
Explaining Regressions via Alignment
Slicing and Mending

Haijun Wang, Yun Lin , Zijiang Yang, Senior Member, IEEE, Jun Sun, Yang Liu ,

Jinsong Dong, Qinghua Zheng, and Ting Liu

Abstract—Regression faults, which make working code stop functioning, are often introduced when developers make changes to the

software. Many regression fault localization techniques have been proposed. However, issues like inaccuracy and lack of explanation

are still obstacles for their practical application. In this work, we propose a trace-based approach to identifying not only where the root

cause of a regression bug lies, but also how the defect is propagated to its manifestation as the explanation. In our approach, we keep

the trace of original correct version as reference and infer the faulty steps on the trace of regression version so that we can build a

causality graph of how the defect is propagated. To this end, we overcomes two technical challenges. First, we align two traces derived

from two program versions by extending state-of-the-art trace alignment technique for regression fault with novel relaxation technique.

Second, we construct causality graph (i.e., explanation) by adopting a technique called alignment slicing and mending to isolate the

failure-inducing changes and explain the failure. Our comparative experiment with the state-of-the-art techniques including dynamic

slicing, delta-debugging, and symbolic execution on 24 real-world regressions shows that (1) our approach is more accurate on

isolating the failure-inducing changes, (2) the generated explanation requires acceptable manual effort to inspect, and (3) our approach

requires lower runtime overhead. In addition, we also conduct an applicability experiment based on Defects4J bug repository, showing

the potential limitations of our trace-based approach and providing guidance for its practical use.

Index Terms—Regression bug, trace alignment, alignment slicing and mending, fault localization

Ç

1 INTRODUCTION

REGRESSION faults are often introduced after developers
make changes to the software [1], [2], [3], [4], [5], [6], [7].

As a large number of changes can happen between the origi-
nal correct version and current regression version, once a
regression failure is observed, it is a non-trivial task to (1)
isolate the failure-inducing changes and, more importantly,
(2) understand how they lead to the final observable failure,
before figuring out a potential fix.

Many approaches have been proposed, mainly
focusing on isolating the failure-inducing changes. The
state-of-the-art techniques can be roughly divided into the
following three groups.

Dynamic Slicing. A classical technique for regression
fault localization is dynamic slicing [8], [9] and its varia-
tions [10], [11]. Dynamic slicing eliminates statements irrel-
evant to the failure based on data and control dependence,
and all modified statements which the failure depends on
are reported. However, data and control dependence are
often abundant in a program, and consequently dynamic
slicing often reports an overwhelming number of program
statements.

Delta Debugging. Zeller et al. pioneered delta debugging
to isolate the failure-inducing changes by repetitively
reverting different subsets of changes between original cor-
rect version and current regression version [12], [13]. Their
approach reports a smallest subset of changes which can be
reverted to recover the original program behavior.

Intuitive as the approach is, it suffers from an inherent
drawback, i.e., the number of reverted subsets is exponen-
tial to the number of changes. Assume that there are N
changes between two versions, theoretically, we need to
revert 2N subsets to isolate the failure-inducing changes.
Therefore, delta debugging based techniques [12], [13], [14],
[15] have to apply various heuristics to balance the trade-off
between the accuracy and efficiency. We further show how
such heuristics sacrifice the accuracy in Section 2.

Symbolic Analysis. The other line of works is based on
symbolic analysis [16], [17], [18], [19], [20]. A representative
work is AFTER [20], which works as follows. Given a test
case (with an assertion), its symbolic execution is captured
as a conjunctive predicate. For example, the execution of the
statements {a=0; b=1; b+=a; ...; assert(b<0)} can
be converted into a conjunctive predicate P ¼ ða ¼¼ 0Þ^

� H. Wang is with the Ant Financial Services Group, China.
E-mail: haijun.wang@ntu.edu.sg.

� Y. Lin is with the School of Computing, National University of Singapore,
Singapore 119077. E-mail: llmhyy@gmail.com.

� Z. Yang is with the Department of Computer Science, Western Michigan
University, Kalamazoo,MI 49008 USA. E-mail: zijiang.yang@wmich.edu.

� J. Sun is with the School of Information System, Singapore Management
University, Singapore 188065. E-mail: sunjun@sutd.edu.sg.

� Y. Liu is with the School of Computer Engineering, Nanyang Technological
University, Singapore 639798. E-mail: yangliu@ntu.edu.sg.

� J. Dong is with the Department of Computer Science, National University
of Singapore, Singapore 119077. E-mail: dongjs@comp.nus.edu.sg.

� Q. Zheng is with the Department of Computer Science and Technology,
Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China.
E-mail: qhzheng@mail.xjtu.edu.cn.

� T. Liu is with the Department of Control, System Engineering Institute,
Xi’an, Shaanxi 710049, China. E-mail: tingliu@mail.xjtu.edu.cn.

Manuscript received 26 July 2018; revised 7 Oct. 2019; accepted 14 Oct. 2019.
Date of publication 25 Oct. 2019; date of current version 12 Nov. 2021.
(Corresponding author: Yun Lin.)
Recommended for acceptance by X. Zhang.
Digital Object Identifier no. 10.1109/TSE.2019.2949568

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021 2421

0098-5589 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National University of Singapore. Downloaded on May 18,2022 at 15:26:05 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8255-0118
https://orcid.org/0000-0001-8255-0118
https://orcid.org/0000-0001-8255-0118
https://orcid.org/0000-0001-8255-0118
https://orcid.org/0000-0001-8255-0118
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0002-7600-0934
https://orcid.org/0000-0002-7600-0934
https://orcid.org/0000-0002-7600-0934
https://orcid.org/0000-0002-7600-0934
https://orcid.org/0000-0002-7600-0934
mailto:haijun.wang@ntu.edu.sg
mailto:llmhyy@gmail.com
mailto:zijiang.yang@wmich.edu
mailto:sunjun@sutd.edu.sg
mailto:yangliu@ntu.edu.sg
mailto:dongjs@comp.nus.edu.sg
mailto:qhzheng@mail.xjtu.edu.cn
mailto:tingliu@mail.xjtu.edu.cn

ðb0 ¼¼ 1Þ ^ ðb1 ¼¼ b0 þ aÞ ^ � � � ^ ðbk < 0Þ. As the execution
result is incorrect, the converted conjunctive predicate must
be evaluated to be FALSE. Then, it selects a smallest subset
of conjuncts from P (including the assertion) whose con-
junction is still FALSE. Such subset is called a minimum
unsatisfiable core. Finally, the approach reports the changed
statements whose execution is responsible for minimum
unsatisfiable core. Novel as this line of approaches are, the
runtime overhead and capability of handling complicated
program expressions are usually the bottleneck for their
practical use. Moreover, only analyzing the code in regres-
sion version may miss reporting the deletion changes (see
details in Section 2).

On locating and explaining the root cause of a program
bug, trace-alignment-based approaches have inherently
advantage [21], [22], [23], [24]. Those approaches align the
correct and incorrect executions. Taking the correct execu-
tion as the reference, we can check incorrect execution to
narrow down the infected steps towards the root cause.
Through the execution information, programmers can not
only know where the root cause lies, but also the dynamic
causalities on how the faulty code propagates the defect
through infected steps. Johnson et al. [23] propose trace
alignment technique to align the execution traces of two
runs of the same malware program (with different input),
building a casual difference graph for analyzing its behavior.
Weeratunge et al. [24] propose their trace alignment tech-
nique for different traces of two runs of the same concurrent
program to identify the concurrency bug. Despite these
approaches have shown good potentials, we cannot apply
their approach to locating regression bug because these
approaches works for aligning variational traces derived
from the same program while the regression bug localiza-
tion requires to align traces derived from different versions
with non-negligible number of code modifications. The
challenges of identifying root cause of a regression bug lies
in (1) how to align the execution traces for modified parts of
code in correct and regression versions, and (2) how to
report unexecuted modification (e.g., code deletion) as root
cause through the aligned traces.

