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Qian Li , Yong Qi, Member, IEEE, Qingyuan Hu, Saiyu Qi , Member, IEEE, Yun Lin , and Jin Song Dong

Abstract— Adversarial Examples threaten to fool deep learn-
ing models to output erroneous predictions with high confidence.
Optimization-based methods for constructing such samples have
been extensively studied. While being effective in terms of aggres-
sion, they typically lack clear interpretation and constraint about
their underlying generation process, which thus hinders us from
leveraging the produced adversarial samples for model protection
in the reverse direction. Hence, we expect them to repair bugs
in the pre-trained models by produced additional training data
equipped with strong attack ability rather than time-consuming
full re-training from scratch. To address these issues, we first
study the black-box behaviors and the intrinsic deficiency of
neighborhood information in previous optimization-based adver-
sarial attacks and defenses, respectively. Then we introduce
a new method dubbed FeaCP, which uses correct predicted
samples in disjoint classes to guide the generation of more
explainable adversarial samples in the ambiguous region around
the decision boundary instead of uncontrolled “blind spots”,
via convex combination in a feature component-wise manner
which takes the individual importance of feature ingredients
into account. Our method incorporates the prior fact that for
well-separated samples, the path connecting them would go
through model’s decision-boundary that lies in a low-density
region, however, wherein adversarial examples are spread with
high probability, thus having an impact on the ultimate trained
model. In our work, the path is constructed by proposed inhomo-
geneous feature-wise convex interpolation rather than operating
on sample-wise level, limiting the search space of FeaCP to obtain
an adaptive neighborhood. Finally, we provide detailed insights
and extend our method to adversarial fine-tuning using vicinity
distribution to optimize the approximated decision boundary, and
validate the significance of our FeaCP to model performance. The
experimental results show that our method provides competitive
performance on various datasets and networks.
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I. INTRODUCTION

FOR quite a few years, deep learning systems have
persistently enabled significant improvements in many

application domains, such as object recognition from vision,
speech, and language and are now widely used both in research
and industry. However, recent studies have shown that these
systems are vulnerable to adversarial examples [1]–[4]:
deep neural networks with nearly perfect performance
provide incorrect predictions with very high confidence
when evaluated on perturbations imperceptible to the human
eye. This raises serious concerns about the security of deep
learning models in many real-world applications, especially in
security-critical tasks, including but not limited to autonomous
vehicles [5], health care [6], and biometric recognition [7].

To this end, various defensive techniques against adversar-
ial examples in deep neural networks have been proposed
[1], [2], [8]–[15] and many remain vulnerable to adaptive
attackers [3], [16], [17]. It was shown that adversarial training
[2], [10], [14], [15] is by far the most popular and appears
to hold the greatest promise for learning robust models. The
key idea of adversarial training is to increase robustness by
augmenting training data with adversarial examples. The initial
and important step in adversarial training is to choose an attack
model for adversarial example generation.

Although being successful, we have observed two limita-
tions, viz., (i) Adversarial training relies on strong assumptions
about the process for generating adversarial examples and
conform to small neighborhood of data only, and suffers
the distortion of the decision boundary for the reason that
they only import adversarial examples against some specific
types of attacks. (ii) The powerful optimization-based attacks
lack clear interpretation and constraint about their underlying
generation process which is often exposed as a black-box
procedure emphasizing solely on the misbehaviours of neural
networks, without incorporating any priors to regularize that
generation or establishing a connection with the predictive
pattern of models, although not all crafted samples are equally
important to model performance. This hinders us use their
most powerful aggression ability, which is also valuable to
harden model in the reverse direction of attacking in our view.

Overview of Our Approach: In this work, the defects of
optimization-based attacks are presented in terms of explain-
ability about the generation of adversarial examples, we then
introduce a method, feature-wise convex polytope attack
referred to as FeaCP, to seek adversarial samples in the
surroundings of decision boundary with much calibration on
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existing regions of blind spots in neural networks, which
focus primarily on enforcing constraint on locations of the
produced samples, in order to control the generation for the
purpose of model defense instead of attack ability purely.
Compared to the linear interpolation on sample-level, our
feature-wise polytope as adversarial neighborhood can cover
more feasible adversarial space which considers the diversity
of feature importance in data. FeaCP formulated as a con-
strained optimization problem, aims to find the optimal convex
combination among the fine-grained features in the source
sample and guide samples of disjoint classes, neither in the
small nor large neighborhoods but being adaptive according to
the inherent relative positions in input space. Then using the
vicinity distribution of eventually found adversarial instances,
we propose a simple adversarial fine-tuning technique to opti-
mize the learned decision boundary to improve the robustness,
even help model out from stucked local minima, whose effec-
tiveness strongly depends on the distribution of adversarial
examples w.r.t the decision boundary.

More specifically, we make the following main contributions
in this paper

(i) We analyze the defects of the optimization-based gen-
eration of adversarial attacks, which lacks explanation
about how and where it finds them, whether they are
significant to the performance of the final trained model.
Besides the mixup manner in which samples are interpo-
lated, severely ignoring the feature importance but with
all identical proportions is illustrated. It motivates us
to propose an inhomogeneous feature-wise interpolation
scheme to construct convex polytype as search space
of adversarial samples in feature space, wherein local
ambiguous buffer regions are contained crossing the
decision boundary in principle.

(ii) The instances around learned decision boundaries are
significant to the generalization capability of the model.
Then we propose a simple but effective method called
FeaCP to probe critical adversarial samples in that
ambiguous area of the targeted model for defense pur-
pose, using well-predicted instances in disjoint classes
by the aforementioned feature fusion technique, which
emphasize the diverse importance of features for learn-
ing tasks. Also, our method allows us to explore the large
feature polytope with more flexibility in the optimization
process.

(iii) Due that our produced samples are constrained nearby
the decision boundary, their vicinal samples are sup-
posed to be crucial to model performance. Utilizing the
similarity of vicinity distribution, we further extend our
method to adversarial fine-tuning so as to optimize the
learned boundary to improve the robustness of without
re-training of high computation cost.

(iv) We conduct extensive experiments to evaluate our
method. The empirical results show that our proposed
approach can significantly improve the robustness of
various network architectures. In general, it shows
tempting performance improvement on both clean and
perturbed-data accuracy, in comparison to the other
defense methods.

TABLE I

SYMBOLS AND NOTATIONS USED IN THIS PAPER

The remainder of this paper is organized as follows.
In Section II, we introduce the background and related
literature. The proposed method and its analysis are described
in Section III. In Section IV, we evaluate the performance of
proposed methods on standard datasets and neural network
architectures. We conclude in Section V. All the symbols and
notations used in this paper are summarized in Table I unless
otherwise stated.

