process to estimate per class density
function. This would improve latency by 1/(number of
classes).

For RQ5, the deployment time is acceptable on safety-critical
applications that care about higher accuracy than time con-
sumption (e.g., processing, recognizing or diagnostics).

RQ6. Layer Selection
Aforementioned in Section 4.2 there was a need to selec-

tively choose the layers which were most applicable in order
to improve alarm accuracy and search-based optimization
was used to accomplish such a task. Table 7 depicts the
results for the VGG-16 and Chauffeur models on FMNIST
and self-driving car datasets respectively. The rest of the
model and dataset result combinations were omitted due
to the fact that they share similar properties. In total, we
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have three approaches when it comes to layer selection for
setting off alarms. We evaluate these three strategies with
respect to their accuracies. These strategies are random, full
and SC-layer (our own strategy mentioned in Section 4.2)
respectively. The random layer strategy, as its name sug-
gests, randomly chooses layers for every class (number of
layers selected per class are the same as the third strategy
to maintain fairness). The full layer strategy uses the entire
layer set. Lastly, the SC-layer strategy uses the validation
dataset to select layers. Moreover, to maintain fairness, these
three strategies did not utilize the boosting strategy.

TABLE 7
Impact of layer selection on alarm accuracy.

FMNIST TP FP TN FN ↑ TPR ↓ FPR ↑ F1
Random 280 482 8893 345 44.80 5.14 40.37

Full 209 230 9145 416 33.44 2.45 39.29
SC-layera 317 329 9046 308 50.72 3.51 49.88
Chauffeur TP FP TN FN ↑ TPR ↓ FPR ↑ F1
Random 112 3059 5180 10 91.80 37.13 6.80

Full 99 2596 5643 23 81.15 31.51 7.03
SC-layera 116 2978 5261 6 95.08 36.15 7.21

a SC-layer stands for SelfChecker++’s layer selection.

From Table 7, it can be observed that SC-layer attains the
best TPR and F1-score against the other strategies. It should
be noted that the full strategy attains the best FPR but at
the expense of TP (i.e., correct alarms) where it falls short
compared to SC-layer (108 for FMNIST and 17 for driving).
As such, increasing the amount of layers does not produce
a better checker.

For RQ6, we showed that a careful selection of layers allows
SelfChecker++ to identify more misclassifications and raise
more correct alarms.

RQ7. Boosting Strategy

TABLE 8
Impact of boosting on alarm accuracy checking ResNet-20.

FMNIST TP FP TN FN ↑ TPR ↓ FPR ↑ F1
SC-b 402 323 8951 324 55.37 3.48 55.41
SC 376 91 9183 350 51.79 0.98 63.03

CIFARa TP FP TN FN ↑ TPR ↓ FPR ↑ F1
SC-b 2571 930 6022 477 84.35 13.38 78.52
SC 2468 493 6459 580 80.97 7.09 82.14

a CIFAR stands for CIFAR-100

Table 8 compares the effect of the boosting strategy (men-
tioned earlier in Section 4.2) on SelfChecker++ in terms of
accuracy for ResNet-20 on two datasets. As with before,
the rest of the model and dataset result combinations were
omitted due to the fact that they share similar properties.
It can be observed that the boosting strategy (SC) attains
better FPR and F1-scores than the strategy without boosting
(SC-b).

For RQ7, we conclude that the boosting strategy significantly
improves alarm accuracy by reducing false alarms.

6 RELATED WORK
Studies that revolve around the trustworthiness of DL

models tend to concentrate more on the model engineering
aspect: generate adversarial test instances [26], [51], [52],
increase test coverage [53], [54], and improve robust accu-
racy [45]. Moreover, they are all dependent on manually
supplied ground truth labels which differs from our work
which checks the model during production itself.

6.1 Runtime Trustworthiness Checking
There has been some works in the SE community which

considered checking the trustworthiness of a DL model
during deployment. In particular, Stocco et al. [14] proposed
SELFORACLE in order to estimate the confidence of self-
driving car models. It is largely based on using the com-
bination of an autoencoder, probability distribution fitting
and time series analysis in order to locate the confidence
boundary of normal/unsupported conditions. They config-
ured it such that an alarm is set off once the confidence of
the model’s output goes below a threshold. The caveat is
that SELFORACLE was primarily designed for inputs that
were temporally ordered, like video frames, and that there
were performance limitations in regard to DNN types (see
Section 5). DISSECTOR by Wang et al. [15] could detect
inputs which deviated from those that were considered
normal. It made use of multiple sub-models in addition
to the pre-trained DL model for the sole purpose of val-
idating samples that were fed to it. However, generating
sub-models is extremely inefficient and DISSECTOR did not
provide a detailed enough schema for distinguishing inputs.

Moving over to the DL community, there are works
which propose state-of-the-art learning-based models so as
to measure confidence [13], [16], [17]. There are however
some caveats here as well as these learning-based models
can be untrustworthy and suffer from unwanted problems
such as overfitting etc. For example, [16], [17] used nearest-
neighbor classifiers in order to gauge a model’s confidence.
It is needless to say that scalability will always be capped
here with the primary bottleneck being the expensive nature
of computing nearest neighbors on complex models and
large datasets. Another example is ConfidNet as a confi-
dence model, proposed by Corbière et al. [13], is built on top
of a pre-trained model and learns the confidence criterion
based on True Class Probability to predict failures. When it
comes to effectiveness and efficiency, [13] outperforms [17]
by a significant margin. [13] however has limitations when
it comes to performance due to overfitting since the training
dataset it is trained on has few wrong predictions.