In this work, we propose a trace-based approach called
Explain Regressions via Alignment Slicing and mEnding
(ERASE) to address above challenges. Our approach not
only has a decent accuracy over existing regression fault
localization approaches [24], [25], [26], [27] but also can
present how those changes propagate the defects to the
observable failure. In this work, we enhance the existing
trace alignment technique by proposing a novel relaxation
approach to aligning traces derived from two versions of
programs with considerable number of modifications.
Then, we keep the trace of the original correct version as
reference and infer the faulty steps on the trace of the
regression version so that we can build a causality graph
of how the defect is propagated. The causality graph
answers not only the why questions (e.g., why a step is
executed or why the variable value is 0) but the why-not
questions (e.g., why certain expected step is not executed).
Note that, in contrast to existing works [23], [24], [28], our
causality graph describes how the defect propagates
through both the execution steps and the unexecuted mod-
ifications like deletion.

We implement a proof-of-concept tool (ERASE) for both
Java and C/C++ programs. Its screenshots and demo videos
are available at [29] and [30].We evaluate the effectiveness of
our approach by conducting a comparative experiment on
24 real-world C regressions. We evaluate the applicability of
our approach (i.e., when our approach can and cannot work)
on 298 Java regressions in the Defects4J bug repository. The
results of comparative experiment show that our approach is
more accurate on isolating the failure-inducing changes than
the state-of-the-art techniques. The results of applicability
experiment show the potential limitations of trace-based
approach and provide guidance for how to apply our
approach in practice. (The discussion on the limitations of
dynamic approach can be checked in Section 5.2.3).

To summarize, we make the following contributions:

� Given two traces from two versions of a program, we
extend existing trace alignment techniques with a
novel relaxation technique to align the executions of
two program versions with considerable number of
modifications.

� We adopt the alignment slicing and mending tech-
nique on locating regression bugs, which derives a
causality graph including both execution steps and
unexecuted modifications to explain the regression
failure.

� We implement ERASE for both Java and C pro-
grams, providing an interactive tool for pro-
grammers to explore why a regression failure
happens in practice.

� We study the effectiveness of our approach on an
experiment on 24 real-world C regressions, which
demonstrates the effectiveness of ERASE over state-
of-the-art approaches. In addition, our applicability
experiment on 298 Defects4J bugs allows us to
understand the limitation of trace-based approach
and provides guidance on its practical use.

The remainder of the article is organized as follows.
Section 2 gives a motivating example to illustrate the idea of
ERASE. Section 3 presents the detailed algorithms. Section 4
describes our C and Java implementations of ERASE.
Section 5 reports the experimental results. Section 6 reviews
the related work. Section 7 concludes the paper and dis-
cusses our future work.

2 MOTIVATING EXAMPLE

Fig. 1 shows a simplified regression in the Apache Lang proj-
ect. For clarity, we use simplified input and code while

Fig. 1. Two versions of motivating example.

2422 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

Authorized licensed use limited to: National University of Singapore. Downloaded on May 18,2022 at 15:26:05 UTC from IEEE Xplore. Restrictions apply.

keeping its non-triviality. In this example, the new version
testLang’makes four changes c1-c4 to the old versiontes-

tLang. The method takes as input an array, increases the
value of its elements with odd indices, and outputs the sub-
traction of the maximum and first elements. Given an input a
which is [1,2],testLangpasseswhiletestLang’ fails.

In this example, the failure of testLang’ is caused by
mistakenly deleting the if-condition in line 3. The changes
c2, c3 and c4 only re-implement or improve the function to
compute the maximum of the input array. Unfortunately,
the existing techniques (including dynamic slicing [10],
delta debugging [12], [13], and symbolic analysis [20]) fail to
identify the change c1 as the root cause. In the following, we
first present how our approach works for regression
showed in Fig. 1, then we explain how state-of-the-art
approaches fail to locate the failure-inducing change c1.

2.1 Illustrating ERASE

In our approach, we use the original trace as a reference to
examine how the regression trace generates the failure and
propagates the defects. We first align the passing and failing
traces. Based on the matching results, we apply alignment
slicing and mending (see Section 3.4) to construct a causality
graph to explain why and how the root cause is propagated
towards the failure.

The original and regression traces for the code in Fig. 1
are shown in Fig. 3. We use Lk

p to represent a specific trace
step, L represents the line number, the superscript k repre-
sents the times of L being executed, and the subscript p rep-
resents the original or regression trace (p for original one
and p0 for regression one). For example, 22p represents the
second execution of line 2 on the original trace.

Trace Alignment. There are two challenges for aligning the
original and regression traces. First, a program statement
may be executed multiple times due to loops and function
calls [23], it is non-trivial to match those steps executing
same program statements. For example, it is a non-trivial
task to automatically decide whether the step 41p matches 41p0
or 42p0 in Fig. 3. 41p and 41p0 are considered as matched if we
regard the trace-matching problem as traditional sequence

matching problem, as in [31], [32]. Nevertheless, such a
match is inaccurate and prevents us from locating the regres-
sion bug. The inaccuracy lies in that simple sequential
matching ignores trace structural semantics. Note that, 21p0
and 41p0 are in the same iteration but 21p and 41p are not,
sequential matching breaks such structural semantics of
execution trace. Second, we need to consider the semantic
equivalence of dynamic traces with regard to source code
changes. For example, given the input a=[1, 2], the trace
Tp ¼ h51p; 61p; 71pi is equivalent to the trace Tp0 ¼ h51p0 ; 61p0 i as
both execution aims to compute the max value in a=[1, 2].
Note that, the challenge is that line 6–7 in original version is
an if-condition while line 6–7 is a loop-condition. Their
dynamic semantic is equivalent despite that static semantics
is not. Classical trace alignment algorithm [23], [24] working
on variational traces derived from same version of program
cannot address this problem.

In this work, we develop a trace alignment algorithm
designated for facilitating our alignment slicing and mend-
ing technique so that we can generate causal graph (as
shown in Fig. 2) to (1) identify the failure-inducing change
(see the box with red text in Fig. 2), and (2) show why and
how the root cause is propagated to the unexpected failure.
In Fig. 2, solid rectangles represent execution steps, dashed
rectangles represent unexecuted code, bi-directional lines
represent matching relation between steps/code, solid lines
represent data dependencies, and dashed lines represent
control dependencies. In addition, each step is equipped
with a list of its read/written variable values (see grey rec-
tangles). We illustrate its construction as follows.

Alignment Slicing. Alignment slicing is designed for
answering why questions, e.g., why the value of variable in
a step in one trace is different from that in its counterpart in
the other trace? It achieves this by comparing aligned trace
steps in two traces so that we trace data dependence when
variable value is different and control dependence when
some steps cannot be aligned. In this example, our tool
ERASE starts the process from the step 101p0 where the fail-
ure is observed. At this step, the value of used variable out

is incorrect as its value is different from that of the matching
step 101p (1 versus 2). Thus, ERASE tracks data dependence
backward from 101p0 through variable out to 91p0 where out

is defined. At the step 91p0 , there are two read variables: out
and a[0]. The value of out is correct as its value is the same
with that of the matching step 91p (3 versus 3). However, the
value of a[0] is incorrect as its value is different from that of
the matching step 91p (2 versus 1). In the same vein, ERASE
follows backward data dependence from 91p0 to 41p0 through
a[0]. The step 41p0 has no matching step on the original trace.Fig. 3. Two traces of the example in Fig. 1.

Fig. 2. Causal graph generated by ERASE for the example in Fig. 1.