II. BACKGROUND AND RELATED WORK

Several state-of-the-art adversarial attack methods and
defense methods, which will be investigated in this work, are
briefly introduced as follows.

A. Adversarial Attacks

Enormous adversarial attack methods have been proposed
to fool trained neural networks by introducing barely invis-
ible perturbation on the input data. Here, we focus on two
main categories: gradient-based attack and optimization-based
attack.

The gradient-based attacks require the differentiability of
targeted model. Then, by adding the perturbation along the
direction of the gradient, the adversarial example is generated.
The Fast Gradient Sign Method (FGSM) [2] calculates the sign
of gradient of the loss function with respect to the input, then
generates a small perturbation by multiplying a chosen scale
factor. Based on that work, Madry et al. [10] leverages the
randomly initialized basic iterative method (BIM) [18] and
presents a multi-step variant FGSM which they refer to as
Projected Gradient Descent (PGD). In [19] the momentum
is integrated into the iterative update of gradient direction
to boost adversarial attacks. Further, the authors extend it to
attack an ensemble of models.
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The optimization-based attack defines the attacking task
as an optimization problem, whose purpose is to minimize
the perturbation norm and make the DNN model misclassify
adversarial examples simultaneously. The L-BFGS attack [1]
is an earliest method designed to fool models, the goal of
which is to find adversarial example x ′ as follows:

minmize a · ∥∥x − x ′
∥∥2

2 + L( f (x ′; θ), t)

s.t. x ′ ∈ [0, 1]n , (1)

where elements of x are normalized to [0, 1], and t is the
target misclassification label. Further, Carlini and Wagner [3]
introduce a family of attacks to find adversarial perturbations
that minimize diverse similarity metrics: L0, L2 and L∞. The
core insight is transforming the non-linear optimization prob-
lem with hard constraints similar to Eq. (1) into unconstrained
optimization problem, by empirically selected surrogate loss
function utilizing the change of variables.

B. Adversarial Defenses

1) Gradient Mask: The strategy of gradient obfuscation
is applied to hide the true gradient information [20], thus
sensitive direction of perturbation is not easy to construct
accompanied with increased budget of attack solution. The
gradient mask is very flexible and may happen at differ-
ent stages of model execution, such as data compression
and encoding in the data processing stage, randomization of
ensemble models in test time [21], even with the stochastic
activated units [8].

Yet, these methods come with the increase of model com-
plexity and more importantly, the gradient mask is still not
effective and reliable since an attacker can use the continuity
of the model prediction to obtain approximated gradient infor-
mation through a local substitute model by finite difference
calculation [20] to achieve the purpose of intended attack.
In fact, defenses that induce gradient obfuscation may not
provide actual robustness [20], [22]. Therefore when evalu-
ating a new defense, we should ensure it have not led this
ill-behaviour.

2) Adversarial Training: Another common method is adver-
sarial training [2], [23], first proposed by Szegedy et al. [1],
which is by far the most popular defense approach. The key
idea of adversarial training is to add adversarial examples
to the original training data in each iteration, and use a
weighted loss function for the two types of samples to optimize
parameter updates [10]. Madry et al. [10] perform adversarial
training using Projected Gradient Descent (PGD), a universal
“first-order adversary” that follows the gradient of the model’s
loss function for multiple steps to generate an adversarial
example. Tsipras et al. [24] identify a trade-off between
the standard accuracy and adversarial robustness of a model,
which stems from intrinsic differences between the feature rep-
resentations learned by standard and robust models. In recent,
TRADES [25] as an optimizing regularized surrogate loss,
is proposed to encourage the algorithm to maximize the natural
accuracy and to push the decision boundary away from the
data, and the robustness and generalization are decoupled.

Adversarial training can be regarded as the optimization
problem of the min-max saddle point [26] under the L p norm
metric on the input space. This method considers the model
prediction in the worst-case of perturbation on the sample,
to maintain the stability of model behaviours in local sense.
However, adversarial training relies on the crafting method
of adversarial samples, so it often has better defensive perfor-
mance against specific types of attacks but without a guarantee
to resist other attacks. Besides it increases training time by an
order of magnitude over standard training making it difficult to
scale to much larger networks. Several approaches [15], [27]
have been proposed to make it fast without scarifying signifi-
cant defense capability. On other hand, [14] tries to figure out
its working mechanism by establishing a connection with the
margin theory in traditional machine learning, and further pro-
pose a training method to directly maximize the classification
margin of neural networks in input space.

III. METHODOLOGY

In this section, we first briefly review the optimization-based
attacks and robust adversarial training for defense. We then
describe our proposed attack, called FeaCP, and explain its
connection with the decision boundary of the model. Finally,
we extend our method to adversarial fine-tune to enhance
robustness of model, validating the interpretation of generated
adversarial samples indirectly by FeaCP.

A. Optimization-Based Adversarial Examples

The optimization-based attacks often formulate the gener-
ation of adversarial samples as a constrained optimization as
follows.

max
x′

L( f (x′), y), s.t.
∥∥x − x′

∥∥ ≤ ε. (2)

The goal of Eq. (2) aims to maximize the misclassifica-
tion probability via proxy loss function that measures the
performance of model on chosen data under perceptibility
budget ε, i.e., untargeted attack. When the objective is changed
to minimize loss with respect to incorrect classes, it would
become the so-called targeted attack, as shown in Eq. (3).

min
x′

L( f (x′), yt ), s.t.
∥∥x − x′

∥∥ ≤ ε. (3)

The solving processes of both Eq. (2) and Eq. (3) represent
the search of adversarial samples in input space e.g., L-BFGS
attack [1], noticeably, some of which have achieved state-of-
the-art performance in terms of the aggression. Despite being
stronger in comparison to gradient-like attacks, FGSM [2],
JSMA [28], and PGD [10] for instance, in which the gradient
information is used to find the perturbation direction, their high
computational cost hinder us from finding more adversarial
samples, preventing us ulteriorly from performing adversarial
training or fine-tuning to enhance the security and reliability of
deep learning models. In other puts, we can not efficiently use
these powerful attacks to harden our training and deploying
models in reverse research direction of defense since no
derived critical samples can be obtained from the limited blind
adversarial examples which are of no conjunction with the
model robustness.
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The major causes for the overhead of the optimization-based
attacks are the high dimension of input and the laborious
modulation for extra parameters such as Lagrange multi-
pliers [26], to guarantee the generated instances x′ to be
adversarial. To make things worse, the crafted adversarial
examples through which lack proper explanations not only
about their existence but also the distribution of untouched
blind area in training stage, which would make sense in
helping us understand and mitigate the vulnerability of deep
learning. For example, the L-BFGS attack minimizes Eq. (1),
however the locations of the produced adversarial examples
remain unknown in input space without any consideration
about the learned classification boundary in its optimization
process. So for each adversarial input, a similar optimization
problem in Eq. (1) has to be solved repeatedly, which is
clearly prohibited for the fast generation of massive adversarial
examples for adversarial training or re-training. Therefore,
we wonder if the region of produced adversarial examples can
be connected to model’s decision-boundary in its construction.
Moreover if more adversarial candidates can be derived from
single one hard optimization rather than one-to-one way so as
to derive more representative samples from enhancing model
performance.