With the exception of [16], none of the aforementioned
papers suggest an alternative advice. This is where Self-
Checker++ surpasses them as it is able to achieve both
high alarm and advice accuracy by making use of a DNN’s
internal features.

6.2 Adversarial Examples Detection
Adversarial samples with small artificial perturbations

were generated by adversarial attacking techniques to fool
DL models, e.g., FGSM [26], PGD [40], DeepXplore [54],
DLFuzz [55], ADAPT [39], and RobOT [38]. FGSM and PGD
are traditional adversarial attacks based on the intuition
that the prediction of an input sample can be changed by
modifying its softmax value to the largest extent based on
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its gradient. DeepXplore by Pei et al. [54] is a white-box
differential testing framework to systematically find inputs
that can produce differential behaviors using gradient-based
search techniques. DLFuzz proposed by Guo et al. [55] uses
differential fuzz testing to maximize neuron coverage by
continually minutely mutating the input, and generating
more adversarial samples for a given DL system. Lee et al.
[39] proposed ADAPT to generate adversarial examples by
improving the multi-granularity neuron coverage metrics
defined in [56]. RobOT [38] is designed to generate adver-
sarial examples for robustness training by designing new
testing metrics based on the first-order loss that quantify
the importance of each test case with respect to the model’s
robustness.

Several studies focus on detecting adversarial examples.
Metzen et al. [57] trained a ‘detector’ sub-model from nor-
mal and adversarial samples. Besides, the behavior differ-
ence between an adversarial sample and a normal sample
in the softmax output is used for discrimination [11], [58].
Recently, Wang et al. [22] proposed mMutant to distinguish
between adversarial examples and normal ones based on
model mutation analysis with the assumption that the ad-
versarial samples usually lie around classification bound-
aries. In [15], DISSECTOR is shown to achieve broader
generalization and higher AUC values than mMutant. We
thus use DISSECTOR as the competitor when answering RQ2
in Section 5.3.

7 THREATS TO VALIDITY
Our experimental results demonstrate SelfChecker++’s

effectiveness. However, we acknowledge some threats to
the validity of our approach and experiments. We discuss
threats to internal validity, construct validity, and external
validity as suggested by Wohlin et al. [59].

For internal validity, SelfChecker++ is a layer-based ap-
proach that requires white-box access, leading to more lim-
ited power on shallow DNNs with few layers. For construct
validity, we used measures like TPR, FPR, F1-score that are
also used in [14]. Even though we showed in Section 5.3 that
AUC is insufficient to measure the detection ability, other
related measurements (e.g., AUPR-Error, AUPR-Success) are
interesting to explore in the future.

For external validity to our experimental conclusions, the
first one is our selected three DNN models (ConvNet, VGG-
16, and ResNet-20) and four datasets (MNIST, FMNIST,
CIFAR-10, and CIFAR-100) that we used to evaluate the
effectiveness of SelfChecker++. We tried to alleviate this
threat as follows: (1) the four datasets have been widely
used in prior research [13], [15], [38] and have different
topics, labels (from 10 and 100), and scales (60,000 and
70,000 samples); (2) the three DNN models are famous
with different model types, number of layers (8-20), and
model accuracies (66.79%-99.46%); (3) the inclusion of self-
driving datasets and models further generalizes our work
beyond existing techniques that only consider traditional
DNN classifiers [13], [15] or self-driving car scenarios [14];
(4) we use adversarial examples generated by four tools
to evaluate SelfChecker++’s detection accuracy while DIS-
SECTOR only uses one tool. Therefore, our experimental
conclusions should generally hold.

The second external validity concern is the selection

of competing tools. To mitigate this, we compare Self-
Checker++ with SELFORACLE [14], ConfidNet [13], DIS-
SECTOR [15] and SelfChecker [23] that are representative
and the latest tools in this space (published during 2019–
2021). Besides, we always selected the best variant from
SELFORACLE and DISSECTOR as competitors.

The third external validity concern comes from the im-
plementation of DISSECTOR. How to build and train sub-
models for different DNN models in DISSECTOR is not
published. We implemented this part according to the de-
scriptions presented in [15] and achieved close AUC values
for the same settings as [15]. But, we acknowledge that the
results may differ and depend on the architectures of sub-
models for different DNN models.

8 CONCLUSION
DNNs are being adopted in a variety of domains. But,

when utilized in safety- and security-critical contexts, there
is a need to monitor as well as to check their outputs:
their probabilistic nature means that DNNs would unavoid-
ably choose the incorrect decision on some inputs (either
unintended anomalies or malicious inputs). In this paper
we hypothesized that features in internal layers of a DNN
can be used to construct a self-checking system to monitor
DNN outputs. We detailed the design of a system which
addressed this, SelfChecker++. Using SelfChecker++ we
conducted experiments to check three neural networks on
four datasets. The networks in particular were ConvNet,
VGG-16, and ResNet-20. The datasets on the other hand
were MNIST, FMNIST, CIFAR-10, and CIFAR-100. For unin-
tended anomalies, SelfChecker++ provides accurate alarms
with accuracy of 63.10% and has an F1-score of 67.92%.
This is also the best score, 9.15% more than the runner
up, ConfidNet. With respect to self-driving cars (i.e., DAVE-
2 and Chauffeur), SelfChecker++ was also put to the test
against the state-of-the-art technique (i.e., SELFORACLE). It
was then observed that SelfChecker++ raised more right
alarms and were comparable in wrong alarms. When eval-
uated on adversarial examples, SelfChecker++ can detect
around 70.09% of adversarial examples, which is 34.88%
more than DISSECTOR and SelfChecker++-generated advice
is able to increase the accuracy of the original model by at
most 39.07%.
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