WANG ET AL.: EXPLAINING REGRESSIONS VIA ALIGNMENT SLICING AND MENDING 2423

Authorized licensed use limited to: National University of Singapore. Downloaded on May 18,2022 at 15:26:05 UTC from IEEE Xplore. Restrictions apply.

In order to answer the question why 41p0 can be executed, we
backward follows its control dependence to 21p0 (not shown
in Fig. 2). However, the step 21p0 and its matching step 21p
have the same branch evaluation. As a result, it seems
to run into a dead-end, from which the slicing can no
longer work.

Alignment Mending. Our approach bypasses such dead-
end by asking and answering why-not questions by align-
ment mending. Before reaching the dead end at 21

p0 , ERASE
asks why step 41p0 should NOT be executed (as 41p0 has no
matching step on the other trace p). To answer such why-
not question, ERASE switches to the other trace p to iden-
tify a step responsible for the deviated control flow. As a
result, the step 31p (executing the if-statement if(i%2==1))
is mended because 41p0 can be matched (as line 4 will be exe-
cuted in the first iteration in p) if the boolean expression
i%2==1 is evaluated to true.

Moreover, the step 11p is identical to 11p0 . Therefore, there
is no more different steps to proceed, thus ERASE termi-
nates and reports the change c1 as the root cause, i.e., failure
inducing change.

What if Trace Alignment is Incorrect? Then, we illustrate
how incorrect trace alignment affects our root cause location
for regression bugs. Assume that the two steps 41p and 41p0
are matched (which is incorrect). When ERASE proceeds to
41p0 , it asks why the value of used variable i in 41p0 is different
from that in 41p. As a result, ERASE will traverse through
data flow and proceed to 21p0 and 11p0 , and consequently
misses reporting the change at line 3.

2.2 Comparing to Other Approaches

In this section, we briefly discuss how existing state-of-the-
art approaches work and how they miss reporting the fail-
ure-inducing change c1 in Fig. 1.

Dynamic Slicing. Given a trace p and a criterion s,
dynamic slicing [8] identifies the steps on p that contribute
to s by data- and control-dependence. Considering the two
steps 101p and 101p0 as criteria, dynamic slicing on p and p0

reports the results Sp = f11; 61; 71; 81; 91; 101g and Sp0 =
f11; 21; 41; 51; 81; 91; 101g. We can see that Sp reports 6 out of
13 steps and Sp0 reports 7 out of 11 are failure-relevant. Fur-
thermore, the included changes c2, c3, and c4 in Sp and Sp0
are not the root causes.

Augmented Delta Debugging. Fig. 4 shows the process of
applying Augmented Delta Debugging (ADD) [15] to the
example in Fig. 1. Let F be the set of executed changes
between two versions, i.e., fc1; c2; c3; c4g. First, F is parti-
tioned into d1 ¼ fc1; c2g and d2 ¼ fc3; c4g. Assuming that
the changes in d1 is irrelevant to the regression failure, ADD
applies Fnd1 = fc3; c4g to the correct version, it turns out

that regression failure happens. Thus, ADD considers that
the failure-inducing changes reside in Fnd1 ¼ fc3; c4g.
Next, ADD further partitions fc3; c4g into d3 ¼ fc3g and
d4 ¼ fc4g. Assuming the change in d3 is irrelevant to the
regression failure, ADD applies Fnd3 = fc1; c2; c4g to the cor-
rect version and the regression failure remains. Therefore,
ADD reports d4 ¼ fc4g responsible for the failure, which is
different from the actual root cause c1. Note that, all the
reverting process does not introduce syntactic or compila-
tion error, i.e., no construction error [13] does not happen.
Therefore, ADD cannot switch back to d1 to locate the
root cause.

ADD fails to report the root cause c1 for two reasons.
First, ADD adopts a binary search heuristic to narrow down
the failure-inducing change for efficiency, which miss a lot
possible change combinations. Second, ADD assumes that
the changes are independent with each other, which is not
true for our example in Fig. 1.

Symbolic Approach (AFTER). AFTER [20] assumes the
assertion (i.e., assert(out==2), line 10 in Fig. 1) holds,
and then conducts weakest precondition computation on
the trace p0, as shown in Table 1. Since the assertion
fails, the weakest precondition computation leads to an
unsatisfiable (UNSAT) core: ða½0� ¼ 1Þ ^ ða½1� ¼ 2Þ ^ ða½0�0 ¼
a½0� þ 1Þ ^ ða½1�0 ¼ a½1� þ 1Þ ^ ðmax ¼ a½1�0Þ ^ ðout0 ¼ maxÞ ^
ðout1 ¼ out0 � a½0�Þ) ðout1 6¼ 2Þ. Then, AFTER maps the
UNSAT core to a set of program statements f0 ¼ fs1; s4;
s5; s8; s9; s10g where sk represents the program statement at
line k in Fig. 1b. Since only the change c2 that corresponds
to statement s5 2 f0 is involved, AFTER reverts c2, re-com-
piles, and re-executes the program. Since the assertion still
fails after c2 is reverted, AFTER concludes that f0 is not the
root cause. Otherwise, reverting c2 would fix the failure. At
the moment, there is no more critical predicate for f0. As a
result, AFTER terminates without reporting any root cause.
In this case, AFTER fails to report the root cause because the
failure-inducing change is a deletion, which can never be
included in the weakest precondition calculation.

Symbolic Approach (Darwin). Another classical symbolic
approach is Darwin [33]. Given a test case t whose executed
symbolic path condition in original program P is fðtÞ and
that in regression program P 0 is f 0ðtÞ, Darwin synthesizes a
new test case t0 so that fðt0Þ ^ :f 0ðt0Þ. The difference
between f 0ðtÞ and f 0ðt0Þ is considered as the potential root
cause. Novel as Darwin is, it fails to locate the root cause in
our example.

Let t a=[1, 2] , it is possible for Darwin to synthesize
t0 a=[2, 1] which meets the requirement fðt0Þ ^ :f 0ðt0Þ.
In our example, fðt0Þ ¼ fðtÞ = “i0 < 2 ^ i0%2! ¼ 1 ^ i1 <

Fig. 4. Applying ADD to the example in Fig. 1.

TABLE 1
Applying AFTER to the Example in Fig. 1

No. Step Weakest Precondition Satisfiability

1 101 out=2 SAT
2 91 out-a[0]=2 SAT
3 81 max-a[0]=2 SAT
4 51 a[1]-a[0]=2 SAT
5 42 (a[1]+1)-a[0]=2 SAT
6 41 (a[1]+1)-(a[0]+1)=2 SAT
7 11 (2+1)-(1+1)=2 UNSAT

2424 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

Authorized licensed use limited to: National University of Singapore. Downloaded on May 18,2022 at 15:26:05 UTC from IEEE Xplore. Restrictions apply.

2 ^ i1%2 ¼¼ 1 ^ a½1�1 ¼ a½1�0 þ 1 ^ max � a½1�1”. In con-
trast, f 0ðtÞ and f 0ðt0Þ are different in that the condition in
line 6 is false for t while true for t0. Therefore, Darwin
will report c4 as the root cause, which is different from the
actual root cause c1.

3 METHODOLOGY

Fig. 5 illustrates the overall workflow of our approach. In
Fig. 5, each rectangle represents an artifact and each
rounded rectangle represents a sub-process in our
approach. Our approach takes as input two versions P and
P 0 of a program and a test case I that passes P while fails
P 0, and outputs the the failure-inducing changes and the
explanation of how it propagates defects to the failure. As
showed in Fig. 5, we first compute static source code
changes (step 1) and execution traces of both original and
regression version (step 2). Then, we match the original and
regression traces with regard to the static source code
changes (step 3). Along with the static changes, execution
traces, and trace matching result, we apply alignment slic-
ing and mending to isolate the failure-inducing changes as
well as the explanation.

In the following, we illustrate code alignment, trace
alignment, and alignment slicing and mending in details.