B. Optimization-Based Robust Adversarial Training

Adversarial defense can be viewed as a distributionally
robust optimization problem [26]. More explicitly, the training
objective on the shifted distribution X ′ of the original X is
written as:

arg min
θ

sup
X ′

EX ′
[L(x ′, y ′)

]
s.t. Wc(X ′, X) ≤ ρ, (4)

where the constraint depicts the robustness region under the
Wasserstein metric Wc. The above Eq. (4) is often solved in
an approximate method such as Lagrange relaxation due to the
intractability for arbitrary distance ρ and the hard constraint.

While performing better for small perturbation experi-
mentally, i.e., in the small neighborhood around the input,
the robustness in the large neighborhood is not well-
guaranteed. According to [29], however, the information from
larger neighborhoods, both in more directions and at greater
distances is beneficial to the improvement of robustness,
which indicates that the boundaries around those adversarial
examples do not resemble the boundaries around the benign
examples in their proposed OPTMARGIN method. Similarly,
in another recent work [30], proved that robust adversarial
training limited on the small balls and square areas in Eq. (4)
is sample inefficient, and construct a Voronoi constraint to
remedy the p-norm constraint.

So far, the study of the adversarial robustness has mostly
been concerned with the setting of small vicinity of training
samples or ε-adversaries, not considering the importance of
samples relative to the form or learning of the model’s decision
boundary and the gap area of different classes, thus lead to
sub-optimal or improper decision boundary for generalization.
In such sense, it motivates us to search adversarial samples

close by the complex decision boundary in terms of their
impacts on learning, rather than confine us in the small
perturbation range.

C. Proposed FeaCP

In this section, we introduce an interpretable white-box
method called FeaCP to generate adversarial samples in
high dimensional buffer zone that separates different classes,
in conjunction with the decision boundary [31], neither
focusing on low-dimensional subspace nor overconservative
norm balls [10], [29], since both of which are non-adaptive
to the diverse neighborhood distances. Our method can be
formulated as an optimization problem, aiming to find more
informative adversarial examples in areas that have strong
impacts on the model’s performance.

1) Inhomogeneous Feature-Wise Interpolation: Although
the decision boundary is informative, unfortunately, the high
non-linearity and complex transformation structures of deep
neural network [29], [32] make its inaccessibility. Therefore,
we propose to use well-classified samples being in disjoint
classes to probe that ambiguous area by constructing fea-
ture importance-aware convex polytope, an embedded sub-
manifold in input space, then in which to search representative
adversarial examples.

In a nutshell, our method constructs candidate adversarial
examples with constrained variables,

I(λ) = λs � I s +
M∑

i=1

λi
g � I i

g, (5)

where λs and λi
g are tensors of coefficients with the same

shape as the input, λ =
{
λs ,λ

1
g, · · · ,λM

g

}
and subject to

λ
q
s +

M∑
i=1

λ
iq
g = 1. (6)

In other words, each feature of synthetic samples is the
convex combination of associated features in guide and source
samples, and this manner can provide sufficient flexibility on
the per-feature perturbation in the process of the seeking of
blind spots in neural networks. Considering the diverse feature
importance [33]–[35] which means different discriminative
ability for learning task, we adopt the feature-wise manner
a.k.a. inhomogeneous, instead of sample-wise combination,
i.e., the same proportional linear interpolation for all features
in input or latent space [36], [37], which search samples
along the segment in input space as demonstrated in Fig. 1.
The Feature-wise combination allows more dedicated control
about the feature interpolation, and the optimizable coefficients
can reflect the detailed information about the adversarial
perturbation.

Mixup [36], [37] is mainly used as a data augmentation
technique in training stage, however the purpose of our method
is to find adversarial or critical examples nearby the decision
boundary for adversarial defense. Moreover, Mixup is a
sample-wise interpolation which neglects the individual attri-
bution importance. In contrast, our method uses feature-wise
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Fig. 1. A high-level illustration of the difference between inhomogeneous
convex feature-wise interpolation and sample-wise interpolation. We depict
convex combination coefficients whose range is [0, 1] in red dots and blue
and green dots describe source and guide respectively.

Algorithm 1 Approximate Optimization of Eq. (11)
1: Initialization λ s.t. λ satisfy equality constraint Eq. (6)
2: Initialization ω according to (i) or (ii)
3: for j ← 1 to niterat ions do
4: ω j ← normalize ω j−1 using softmax
5: λ j ,ω j ← solve Eq. (11) using any optimizer for box

constraint problem such as L-B FGS-B with limited
update iterations

6: λ j+1 ← normalize λ j using weighted average
7: end for
8: return λ� = λ j+1, ω� = ω j+1

interpolation for the search samples in the ambiguous regions
around the decision-boundary and optimizes the convex
combination coefficients instead of pre-assigning the strength
of feature fusion for all attributes homogeneously. In our
method, the proposed interpolation scheme is used for path
construction to apply the prior knowledge that path connecting
the well-recognized samples being in disjoint classes cross the
decision boundary, and constrain the locations of found blind
spots of neural network in the convex polytope. The generated
samples are then used to re-optimize the learned boundary
locally. Despite its simplicity, it allows a strong explanation
about the generation and existence of the adversarial examples
in the notion of the decision boundary.

2) Proposed Objective: Before delving into the optimiza-
tion objective, we formally state the definition of the adver-
sarial direction and perturbation.

Definition 1 (Adversarial Perturbation): Let I s , I(λ) be
source sample and its adversarial counterpart. Then the adver-
sarial perturbation p is the difference between them, often,
measured by �p-norm,

p = I(λ)− I s . (7)

Definition 2 (Sample Guided Adversarial Direction): Given
a set G, inhomogeneous feature-wise interpolation forms the
guided adversarial direction d

ddd =
M∑
i

((λλλi
g � (1− λλλs))� III i

g)− III s (8)

which is the difference between the guide and source samples
like in the vector space, parameterized by the combination

coefficients λ. Generally, the adversarial example will be found
along that direction d. To make Eq. (7) more sense and clear,
expand the term I(λ), Eq. (7) then can be written as:

p =
M∑

i=1

λi
g � (I i

g − I s). (9)

Thus the perturbation is shown to be constructed as a weighted
sum of each individual guide direction I i

g − I s in which λi
g

depicts the adversarial noise on each feature of i -th sample
in G. It is noteworthy that the coefficients are to be optimized
such that it reverts the prediction of model. Hence, they are
the crux of our method.

Now, the search of adversarial example in the transitional
area nearby the decision boundary can be represented as the
following optimization problem:

λ∗,ω∗ = arg min
λ,ω

M∑
i=1

ωiL( f (I(λ); θ), ygi )

s.t. ‖I (λ)− I s‖∞ ≤ ε, (10)

which is an adaptive weighted sum of loss over the label
set of guide samples, within each proxy classification loss
measures the degree that produced adversarial examples would
be classified as the category represented by the corresponding
label. More importantly, the weights ω are purposely set to
be optimizable so as to modulate the deviation biased to i -th
guide sample. When M = 1, i.e. only one sample is used as
guide, Eq. (10) can be compactly written as below,

minimize
λ

L( f (I(λ); θ), yg)

s.t. 0 ≤ λ j ≤ min

(
ε∣∣Ig j − I s j

∣∣ , 1

)
, ∀λ j ∈ λ, (11)

where I g j and I s j denote the j -th feature component in Ig
and Is respectively. And the general constraints in Eq. (10)
become more specific to the optimizable variables which are
box constraints. As such, Eq. (11) can be solved flexibly
in approaches mentioned in [3]. The gradient of objective
w.r.t λ can be computed as follows:

∂L
∂λ
= ∂L

∂ I(λ)
� (

Ig − I s
)
. (12)

In Eq. (12) the first term ∂L
∂ I(λ) can be obtained through

the automatic differentiation mechanism provided in current
deep learning frameworks and is the main update signal in
the optimization process since the second term that is the
difference of source and guide is a fixed constant, determined
by the selected guide. When M ≥ 2 i.e., multiple samples in
disjoint classes are used to probe the more complex crossing
areas in classification boundary, instead of naively solving
problem Eq. (10), an alternative formulation like in [3] is used
but we have to deal with the extra constraints that limit the
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perturbation on each feature:

minimize
λ,ω

‖I(λ)− I s‖∞ + c
M∑

i=1

ωiL( f (I(λ); θ), ygi )

s.t.
M∑

i=1

ωi = 1, λ
q
s +

M∑
i=1

λ
iq
g = 1,

0 ≤ λ
q
s ≤ 1, 0 ≤ λ

iq
g ≤ 1. (13)

where c > 0 is a chosen constant [3]. If there are no
equality constraints, Eq. (13) then allows us to choose similar
optimization solvers used in solving Eq. (11), since both would
have the same optimization structure. Consequently, to ensure
the updates on λ yields a valid convex combination, we use
normalization techniques to tackle the equality constraints.
However perform standard update procedure of optimization
algorithm for box constraint problem with limited iterations,
ignoring the equality constraints in Eq. (13) at first, then
impose the validness of combination coefficients by normaliz-
ing the sum to 1, as shown in Algorithm 1 in which soft-max
and weight average are respectively utilized for weights on
losses and convex combination coefficients.

For each sample, the decision boundary distance to the
most adjacent class relative to it is more crucial [38]–[40]
as it determines the hardness to lead error classification.
Further, the hardness to lead different targeted misclassifica-
tion differs [28] because of the locations of samples on the
data manifold are different. Weighting the losses in Eq. (10)
can adapt to it using the structured distribution of initialized
weights. Specifically, consider two cases:

(i) Sample M random values with one peak as targeted
attack prior.

(ii) Sample M identical fair values for untargeted attack.
In the process of iterative solving Eq. (10), the soft-max
is applied at the beginning of the iteration. Exponential
non-linearity in the soft-max boosts the large pre-weights
relatively to the smaller ones a lot [41], thus yields a stronger
competition between pre-weights and a more targeted attack
behavior. On the other side, as the M increases, it is possible
that the resulting ability to more precisely single out a few top
winning classes becomes increasingly crucial.

Essentially, the targeted class in the case (i) initially has
more weight than others. If this prior bias is improper, in other
words, the intended attack may not succeed, but our method
can mitigate the embarrassment via updating weight bias
automatically. Compared with the static weights, this manner
can bring out more auto-exploration in the feasible region
during the optimization process.

3) Insights Behind Our Designs: The key idea behind
Eq. (10) is to implicitly utilize information of the model’s deci-
sion boundary, to offer better explainability in the construction
of adversarial examples based on optimization instead of
post-hoc interpretation. In the most trivial case, two-class
linear classifier f (x) = sign(ωT x + b), the boundary is
a hyper-plane and the distance from any input x to it is∣∣ωT x + b

∣∣ / ‖ω‖2. No perturbation with �2 norm less than this
distance possibly change f ’s prediction. In the general multi-
classification, however, the minimal distance to local part of

decision boundary that separating another class is the threshold
of adversarial perturbation for target attack. Unfortunately,
the boundary usually don’t have explicit form for complex
neural networks.

Optimal Decision Boundary Versus Global Minima: The
optimality of the decision boundary means it should separate
all unseen samples. In such sense, no adversarial samples
exist, or no adversarial noise can be detected. Unfortunately,
the optimal decision boundary D∗ is usually unknown, which
is uniquely decided by the unknown global minima θ∗ of
model approximated on a finite set of data by minimizing
the empirical risk. Because the neural network is highly
non-convex with large parameter space, L often has multiple
global minima and local minima but minimizing it using sto-
chastic gradient methods converges to the closest one relative
to the initial parameters θ0 if not stuck in local minima [42]:

θ∗ = arg min
θ∈G
‖θ − θ0‖ , (14)

where G is the set of global and local minima, ‖·‖ is a
norm-based distance measure such as L2-norm. For already
trained model, the resulting parameters θ̃ may not be optimal
but have strong generalization on the test set, which indicates
its corresponding boundary D̃ is sufficiently okay, except
some local parts that are required to be further optimized
and fine-tuned for robustness enhancement, enhancing the
resemblance of approximated decision boundary to the optimal
version. Under delicate search in the buffer zone of the neural
network, we could find the samples that should have been
correctly classified but not yet, i.e., adversarial samples.