3.1 Code Alignment

The challenge of code alignment is to align code elements
with regard to fine-grained syntactic features. Fig. 6 shows
an regression example taken from JFreechart project. Text
differencing tool like diff in Linux may report the difference
that line 4–10 in original version is replaced by line 4–6 in
regression version. Such a differencing report is correct but
too coarse because a step executing line 4–10 in original ver-
sion could be matched to any step executing line 4–6 in
regression version, leading to false causalities reported by
our dynamic approach. To address this issue, we refine the
differencing result with our previous syntax-aware diff
algorithm [32], [34]. More specifically, we transfer the code
into a token sequence where each token is attached with
AST type information. Thus, we can calculate the similarity
score of each pair of token with regard to their code position
as well as AST syntax. Hence, we use LCS-based approach
to align the token sequence by computing a common subse-
quence with maximum token similarity. With the reference
to the common subsequence, we can compute more fine
grained difference. In the example in Fig. 6, the line 9 in
Fig. 6a can only match line 5 in Fig. 6b as they are of return-
statement AST node. Readers can go through more details
in [32], [34].

Based on the differencing results, we can have a code
matching function match, given a code element c in original
(regression) version, we can have its fine grained corre-
sponding code element matchðcÞ. Note that matchðcÞ can be
� (i.e., empty).

3.2 Trace Alignment

Different from existing approaches [24], [25], [26], [27], we
align two traces by: (1) strictly following the boundary and
appearing order of loop iteration in trace and (2) identifying
equivalent semantics of trace steps with regard to static code
changes. For clarity, we first introduce how we align intra-
method traces. We will first justify our iteration order based
matching principle (Section 3.2.1) and how we identify
equivalent trace semantics (Section 3.2.2). Then, we extend
our argument to align inter-method traces (Section 3.2.3).
Finally, we present the general trace alignment algorithm
(Section 3.2.4).

3.2.1 Iteration Order Based Principle

Given a program P , its control flow graph (CFG) G, and an
input I for P , we regard the execution trace p as a traversal
on G with regard to I. Therefore, given an input, matching
the traces of two versions of a program is equivalent to
comparing two traversals on similar CFGs. Given an input
I, two CFGs G and G0, we denote the traversal of I on
G ¼ hN;Ei and G0 ¼ hN 0; E0i as T and T 0. T and T 0 are
represented by a sequence of CFG nodes, namely,
T ¼ hs1; s2; . . . ; smi and T 0 ¼ hs01; s02; . . . ; s0ni, siði ¼ 1; . . . ;mÞ
and s0jðj ¼ 1; . . . ; nÞ are the nodes in N and N 0. Moreover,
we use Ti to denote the sequence of first i CFG nodes in T ,
T ½i� to denote the ith element (or step) in T (i starts with 1),
and T ½i�:node to denote the CFG node where the step T ½i�
executes.

Let us take the code in Fig. 7a for example. Its CFG is
showed in the left part of Fig. 8 where each CFG node is
labelled corresponding to the line number in Fig. 7a. Given

Fig. 5. Overview of ERASE.

Fig. 6. Regression example in JFreechart.

Fig. 7. Two versions P and P 0 for trace alignment.

WANG ET AL.: EXPLAINING REGRESSIONS VIA ALIGNMENT SLICING AND MENDING 2425

Authorized licensed use limited to: National University of Singapore. Downloaded on May 18,2022 at 15:26:05 UTC from IEEE Xplore. Restrictions apply.

the input x as 0, the traversal T ¼ h2; 3; 4; 5; 6; 2; 3; 4; 5; 2; 8i,
T4 ¼ h2; 3; 4; 5i, and T ½5�:node ¼ 6.

With static code matching technique, we can have a bilat-
eral matching function match so that matchðnÞ ¼ n0 and
matchðn0Þ ¼ n where n 2 N and n0 2 N 0. Note that n and n0

can be �, which means that the static change is either a dele-
tion (i.e., matchðnÞ ¼ �) or an addition (i.e., matchðn0Þ ¼ �).
Moreover, if n 6¼ � and n0 6¼ �,matchðnÞ ¼ n0 is equivalent to
matchðn0Þ ¼ n. The blue dashed line in Fig. 8 shows the
matching relation for CFG nodes of the code in Fig. 7

A traversal is a dynamic walking process on a graph.
Aligning two traversals T and T 0 is to identify when the
walk of T 0 synchronizes with or deviates from T .

We can see that the complication of aligning two traver-
sals lies in the loop in CFG as they incur repetitive CFG
nodes in traversals. Assume that there is no loop in CFG,
each step in a traversal walks to a unique CFG node. Thus,
with regard to match function, aligning two traversals is
equivalent to finding the longest common subsequence of
two sequences of CFG nodes.

Argument on Iteration Boundary. Let us call each time a tra-
versal walks through a static loop is an iteration. We first
argue that iterations should be matched with regard to its
boundary, i.e., the steps in iteration I in T cannot be matched
to steps in different iterations in T 0, and vice versa. Therefore,
we annotate iteration boundary for each traversal so that we
can regard each iteration as a separate unit as a single step.
For example, given the input x=0, The traversal for code in
Fig. 7a is T ¼ h½2; 3; 4; 5; 6�1; ½2; 3; 4; 5�2; ½2�3; 8i, and the tra-
versal for code in Fig. 7b is T 0 ¼ h½20; 30; 60�1; ½20; 30; 40; 30;
40; 30; 60�2; ½20�3; 80i. We use brackets to represent the iterations
generated by the loop in each traversal. The order of iteration
is represented by the subscript.

Argument on Iteration Order. Next, given two traversals T
and T 0, if they respectively go through the loops which are
statically matched in CFGs G and G0, then their derived iter-
ations must be strictly aligned in the traversing order. For
the example in Fig. 7 and the corresponding CFGs in Fig. 8.
The CFGs in Fig. 8 has a matched loop with loop head of
node 2. According to our argument, as the loop is matched,
its kth iteration in T should only be aligned to the kth
iteration in T 0, regardless how similar the traversing path of
ith iteration in T and jth iteration in T 0 where i 6¼ j.
Therefore, the iteration matching should be as Fig. 9. We
provide a more sophisticated proof and argument in
Appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TSE.2019.2949568.

Therefore, we can align two traversals with the following
routine. We first abstract each iteration so that each iteration
is regarded as a single iteration step (e.g., ½2; 3; 4; 5; 6� in T)
and the iterations derived from the same loop are assigned
with its iteration order. Thus, a traversal can be converted
into a sequence consists of either normal steps or iteration
steps. Iteration steps can be matched only if they are derived
from statically matched loops and share the same iteration
order. In this regard, every step in the sequence is unique.
Thus we adopt longest common subsequence for the con-
verted traversal. If two iteration steps are matched (e.g.,
½2; 3; 4; 5; 6�1 in T matches ½20; 30; 60�1 in T), we apply the
same routine for their path until the alignment process ends.

3.2.2 Adapting Source Code Change

Compared to existing solutions [24], [26] designed for align-
ing traces derived from same program, our work is
designed for aligning traces derived from two versions of a
program under the same input. Thus, we need to address
the challenge of identifying the semantically equivalent parts of
two executions even if their source code is different because of code
change. Semantically equivalent parts mean the control flow
semantics to control the execution of the program. Note
that, the tree showed in Fig. 10 is constructed from the pro-
gram execution trace and the non-leaf nodes are usually
branching node such as while, for, etc. Therefore, the code
change applied on branching node affects our trace align-
ment result.

In this work, we study whether the code change of
added/deleted/updated branching node makes a differ-
ence on the final execution output. If some do not, we con-
sider the change keeps the flow semantics. With regard to
the changes on control flow structure, we define four types
of code changes which may preserve the flow semantics of
dynamic execution even if the control flow structure is
changed.