Probe the Critical Points: We indirectly gain the information
about the model’s decision boundary and the crossing buffer
regions, i.e., the gap area that separates the classes, via the
feature-wise combination of well-classified training or test
samples in disjoint classes. Within these regions, the amount
of mis-classified samples reflects the fine-grained quality of
model’s learned boundary with respect to D∗ although both
are generally similar. Using that, we construct a parameterized
adversarial direction to guide us to discover informative points
that significantly impact the performance and robustness of
model [29], [38], [40], e.g., saddle points, support vectors. For
instance, in the traditional SVM model, the support vectors
uniquely decide the optimal hyper-plane and maximal margin.
For pre-trained networks, making the weights θ̃ converge to
the optimal θ∗ more thus depends on them in these regions
and on which by fine-tuning, the boundary can be modulated
such as pushing it away from the source or guide. Since
those almost lie in that ambiguous region, we choose guide
samples of different categories to restrict the feasible region
for Eq. (10). Notably, multiple disjoint guide samples are used
to detect the complex crossing regions about which we in
fact have no idea, so as to find diverse adversarial samples
that would helps more in the fine-tuning procedure for model
defense.

Comparison With Previous Methods: Previous optimization-
based methods like C&W produces adversarial samples in
some unknown blind corner, regardless of whether produced
samples are tied to some part of decision-boundary in more
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Fig. 2. A conceptual illustration of the proposed method. Left: A set of clean points that can be easily separated with a simple (in this case, linear) decision
boundary. Middle: Conventional adversarial training approximates the adversarial decision boundary in small neighborhoods (here, �∞-balls) of data points
while many data points (in purple squares) are not relevant to the model’s performance without effectively constructing adaptive neighborhoods. Right: The red
dots represent more decidable points obtained using FeaCP, which focuses on exploration in the decision regions denoted by the dotted red confined shape on
the boundary of the targeted classifier. The dotted curves denote the search of adversarial examples with disjoint classes in adaptive neighborhood regardless
of long or short distances, and FeaCP eventually finds the critical points around the boundary which have strong correlations with model’s performance such
as adversarial robustness.

details. By contrast, our method provides explainable hints
on the positions of adversarial examples by the adversar-
ial direction, explicitly taking the significance of adversarial
examples respect to the targeted model into consideration in
their construction, e.g., whether they are crucial to model’s
performance. Meanwhile, the direction related to the guides
which represents different categories could locate different
parts of boundary needed to be optimized. This characteristic
is important to the success of fine-tuning since it can help
us check and optimize the boundary widely. Apart from
that, the resulted fusion coefficients suggest the individual
importance of feature components in guides in terms of
maliciousness to targeted source when the guides are viewed
as reference, and the displacement of the source towards the
nearest part of boundary w.r.t. the guide with highest weight
would be relatively clear.

Opposed to FGSM-like methods such as PGD attack, we do
not try first to find the most sensitive perturbation direc-
tion, then to craft adversarial samples with a modulation
of small-scale noise factor such that the loss is maximized
after perturbation, i.e., the new sample crosses the decision
boundaries of the model to a new classification region. FeaCP
combines the two separate steps into one. Specifically, the
direction and magnitude of perturbation are jointly optimized
and found, both are embedded in the combination coeffi-
cient. On the other hand, FGSM-like methods conform the
search space of adversarial examples on local neighborhood
solely without considering the decision-boundary information
explicitly in their craft procedure, having not tried to search
adversarial example in the transitional areas of classes we care
about. However, using the assigned guide samples, we instead
probe adversarial samples inside them by constructing the
convex polytope and expect to obtain more decidable points
either in the large or small neighborhood of source sample I s ,
determined by their inherent relative distance. That is to say,
our approach can achieve different neighborhood explorations
with adaptive distance respect to the source and needs not to
estimate the distance to decision boundaries like using random
search direction [29]. To gain intuition, the above approach is
illustrated in Fig. 2.

D. Adversarial Fine-Tuning

The distribution of adversarial samples Padv in the gap area
is unknown but can be approximated using the mixtures of
Gaussian vicinities [37], [43] centered at the produced infor-
mative adversarial sample because they have similar semantic
information and should distribute densely in the feature space.
Leveraging the similarity of samples in vicinity distribution,
we can produce more candidate adversarial data points so as to
cover the adversarial manifolds embedded in the neighborhood
of decision boundary:

Padv (x̃, ỹ) = 1

n

n∑
i=1

N
(

x̃ − xi
adv, σ I

)
δ
(

ỹ = yi
s

)
, (15)

where the N (·) is normal distribution, δ (·) is a Dirac mass
function, and yi

s , xi
adv is the i -th label of source benign sample

and adversarial counterpart.
By retraining or fine-tuning the model on Padv , the learned

decision boundary can be optimized in a local manner, thus
bear more similarity with the optimal classification boundary,
as such the robustness of the protected model can be improved.
To employ the auto-exploration in optimization, a fair initial-
ization for ω is used and the adversarial fine-tuning algorithm
is described in Algorithm 2, in which the sampled data set S
including all classes is to ensure data diversity, in order to
modulate different local parts of the learned decision boundary,
and the inner loop is specific to adversarial examples generated
by FeaCP.

IV. EVALUATION

A. Experiment Setup

Datasets: We use two popular academic image classification
datasets and a sentiment analysis dataset for our experi-
ments: MNIST, consisting of black-and-white handwritten dig-
its [44], and CIFAR-10, consisting of small color pictures [45].
In MNIST, the images’ pixel values are in the range [0, 1]; in
CIFAR-10, they are in [0, 255].
• MNIST [44]: This is a large dataset of handwritten digits

commonly used for training various image processing
systems. It is composed of 70,000 greyscale images
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Fig. 3. The combination coefficients λ (above) on feature components and the corresponding frequency distribution histogram (below) of three different
samples on the CIFAR-10.

Algorithm 2 Adversarial Fine-Tuning
1: Sample a data set S covering all classes  Ensure data

diversity.
2: for k ← 1 to |S| do
3: I s ← S [k]
4: for j ← 1 to n f ine tuning itemtions do
5: φk = {}
6: Sample M instances being M different classes from

S [k]
7: λ∗k = arg minλ,ω

∑M
i=1 ωiL( f (I(λ); θ j ), ygi )  Ini-

tialize weights with uniform values and use S [k] as
source.

8: Sample m points from N (
x̃ − I(λ∗k), σ I

)
and append

them to φk

9: Fine-tune model f (θ ( j )) on φk

10: end for
11: end for

(of 28 × 28, or 784, pixels) of handwritten digits, split
into a training set of 60,000 samples and a testing set
of 10,000 samples.

• CIFAR-10 [45]: The CIFAR-10 dataset introduced by
Krizhevsky is a popular image classification dataset
containing 50, 000 training images, together with a
10, 000 test set. Each image is of size 32 × 32 and
belongs to one of 10 classes of vehicles and animals.

• IMDB [46]: This dataset consists of 50,000 movie
reviews, with one half labeled as “positive” and the other
“negative”, indicating the sentiment of these reviews.

Details of the Experimental Setting: To evaluate the
performance of our proposed method, we employ multiple
powerful white-box attacks, as described in Section II-A.
For PGD attack, ε is set to 0.3/1 and 8/255 on MNIST and

CIFAR-10, respectively. For MNIST, the PGD adversary for
training has 40 iterations with step size 0.01. For CIFAR-10,
We run 7 iterations of PGD attack as an adversary, with a
step size of 2. FGSM attack uses the same ε setup as PGD,
and the attack configurations of PGD and FGSM are same
as the setting in [9], [47]. For C&W attack, the constant c is
set to 0.01. The attack configurations of L-BFGS and C&W
follow the settings in the paper of [1], [3]. Throughout our
experiments, for each one of the models, unless explicitly
stated, we tested our approach using the original setting of
models’ structures and parameters described by its authors.
To support our claim, we did not change the learning rate
used nor the number of epochs. Note that, for all the results,
the reported performance value (accuracy or error rate) is the
average with 5 trials to alleviate error.

Competing Methods for Adversarial Defense: As we all
know, PGD adversarial training [10] is the only unbroken
defense method [20], and this work uses this as a baseline. In
addition, several recent works are proposed to defense adver-
sarial examples as well, including parametric noise injection
on weight (PNI-W) [48], adversarial fine-tuning with L-BFGS
attack [1], and adversarial fine-tuning with C&W attack [3].

B. Combination Coefficients

The combination coefficients reflect the degree of feature
fusion along each direction of feature element in guide sam-
ples. Generally, they have different scales which depends on
the feature importance regarding the adversarial perturbation,
and large values indicate the larger perturbation needed on the
original feature such that model makes incorrect prediction
relative to the features in the guide, rather than from absolute
view.

As a result, the fusion coefficients are supposed to be
different. This can be validated from Fig. 3 (above) for
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Fig. 4. The combination coefficients λ (above) on feature components and the corresponding frequency distribution histogram (below) of three different
samples on the MNIST.

CIFAR-10 and Fig. 4 (above) for MNIST. As seen, the fusion
coefficients mostly have different values, some of which
approach the saturated upper bound value but others are very
small, even zero. For MNIST, only a few feature components
have high fusion values indicated by the spikes in Fig. 4
(above) despite that they are initialized with the same value.
For CIFAR-10, similar behaviors for the convex interpolation
coefficients have shown. The statistical distributions of coef-
ficients are presented in Fig. 3 (below) and Fig. 4 (below).
Surprisingly, both exhibit obvious similar patterns wherein
most of feature ingredients are with small interpolation coef-
ficients. On MNIST, there are barely any components with
mixed values that are greater than 0.5, and the frequency of
these values on CIFAR-10 is also low, which, however, may
have more impact on the construction of adversarial examples
in our method.

Indeed, components in a feature are not equally impor-
tant for learning tasks and do not make same contributions
to model prediction [49]. Naturally, we conjecture that not
all feature perturbations is equally important to adversarial
vulnerability which is the motivation of that we propose to
use feature-wise interpolation to construct a path crossing the
decision-boundary to characterize the individual perturbation.
And the empirical results of coefficients clearly reinforce
our argument. On the other hand, since the locations of
selected guides and sources differ in input space, relative to
learned classification boundary in particular, i.e., the distances
between different types of feature elements vary. In such
sense, the coefficients indicate where the decision boundary is
locally in the corresponding dimension, whose value suggests
distance in that direction of attribution. If it is large, we can
refer that in part the boundary is closer to the guide than
source in that dimension. Thus, the coefficients provide the
location information about the learned implicit boundary with

the help of samples being in disjoint classes. On the contrary,
the previous optimization-based craft methods place the attack
capability as the first role, without considering the locations
of eventually found samples. When the samples are viewed
alone, their decision boundary distance information is hard to
be obtained.

Typically, the coefficients form a convex polytope that
contains the ambiguous region around the decision boundary,
as illustrated by the dotted red confined shape in Fig. 2.
In essence, the solving process of combination coefficients
in Eq. (10) is identical to seek the representative adversarial
example in that buffer zone of the model, indicated by the
red points in Fig. 2, which guarantees the significance of
derived samples to model performance intuitively. During the
solving process of Eq. (10), the degree of interpolation shall
be changed according to the feature importance in order to
minimize the objective. The produced corresponding adver-
sarial examples are shown in Fig. 5. Compared with others,
we do not minimize the perturbation because we aim to find
the adversarial perturbation such that the objective function
is maximized. Consequently, the perturbation on each feature
element is made as large as possible in order to increase the
value of objective function as seen from Fig. 5. Thus, when
the generated samples are used to locally optimize the already
learned decision boundary, the margin between classes can be
enlarged.

C. Impact of Hyper-Parameters

As mentioned in Section III-C, the adversarial fine-tuning
with FeaCP has one important hyper-parameter: the number
of different classes M in Algorithm 1. We implement a group
of experiments to quantify the effect that the parameter has on
model classification accuracy. Specifically, we allow the para-
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Fig. 5. Adversarially perturbed images are generated by different attack
methods and their corresponding original images on CIFAR-10. The difference
in the bottom row of each attack method shows the absolute difference
between the original image and the adversarial examples.

Fig. 6. Performance result with different parameter M under PGD attack on
MNIST and CIFAR-10.

meter M over the ranges M ∈ {0, 1, 2, 3, 4, 5} and following
the experiments implemented in [48], the LetNet5 and ResNet-
20(4×) [50] architecture are used on MNIST and CIFAR-10,
respectively.