1. Add/Delete Selection: When the regression version
adds or deletes a selection (e.g., if statement), the
execution of regression version still preserve the
flow semantics if the evaluation of the added or
deleted condition is true. For example, Fig. 7b deletes
an if statement (i.e., if(x==0)) in Fig. 7a, the trace
alignment would not be influenced if the x==0 is
evaluated to be true in original execution. That is,
the execution of line 6 in Fig. 7a should be aligned
with the execution of line 6 in Fig. 7b. Note that,
existing approaches [24], [26] follows strict control
flow, which can miss such alignment.

2. Replace Selection (or Loop) with Loop (or Selection):
When the regression version replaces a selection
with a loop, or vice versa, the execution of regression
version still preserve the flow semantics between the

Fig. 8. CFG matching.

Fig. 9. Iteration alignment example.

2426 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

Authorized licensed use limited to: National University of Singapore. Downloaded on May 18,2022 at 15:26:05 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TSE.2019.2949568
http://doi.ieeecomputersociety.org/10.1109/TSE.2019.2949568

execution of the selection and the first iteration
derived from the loop. For example, Fig. 7b replaces
if statement with a while statement (line 3), we
should align the execution of line 4 in Fig. 7a with
the execution of line 4 in Fig. 7b, even if the latter is
under iteration.

3. Add/Delete Loop: Based on above two points, when
the regression version adds or deletes a loop, the exe-
cution of regression version still preserve the flow
semantics for the first iteration derived from the
loop.

4. Replace Loop (or Selection) with Loop (or Selection):
When the regression version replaces a loop (selec-
tion) with a loop (selection), the execution of regres-
sion version still preserve the flow semantics if the
evaluation of the loop (selection) are the same. For
example, the regression version replaces a for state-
ment with a while statement, it does not influence
the flow semantics if both boolean expression are
evaluated to be true or false.

Our aforementioned iteration based approach can well
address the first and fourth points. It is because that, com-
paring to control flow based alignment strategy [24], [26],
the iteration order based alignment strategy does not strictly
require the match of executed control nodes. As long as a
CFG node is executed (regardless whether it is controlled
by a selection), the longest subsequence is sufficient to cap-
ture the control flow difference. Nevertheless, we need to
adjust our matching criteria for the second and third points.

Alignment Complication Introduced by Change. Consider the
example in Fig. 7 (with input x=0) where we match
I ¼ ½2; 3; 4; 5�2 in T with I 0 ¼ ½20; 30; 40; 30; 40; 30; 60�2 in T 0, i.e.,
the second group of aligned iterations in Fig. 9. According
to our argument for matching criteria (underlined text), I½3�
should match I 0½3� (i.e., 4 and 4’ in CFGs) because I2 and I 02
are well aligned and matchðI½3�:nodeÞ ¼ I 0½3�:node. How-
ever, if we abstract the traversal of two iterations, we have
I ¼ ½2; 3; 4; 5�2 while I 0 ¼ ½20; ½30; 40�1; ½30; 40�2; ½30�3; 60�. As an
iteration step cannot match a normal step, which makes I½3�
and I 0½3� fail to match with each other. Source code modifi-
cation causes such a complication as a loop structure is cre-
ated by introducing an edge from node 4’ to node 3’ and the
branch node 3 is turned into a loop head.

To this end, we relax the abstraction for first iteration to
address this problem. Namely, we do not abstract the first
iteration derived from any static loop. Fig. 10 shows the
example of how relaxation helps match original and regres-
sion trees derived from Fig. 7 with input x=0. In Fig. 10,
the relaxed steps from the first iteration are highlighted
by red dashed rectangles. In the fourth layer, we have
I ¼ ½2; 3; 4; 5�2 (on the fourth layer) while I 0 ¼ ½20; 30; 40;
½30; 40�2; ½30�3; 60� (on the fourth and fifth layer). Note that I 0½2�
(i.e., 3’) and I 0½3� (i.e., 4’) are regarded as normal steps
instead of being abstracted into an iteration step.

The relaxation is sound because traversing the first itera-
tion of a loop is semantically equivalent to traversing
through a true/false branch of a selection node of the same
condition. Moreover, after relaxing the first iteration, the
items under any non-leaf node are still unique. It is because
the steps relaxed from the first iteration step must be differ-
ent from either iteration step (because the step type is differ-
ent) or other normal step (because otherwise other normal
steps should form an iteration step). Therefore, we can still
adopt longest common subsequence for the converted tra-
versal. The blue dashed lines in Fig. 10 shows the alignment
between I and I 0 after relaxation.

3.2.3 Extension to Function Call

Now, we discuss the case when the traversals include func-
tion call, which is another reason for repetitive CFG nodes
in a traversal. Let us first call each time a traversal walks
through a function as a call. Despite a function can be called
many times, its calls should be aligned with the same
boundary requirement as iteration. That is, the steps in a
call C 2 T cannot be matched to steps in different calls in
T 0. Therefore, we can also abstract the whole steps of a call
by adding call boundary into a “call step”.

3.2.4 Overall Alignment Algorithm

Based on the above arguments, we convert a traversal T into
an abstraction tree Tree ¼ hN;Ei in which each n 2 N corre-
sponds to a step T ½k� 2 T and each e 2 E represents a par-
ent-child relation, which is either of the following two cases:

� a step starting a call and all the derived steps in the
call are its children.

Fig. 10. Abstraction tree.

WANG ET AL.: EXPLAINING REGRESSIONS VIA ALIGNMENT SLICING AND MENDING 2427

Authorized licensed use limited to: National University of Singapore. Downloaded on May 18,2022 at 15:26:05 UTC from IEEE Xplore. Restrictions apply.

� a step starting a loop, all its derived steps are its chil-
dren, and each of its iteration (except the first one)
are regarded as an separate step.

Fig. 10 shows an example of abstraction tree based on the
code in Fig. 7b. The root of the tree is the entry method main.
Each time a step calls a function or starts a loop, its derived
steps are its children. There are nested loops in the example,
where the relaxed steps are highlighted in dashed rectangles,
and the iteration steps are represented by A2; A3; B2, and B3.
A2 and A3 indicates the second and third iterations and B2

and B3 indicates the second and third nested iterations. For
children of a loop step, its first iteration will not be abstracted,
for example, the node 2’, 3’, and 4’ under the invocation node
oftest’ and the node 3’ and 4’ under node I2.

Algorithm 1 shows our hierarchical trace alignment algo-
rithm. The algorithm takes as input parent nodes of two
abstraction tree r and r0, the static code matching function
match, and a matching relation set MSet. Before the algo-
rithm starts, r and r0 are two root steps of two trees, and
MSet is ;. Our aims to obtain aMSet T � T 0.

Algorithm 1. TraceAlign(TreeNode r, TraceNode r0,
MatchFunctionmatch, MatchSetMSet)

1 children r:directChildrenðÞ;
2 children0 r0:directChildrenðÞ;
3 pairList computeLongestSubsequenceðchildren; children0;matchÞ;
4 for each pair 2 pairList do
5 MSet MSet [pair;
6 if pair contains function call then
7 TraceAlign(pair:s, pair:s0,match);
8 else if pair contains iteration then
9 TraceAlign(pair:s, pair:s0,match);
10 returnMSet;

Given two parents r and r0, we first obtain their direct
children in the tree, i.e., children and children0 (line 1-2).
Note that, children and children0 are two lists with regard to
execution order. Then we match these two lists with longest
substring algorithm (line 3). The result is a list of pairs
pairList. A pair pair 2 pairList is a pair of corresponding
nodes in two trees. We use pair:s to denote the child under
r and pair:s0 to denote the child under r0. Note that, pair:s
and pair:s0 can be �, i.e., some step cannot be matched. We
first add the pair into our step matching relation setMSet. If
a pair contains either function call or iteration, we recur-
sively call TraceAlign(). Thus, we can achieve MSet by tra-
versing both abstraction trees in such a top-down manner.