We evaluate the adversarial accuracy of the fine-tuned model
under the PGD attack with different parameters M . The
exact verification results can be seen in Fig. 6, where we
find that PGD attack successfully evades standard training
model, i.e., when M = 0. In contrast, the fine-tuned model
with produced adversarial examples by FeaCP significantly
outperforms the original model, and the model accuracy

afforded by our method achieves 94.82% and 51.14% on
MNIST and CIFAR-10, in the scenarios of the M = 4.
Concretely, the test accuracy is actually never lower than
93.82% and 46.87, and the average test accuracy is 94.31% and
49.76% with the different M on the two datasets, respectively.
This demonstrates that adversarial fine-tuning with FeaCP
dramatically improves the robustness to resist PGD attack,
which is the most powerful gradient-based attack now. From
Fig. 6, we can see that the number of guide samples is
increasingly important to produce more critical samples in
the adversarial convex polytope suggested by the improvement
of adversarial robustness, which is contributed to the broader
convex area in the buffer zone around complex decision
boundary, but converges to 4, than have no pleasurable gain
in defense capability. Therefore, we adopt 4 as parameter M
in Algorithm 1 for following experiments.

D. Comparison With State-of-the-Art Defence Approaches

Adversarial Fine-Tuning With Optimization-Based and PGD
Attacks: To illustrate the advantage of the proposed adversarial
fine-tuning with FeaCP, we now apply our proposed approach
to tune the pre-trained classifiers. We first perform a series
of experiments to compare common approaches of adver-
sarial fine-tuning with optimization-based and PGD attacks,
i.e., L-BFGS [1], C&W [3], and PGD attacks. The regimes
of LetNet5 and ResNet-56 [50] architectures are consistent
with [48] on MNIST and CIFAR-10.

As observed in Table II, adversarial fine-tuning with FeaCP
outperforms others under the most aggressive adversarial
examples − PGD attack. In particular, the performance of
our approach is actually never lower than 94% and 47%
under the PGD attack on the MNIST and CIFAR-10, respec-
tively. In contrast, the accuracy of adversarial fine-tuning with
L-BFGS is compromised to a great extent with accuracy lower
than 43% under the attack of PGD on CIFAR-10. The accuracy
of adversarial fine-tuning with C&W achieves 92.25% under
PGD attack on MNIST.

This behavior indicates that adversarial fine-tuning with
FeaCP achieves impressive practical performance under the
PGD attack due to our approach can achieve different neigh-
borhood explorations with adaptive distance respect to the
source sample to cover that adversarial manifolds embedded
in the neighborhood of decision boundary. However, L-BFGS
and C&W don’t explicitly constrain the locations of the
generated adversarial samples, which may be non-correlated
with the classification boundary, thus be of no benefit to model
performance.

In addition, we can observe that our method significantly
outperforms PGD adversarial fine-tuning since PGD generated
samples are not well connected to decision-boundary and those
samples far from the already learned boundary have little
impact on model performance in the process of fine-tuning.
However, in our method, we focus on probing the ambiguous
regions around the boundary with adaptive neighborhood
directly.

Other Recent Adversarial Defense Methods: As discussed in
Section II-B, a large number of adversarial defense works have
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TABLE II

CLASSIFICATION ACCURACY ON ADVERSARIAL AND
CLEAN TEST SAMPLES

TABLE III

TIMES OF ADVERSARIAL TRAINING WITH PGD FAILING

TO GENERATE ADVERSARIAL EXAMPLES

TABLE IV

CLASSIFICATION ACCURACY ON ADVERSARIAL

AND CLEAN TEST SAMPLES

been proposed. However, most of them are already broken by
stronger attacks proposed in [20], [51]. As a result, in this
work, we choose to compare with the most effective one
till date - PGD based adversarial training [10]. For a fair
comparison, our experiments on MNIST and CIFAR-10 use
the same model architectures and parameters as in [48].

Conventional adversarial training approximates the adver-
sarial decision boundary in small neighborhoods of data points
[29], [30], while those data points far from the boundary
(indicated by the purple squares in Fig. 2) are not relevant
or decidable to model performance. Specifically, PGD fails to
construct adaptive neighborhoods to find samples with long
and short distance to the decision-boundary. We quantify that
phenomenon via the times failing to generate true adversarial
examples in PGD and the results are presented in Table III.

Additionally, PGD adversarial training + Gaussian aug-
mentation and PNI-W [48] are compared in Table IV to
demonstrate the effectiveness of our proposed method. For
MNIST, the standard network reaches 99.14% accuracy on
the evaluation set. However, when evaluating examples per-
turbed with FGSM and PGD attack, the accuracy drops to

5.12% and 0.15%, respectively. When attacked by PGD, model
ResNet-20(4×) attains 94.01% test accuracy using PNI-W,
while apply with our method achieves 94.82%. The PGD
adversarial training only reaches 94.62% under the FGSM
attack, but with our method, the accuracy can achieve 95.06%,
which is 89.94% better than the original model.

For CIFAR-10, we can see that our method about 51.14%
more robust than the standard network and about 5.92% more
robust than PGD adversarial training in the white box PGD
setting. Notice that this gain is much larger than the previous
gains obtained by PGD adversarial training against the original
network (+6.04%), and by PNI-W against the original network
(+2.97%). Moreover, we find that injecting Gaussian noise
on the PGD generated samples almost make no difference to
training and this may be due to the degrade of the significance
of generated samples, in other words, the noise may reduce
the loss value, i.e., harming the inner maximization in the
adversarial training. This result shows that our adversarial
fine-tuning can make the trained model more robust.

In particular, models are trained using exclusively
adversarial inputs in PGD training. This led to a small but
noticeable loss in accuracy on clean examples, dropping
from 99.14% to 98.04% on MNIST and from 93.15% to
86.66% on CIFAR-10 in return for more robustness towards
adversarial examples. Previous related studies [9], [52] have
also shown a trade-off between clean-data accuracy and
adversarial accuracy. The improvement of robustness comes
at the cost of lowering the accuracy of normal examples.
Adversarial fine-tuning with FeaCP dramatically makes the
model more resistance to adversarial examples, while barely
sacrificing accuracy on normal examples.

Overall, on all datasets, our proposed method improves both
normal and perturbed data accuracy under the white-box attack
compared to PGD adversarial training and PNI-W. While
beating the natural training, PGD adversarial training incurs
lower accuracy on legitimate examples. Additionally, we plot
the robust accuracy for our methods using ResNet-18 on
various perturbation strength of ε in Fig. 7. We can see that
increasing the distortion bound ε increases the attack success
rate. According to the gradient obfuscation work [20], [48],
we can infer that the stochastic gradient is not the dominant
role in our method for robustness improvement.