3.2.5 Alignment Result Taxonomy

Each element in the resulted match set (i.e., the returned
output of Algorithm 1) is a pair of steps hs; s0i where s

comes from the original trace and s0 comes from the regres-
sion trace. Note that either s or s0 can be �, i.e., the step s or
s0 cannot be matched to any step in the other trace. In addi-
tion, we define that s:match ¼ s0 if s 6¼ � and s0:match ¼ s if
s0 6¼ �. According to the results of trace alignment, for each
step s in either original or regression trace, we denote the
type of s as s:type, the matched step of s as s:match. We cate-
gorize a step s as follows:

� s:type=SRC: the source code of s is different between
two versions;

� s:type=CTL: the step s has no matching step
(s:match ¼ �), i.e., it has a different control flow;

� s:type=DAT: the step s read variables with different
values from its matching step, i.e., it has a different
data flow;

� s:type=IDT: the step s is exactly the same with its
matching step in terms of the source code, data flow,
and control flow.

Note that, SRC is not exclusive from CTL and DAT.

3.3 Difference With Existing Approaches

We summarize the differences between our approach and
existing approaches [24], [26] in three folds. First, we
address different alignment problem from that of existing
solutions [24], [26]. We align traces derived from running
same input for two different versions of program and they
align traces derived from running two different inputs for
the same version of program. Second, existing solutions
derive tree from trace via control flow point of view, in con-
trast, our approach derives tree from trace via iteration
point of view. That is, they transfer a trace step into a non-
leaf node in the tree if it is either a selection or loop, while
we only transfer a trace step into a non-leaf node only if it is
a loop. Iteration-based alignment has a coarser granularity,
nevertheless, we show that it (1) has all the information to
align the trace and (2) allows relaxation technique for better
accuracy in our program settings. Third, our approach uses
relaxation technique to handle the effect introduced by the
code changes.

3.4 Alignment Slicing and Mending

Rationale. Based on the result of trace alignment, given a
step s on either trace, s can be a clue to find the root cause if
s:type 6¼IDT. Starting from a step swhere the failure is mani-
fested, the rationale of alignment slicing and mending is to
keep asking why and why not questions so that we can track
back from s to its root cause. In particular, alignment slicing
is used for answering why questions while alignment
mending is used for answering why-not questions.

Given a trace step s, if s:type 6¼IDT, it could be caused by
either (1) different data flow (i.e., s:type=DAT) from that in
the other trace, (2) different control flow (i.e., s:type=CTL)
from that in the other trace, and (3) code modification (i.e.,
s:type=SRC). In the following, we first discuss different
data and control flow, and discuss the code modification at
the end.

If s:type=DAT, there must be a variable var read by s and
its match s:match so that the value of var in s (denoted as
val) is different from that in s0 (denoted as val0). Therefore,
we asks the following two questions:

Fig. 11. Two versions P and P 0 for trace alignment.

2428 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

Authorized licensed use limited to: National University of Singapore. Downloaded on May 18,2022 at 15:26:05 UTC from IEEE Xplore. Restrictions apply.

� Data Why Question: Why the value of variable var is
val?

� Data Why-not Question:Why the value of variable var
is not val0?

Data Slicing andMending.As for answering data why ques-
tion, we apply data slicing on the variable var on s. More spe-
cifically, we locate the data dominator of s with regard to var,
i.e., the latest step before s which defines var, denoted as
ddðs; varÞ. The variable definition behavior of ddðs; varÞ
directly answers why variable var is of a different value from
that in s:match. As for answering data why-not question, we
first locate s:match and compute ddðs:match; varÞ. As a result,
we need to check three more steps, i.e., ddðs; varÞ, s0:match,
and ddðs:match; varÞ. Algorithm 2 shows how we collect the
set of steps through data slicing andmending process.

Algorithm 2. dataSlicingAndMending(Trace p, Trace p0,
Step s)

1 varSet fvarjvar reads different value in sg;
2 set ;;
3 for var in varSet do
4 sd ddðs; varÞ;
5 s0d ddðs:match; varÞ;
6 set set [fsd; s0d; s:matchg;
7 return set;

Fig. 11 shows an example and the execution traces T and
T 0 for Figs. 11a and 11b is showed in Fig. 13. The change is
that an if-statement is added in line 4. For formatting rea-
son, we let the original line 4 be an empty line. Let the input
be x=0, then both traces have 5 steps, i.e., T ¼ h1; 2; 3; 5; 6i
and T 0 ¼ h10; 20; 30; 40; 60i. For simplicity, we use line number
in Fig. 11 to indicate the CFG node number, as showed in
Fig. 12. In Fig. 13, we represent the data dependency with
solid lines and control dependency with dashed lines. Sup-
pose we are looking at the step T ½5� (i.e., T ½5�:node = 6).
Based on the alignment result, T ½5�:match = T 0½5�. Moreover,
the value of variable a in T 0½5� is 0 while that that in T ½5� is
1. Thus, T ½5�:type = DAT. In such case, we apply data slicing
for T ½5� on variable a to reach T ½4�, and apply data mending
on T ½5� to reach T 0½5� and T 0½2�.

Given a trace step s, if s:type=CTL, i.e., s:match ¼ �, we
asks the following two questions:

� Control Why Question:Why s is executed?
� Control Why-not Question: Why s:match is not

executed?
Control Slicing and Mending. As for answering control

why question, we apply control slicing on s. More

specifically, we locate the control dominator of s (denoted as
cdðsÞ), i.e., the latest step before s so that its CFG node is
control depended by s:node. The flow altered by cdðsÞ
directly answers why step s is executed. As for answering
control why-not question, we conduct control mending as
follows. First, we locate the source code (or CFG node)
n0 ¼ matchðs:nodeÞ. Then, we locate the latest step s0 which
makes n0 fail to be executed. As a result, we need to check
two more steps cdðsÞ and s0, as well as a static source code
n0. Algorithm 3 shows how we collect the set of steps
through control slicing and mending process.

Algorithm 3. controlSlicingAndMending(Trace p, Trace
p0, Step s)

1 sc cdðsÞ;
2 n0 matchðs:nodeÞ;
3 s0c the controlling step in p0 to make n0 unexecuted;
4 return fsc; s0cg;

For example in Figs. 11 and 13, suppose we are looking at
the step T ½4� (as it is the answer for why the value of variable a
read by T ½5� is not 1?). The control slicing will reach the step
f calling the example() method. The control mending will
first locate the source code line 5 at Fig. 11b. Then, we can
locate T 0½4� as it is the latest step which makes line 5 fail to
be executed.

Now, we discuss the case when s0:type=SRC. Given
regression code can be complicated (e.g., refactoring and
feature enhancement), we take a conservative strategy so
that we conduct both data/control slicing and mending.

Algorithm 4 presents the pseudo-code for alignment slic-
ing and mending. Its input are two traces p and p0, and a
step s0w where the failure manifests. Its output is a step set
reasonSet, including the steps on both traces which can
serve as the explanation for s0w. The algorithm starts with a
worklist worklist containing only s0w (line 1). We pop out
and check each step in worklist (line 4). Each time we reach
a new non-IDT step through data/control slicing and mend-
ing, we add it into worklist and reasonSet (line 13–16). Note
that, when applying data slicing and mending (line 7 and
10) on a step s, we locate the data dominator for every read
variable in s of different value with those read in s:match.
Finally, we return reasonSet which records all the checked
steps once appearing in worklist.

Explanation Manifestation. When we have the returned
reasonSet from Algorithm 4, it is straightforward to
convert it into a bipartite graph Gb ¼ hGc;Gb; Ei in which
Gc ¼ fscjsc 2 reasonSet ^ sc 2 Tg, Gb ¼ fsbjsb 2 reasonSet^

Fig. 12. CFG for control mending example.
Fig. 13. Example of alignment slicing and mending.

WANG ET AL.: EXPLAINING REGRESSIONS VIA ALIGNMENT SLICING AND MENDING 2429

Authorized licensed use limited to: National University of Singapore. Downloaded on May 18,2022 at 15:26:05 UTC from IEEE Xplore. Restrictions apply.

sb 2 T 0g, E ¼ fðsc; sbÞjsc matches sb ^ sc 2 Gc ^ sb 2 Gbg.
Moreover, for the steps in Gc or Gb, we can also manifest
the control or data dependence relation among them. The
generated explanation for the example in Fig. 11 is showed
in Fig. 14.

Algorithm 4. AlignSliceMend(Trace p, Trace p0, Step s0w)
1 worklist fs0wg;
2 reasonSet fs0wg;
3 while worklist 6¼ ; do
4 s worklist:popðÞ;
5 setd; setc ;;
6 if s:type=SRC then
7 setd dataSlicingAndMendingðp;p0; sÞ;
8 setc controlSlicingAndMendingðp;p0; sÞ;
9 else if s:type=DAT then
10 setd dataSlicingAndMendingðp;p0; sÞ;
11 else if s:type=CTL then
12 setc controlSlicingAndMendingðp;p0; sÞ;
13 for s 2 Setd [Setc do
14 if !isVisited(s) then
15 worklist worklist [fsg;
16 reasonSet reasonSet [fsg;
17 return reasonSet;

With the causality graph showed in Fig. 14, programmers
can (1) know where is the failure inducing change (in this
case, T 0½4�) and (2) how such change can propagate the error
to the final observable failure. In this case, the user can con-
firm the reported failure inducing change with the follow-
ing causality chain: The fact that variable a is incorrect is
due to the assignment is miss-executed; the fact of miss-exe-
cution of the assignment is due to the addition of a change
in line 4. The causality chain also allows an interactive tool
for users to explore the causality chain, a demo video is
available in [29].

4 IMPLEMENTATION

We implement our approach to support both C/C++
and Java programs. Both tools implement our approach.
The C++ version is available at [30], which is based on PIN
tool [35]. The Java version is available at [29], which is based
on JVM instrumentation technique. Both PIN and Java
instrumentation allows us to retrieve various runtime infor-
mation, e.g., execution trace, read/written variable informa-
tion, etc.

Noteworthy, we also support user to explore the explana-
tion in an interactive manner. A demo video can be checked
at [29]. Trace are visualized into our abstraction tree

mentioned in Section 3.2. Our tool first visualize the regres-
sion and original traces in left and right views.When the pro-
grammer clicks a step on a trace, we can (1) highlight its
matched step in the other trace, (2) compare its read/written
variables and (3) compare the corresponding source code in
the eclipse editor. Programmer can choose to apply slicing
and mending for each step as well. Based on our tool, pro-
grammer can explore how the defects propagate from the
root cause in amore vivid and understandable way.

5 EVALUATION

We evaluate our approach with a comparative experiment
and an applicability experiment. In the comparative experi-
ment, we apply our technique along with dynamic slicing,
delta-debugging and symbolic execution technique on 24
Linux programs. The comparative experiment helps us to
understand both the advantage and disadvantage of our
approach over existing state-of-the-art approaches. In the
applicability experiment, we apply our technique on 298
Defects4J bugs [36] where the changes between the correct
and buggy version includes only bug fixing. In contrast to
the comparative experiment which evaluates the (dis)
advantages of our approach, we use 298 Defects4J bugs as
“tests” for our approach to help us understand the scenarios
where our trace-based approach can and cannot work with
larger scale of bugs, providing guidance for the practical
use of our approach.

5.1 Comparative Experiment

In the comparative experiment, we evaluate how accurate is
ERASE to isolate the root causes of real-world regressions
comparing to state-of-the-art tools. We aim to answer the
following research questions in this experiment:

� RQ1: How accurate is ERASE to isolate the root
causes of real-world regressions?

� RQ2: How much effort is required to inspect the
explanation of real-world regressions?

� RQ3: What is the runtime performance of ERASE on
real-world regressions?

5.1.1 Experiment Setup

We collected 24 regressions in this experiment to compare
our approach with dynamic slicing [10], augmented
delta debugging (ADD) [15], and symbolic approach
(AFTER) [20]. In this experiment, we implemented dynamic
slicing in ERASE for comparison. Given that the tools of
ADD and AFTER are not available, we reuse their experi-
mental results (including accuracy and runtime perfor-
mance) to compare with our approach. In this regard, we
select the subject regressions as follows. We select all 12
regressions used in Yu et al.’s ASE’12 work (ADD) [15] and
all 7 regressions used in Yi et al.’s ICSE’15 work
(AFTER) [20]. Note that, Yi et al. [20] selected 7 regressions
from the 12 regressions in the evaluation of ADD [15]. Thus,
we have 7 regressions to compare all four approaches, and 5
(i.e., 12 - 7) regressions to compare dynamic slicing, ADD,
and ERASE. Moreover, in order to generalize the results,
we additionally choose 12 regressions with the criteria of
large number of modifications and large program size. For

Fig. 14. Example of explanation for Fig. 11.

2430 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

Authorized licensed use limited to: National University of Singapore. Downloaded on May 18,2022 at 15:26:05 UTC from IEEE Xplore. Restrictions apply.

large number of modifications, we select 8 regressions from
CoREBench regression benchmark [37]. CoREBench regres-
sion benchmark has 4 projects, and we select 2 regressions
with largest number of modifications from each project. For
large program size, we select 4 regressions with average
664 K lines of code (note that the largest program used in
CoREBench has only 191 K lines of code). Given the tools of
ADD and AFTER are not available, we compare ERASE
with dynamic slicing on these 12 regressions. Readers can
refer to Table 2 for more details of all 24 subject regressions.

As the configuration for the subject regressions are very
different and even CoREBench does not report failure
inducing changes, we manually run ERASE on all 24
regressions, isolate the failure inducing changes by reading
the source code and bug description, and calculate precision
and recall for the reported failure inducing changes. In this
experiment, the changes reported are based on source code
line. Thus, we compare the reported changed lines covered
by causal graph with the reported changed lines by state-of-
the-art approaches. Given the set of all reported changes as

A, the set of reported failure inducing changes as TP , the set
of all failure inducing changes as Root The precision p is cal-
culated by p ¼ jTP jjAj and the recall r is calculated by r ¼ jTP j

jRootj.
This comparative experiment is conducted on 32-bits

Ubuntu 12.0 with 3.5 GHz Intel Xeon E5 CPU and
8G RAM.

5.1.2 Results

Table 3 shows the results of this comparative experiment,
where each line indicates a subject regression, and their
details including program name, size, the trace length of
passing and failing version, number of modifications
(#Ch), number of executed modifications (#Exec Ch),
number of actual failure inducing changes (#R), as well as
the precision (Pre), recall (Rec), and runtime overhead
(Time) for each approach. Particularly, the executed mod-
ifications refer to the covered changes by the test case exe-
cuting on either the regression version or the original
version of the program.