E. Adversarial Fine-Tuning With FeaCP

Robustness Evaluation With FGSM and PGD Attacks: To
further illustrate the effectiveness of the adversarial fine-tuning
with FeaCP, we compare it with PGD adversarial training
on various network architectures. For CIFAR-10, the classic
residual network [50] is adopted, and most of the comparative
experiments use ResNet-20 as the baseline. Each experiment
is tested by two types of attack methods, i.e., FGSM and PGD
attacks. Table V shows the experimental results.

We can observe that original networks are never more than
8.74% error rates on the clean evaluation set. However, when
evaluating examples perturbed with FGSM and PGD attacks,
the performance is compromised to a great extent. The low
accuracies of the original network shows that these attacks
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TABLE V

ERROR RATES OF DIFFERENT MODELS ON CIFAR-10 DATASET UNDER FGSM AND PGD WHITE-BOX ATTACKS. RESNET-20(4×)
DENOTE THE WIDE RESNET-20 WITH THE INPUT AND OUTPUT CHANNEL SCALED BY 4×

Fig. 7. Performance of our method against PGD adversaries of different
strength ε on CIFAR-10.

can indeed effectively generate adversarial examples to fool
the baseline model. However, when the model is trained using
our method, the accuracy of adversarial examples is improved
significantly.

Furthermore, we can clearly observe that adversarial
fine-tuning with FeaCP is the most robust model. Our error
rates level remains at below 49% when PGD adversarial
training is above 54% under PGD adversarial attack using
ResNet-20((4×)). The PGD adversarial training only achieves
54.07% error rate under FGSM using the ResNet-20 model,
but with our adversarial fine-tuning, the error rate can drop
to 47.98%. When attacked by PGD, model ResNet-32 attains
58.90% error rate using PGD adversarial training, while
using our method, it achieves 54.98% error rate. The PGD
adversarial training only reaches 51.92% under FGSM using
model ResNet-56, but with our method, the error rate can drop
to 44.38%, which is 32.16% better than the original model.
On various neural networks, the above results reveal that the
tuning model with more critical adversarial samples around
the decision boundary can harden the protected model, and
our algorithm has almost no loss of accuracy.

Robustness Evaluation With C&W Attack: So far the power-
ful attacks such as C&W are dominantly optimization-based,
and in this work, we mainly focus on how to use the strong
attack capability of them to protect model in the reverse
direction, and propose to construct adaptive neighborhood
to search critical samples in the ambiguous area of model
decision-making. Hence, to make our work complete, compar-
ison with C&W is necessary for adversarial fine-tuning despite
the performance gain is limited.

TABLE VI

ERROR RATES OF RESNET-18 AND RESNET-20 (4×) ON CIFAR-10
DATASET UNDER C&W WHITE-BOX ATTACKS. RELATIVE

IMPROVEMENT IN ERROR/PPL OVER PGD ADVERSARIAL
TRAINING IS LISTED IN PERCENTAGE

We present the error rates obtained by the original model,
PGD adversarial training, and FeaCP adversarial fine-tuning,
along with the relative error reduction of our method over the
PGD adversarial training in Table VI. We can see that the
relative error reduction of our method over the PGD adversar-
ial training is 0.28% under the CW attack using ResNet-18,
2.51% higher than the original model. Also, the relative error
reduction is at least 29.69% on normal examples, and with a
large margin in some cases. For example, we achieve an error
rate of 11.94% with the ResNet-18, which is 6.22% better than
the PGD adversarial training.

When attacked by C&W, model ResNet-20(4×) attains
99.90% error rates using standard training, while using our
method, it drops to 97.99%. The PGD adversarial training
reaches 97.66% under C&W, but with our method, the error
rates can drop to 97.39% using ResNet-18 model. Again, this
result shows that adversarial fine-tuning with FeaCP can make
the model more robust.

F. Robustness to Sentiment Analysis

In the following experiments, we examine the generality of
our proposed method by applying it to the IMDB dataset for
sentiment analysis tasks. Following the procedure introduced
in [53], [54], we linearly combine the vectors representing the
words appearing in the review, and then process the embedding
as a representation of the movie review for each movie review.
We generate adversarial samples with M = 1 since there
are only two classes, “positive” and “negative”, Consequently,
the Eq. (11) would be adapted for optimization. For a fair
comparison, we adopt the setting of models’ structures and
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TABLE VII

CLASSIFICATION ACCURACY ON ADVERSARIAL
AND CLEAN TEST SAMPLES

parameters in [54] and do experiments over different attacks.
The exact verification results can be seen in Table VII.

Similar to defensive distillation [55] and LLE-DNN [54],
the FeaCP adversarial fine-tuning is quite effective in pre-
serving classification accuracy. More specifically, the accuracy
of our method attains 85.90%. As shown in Table VII,
it can be observed that white-box adversarial samples can
cut down the accuracy of the standard training to 27.23%,
28.04% under the attacks of FGSM and C&W, respectively.
In contrast, concerning the white-box setting, we observe
that the FeaCP adversarial fine-tuning generally exhibits the
best accuracy to adversarial samples, whereas the defensive
distillation approach typically yields the least performance.
This result shows that our method can effectively improve
the robustness of neural network against adversarial examples.
This is presumably due to the FeaCP take the diversity of
feature importance and tightly connected with the decision
boundary in adversarial instances construction, which also
indicates our method is broadly appliable across various
domains.

V. CONCLUSION

In this paper, we identify the black-box behaviors and
the intrinsic deficiency of neighborhood information in the
optimization-based adversarial attacks and defenses. In order
to utilize the strong attacking capability of optimization-based
adversarial examples to do defense, we propose a feature
importance-aware convex interpolation method using an
ensemble of correct predicted samples being in disjoint
classes to guide the generation of effective and explainable
adversarial samples in the ambiguous region around the
decision boundary of model instead of uncontrolled “blind
spots”. The method can achieve adaptive neighborhoods which
considers large and small neighborhoods simultaneously
and enforces the generated samples in the ambiguous
decision regions. Further, based on the similarity of vicinity
distribution, we leverage the produced representative samples
to estimate the distribution of adversarial samples to perform
adversarial fine-tuning to optimize the learned boundary to
improve the robustness. Finally, we conduct experiments
to validate the effectiveness of the proposed method which
outperforms the state-of-the-art defense methods in terms of
both clean-data accuracy and perturbed data accuracy.
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