TABLE 2
Subject Regressions Overview

Name LoC (K) Pass Fail Regression Description Report Site

bench- mark

in ICSE’15

(AFTER)

and ASE’12

(ADD)

find-a 24 4.2.15 4.2.18 Using -L/-H produces wrong output http://savannah.gnu.org/bugs/?12181

find-b 40 4.3.5 4.3.6 Using -mtime produces wrong output http://savannah.gnu.org/bugs/?20005

find-c 40 4.3.5 4.3.6 Using -size produces error message http://savannah.gnu.org/bugs/?30180

make 23 3.8 3.81 Using -r produces wrong output http://savannah.gnu.org/bugs/?20006

bc 10 1.05a 1.06 Argument processing error http://bugs.gentoo.org/show_bug.cgi?

id=51525

diff 20 2.8.1 2.9.2 Adds additional newline http://bugs.debian.org/cgi-bin/bugreport.

cgi?bug=577832

gwak 20 2.8.1 2.9.2 Adds additional newline http://bugs.debian.org/cgi-bin/bugreport.

cgi?bug=577832

bench- mark

in ASE’12

(ADD)

grep 6 2.5.4 2.6 Using -include produces wrong output http://savannah.gnu.org/bugs/?29876

indent 15 2.2.9 2.2.10 Adds too many newlines http://savannah.gnu.org/bugs/?27036

tar 21 1.13.25 1.13.90 Wrong uid display http://lists.gnu.org/archive/html/bug-tar/

2004-10/msg00034.html

ls 87 6.7 6.8 Using -x produces wrong output http://lists.gnu.org/archive/html/bug-

coreutils/2007-04/msg00000.html

bash 20 2.8.1 2.9.2 Adds additional newline http://bugs.debian.org/cgi-bin/bugreport.

cgi?bug=577832

CoRE- Bench

(large

number

of modi-

fications)

make-1 23 3.8 3.81 cannot turn off implicit rules for %.c

and %.tex

http://savannah.gnu.org/bugs/?18622

make-2 24 3.81 3.82 incorrect order only parsing in patterns http://savannah.gnu.org/bugs/?31155

grep-1 6 2.5.4 2.6 two options -i and -n do not work well http://lists.gnu.org/archive/html/bug-

grep/2012-08/msg00012.html

grep-2 6 2.5.4 2.7 Core dump with pattern ’(b—)*(— $)’ http://savannah.gnu.org/bugs/?33547

find-1 40 4.3.5 4.3.6 incorrect error message on invalid

argument

http://savannah.gnu.org/bugs/?28824

find-2 49 4.3.2 4.3.5 using -mtime -2 error http://savannah.gnu.org/bugs/?20139

coreutils-1 91 6.7 7.3 rm -I vs. rm –interactive=once https://debbugs.gnu.org/cgi/bugreport.

cgi?bug=9308

coreutils-2 107 7.4 7.5 tail –retry not re- attempting to open

file

http://lists.gnu.org/archive/html/

coreutils/2013-04/msg00003.html

bench- mark

(large size)

global 217 6.3.3 6.3.4 Failed to parse template http://lists.gnu.org/archive/html/bug-

global/2016-08/msg00000.html

gettext-a 805 0.18.3 0.19.6 Mangling C escapes http://savannah.gnu.org/bugs/?46756

gettext-b 861 0.19.6 0.19.7 Glade file error http://lists.gnu.org/archive/html/bug-

gettext/2016-01/msg00002.html

gettext-c 758 0.18.1 0.18.2 Behavior change http://savannah.gnu.org/bugs/?

func=detailitem&item_id=39157

WANG ET AL.: EXPLAINING REGRESSIONS VIA ALIGNMENT SLICING AND MENDING 2431

Authorized licensed use limited to: National University of Singapore. Downloaded on May 18,2022 at 15:26:05 UTC from IEEE Xplore. Restrictions apply.

http://savannah.gnu.org/bugs/?12181
http://savannah.gnu.org/bugs/?20005
http://savannah.gnu.org/bugs/?30180
http://savannah.gnu.org/bugs/?20006
http://bugs.gentoo.org/show_bug.cgi?id=51525
http://bugs.gentoo.org/show_bug.cgi?id=51525
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=577832
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=577832
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=577832
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=577832
http://savannah.gnu.org/bugs/?29876
http://savannah.gnu.org/bugs/?27036
http://lists.gnu.org/archive/html/bug-tar/2004-10/msg00034.html
http://lists.gnu.org/archive/html/bug-tar/2004-10/msg00034.html
http://lists.gnu.org/archive/html/bug-coreutils/2007-04/msg00000.html
http://lists.gnu.org/archive/html/bug-coreutils/2007-04/msg00000.html
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=577832
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=577832
http://savannah.gnu.org/bugs/?18622
http://savannah.gnu.org/bugs/?31155
http://lists.gnu.org/archive/html/bug-grep/2012-08/msg00012.html
http://lists.gnu.org/archive/html/bug-grep/2012-08/msg00012.html
http://savannah.gnu.org/bugs/?33547
http://savannah.gnu.org/bugs/?28824
http://savannah.gnu.org/bugs/?20139
https://debbugs.gnu.org/cgi/bugreport.cgi?bug=9308
https://debbugs.gnu.org/cgi/bugreport.cgi?bug=9308
http://lists.gnu.org/archive/html/coreutils/2013-04/msg00003.html
http://lists.gnu.org/archive/html/coreutils/2013-04/msg00003.html
http://lists.gnu.org/archive/html/bug-global/2016-08/msg00000.html
http://lists.gnu.org/archive/html/bug-global/2016-08/msg00000.html
http://savannah.gnu.org/bugs/?46756
http://lists.gnu.org/archive/html/bug-gettext/2016-01/msg00002.html
http://lists.gnu.org/archive/html/bug-gettext/2016-01/msg00002.html
http://savannah.gnu.org/bugs/?func=detailitem
http://savannah.gnu.org/bugs/?func=detailitem

5.1.2.1 RQ1 (Accuracy): From Table 3, we can have the
following conclusions. First, dynamic slicing achieves good
recall (100.0 percent for 7 regressions, 95 percent for 12
regressions, and 97 percent for 24 regressions) with great
cost of precision (6 percent for 7 regressions and 6 percent
for 12 regressions, and 4 percent for 24 regressions). Second,
ADD is outperformed by AFTER and ERASE in terms of
both precision and recall. Third, AFTER is comparable to
ERASE in terms of recall but reports more false positive
than reported by ERASE. We qualitatively analyze the
above conclusion as follows.

Dynamic Slicing’s Great Sacrifice. Dynamic slicing slices
the steps on the regression trace through every data and
control dependency. As the data and control dependencies
are usually abundant in program trace, it leads to a large
number of reported steps. Therefore, it is not a surprise to
see dynamic slicing achieves good recall with severe cost of
precision. Nevertheless, dynamic slicing may still miss
reporting failure-inducing change when some code is
missed or misses execution in either regression or original
version.

For example, dynamic slicing misses reporting a failure-
inducing change in program indent, which is showed in
Listing 1. Its root cause lies in line 3 of Listing 1 where the
boolean expression in if-condition should have been evalu-
ated to true in the regression version. Thus, line 4 (i.e.,
prefix_blankline_requested = 0) is not executed.
Note that dynamic slicing can only slice the incorrect data
and control flow instead of missing flows. Hence, it cannot

reach line 4 when slicing through the prefix_blankli-

ne_requested variable (as it is not executed). As a result,
such a change is missed. In contrast, ERASE can report the
change by comparing with the original trace via alignment
mending technique.

Listing 1. Dynamic Slicing Misses Change in indent
Program

1 +#if 0

2 + ...

3 + if(...)

4 + prefix_blankline_requested = 0;

5 + ...

6 +#endif

ADD ’s Inherence Disadvantage. ADD’s disadvantage in
accuracy lies in that ADD regards the program logics as a
black box and inducing failure-inducing change with a
trial-and-error strategy through reverting changes. In con-
trast, AFTER and ERASE consider program semantics in
terms of data and control dependencies. In the trial-and-
error strategy, ADD regards a change as failure-inducing as
long as its reversion can make the test case pass. In such
case, ADD may induce inaccuracy. Taking find-a program
for example. The regression in find-a program has two fail-
ure-inducing changes, however, ADD only report one of
them. In these two failure-inducing changes, the code of
one change invokes the code of the other, and the test case
fails once the latter change is triggered. Therefore, as long

TABLE 3
Experiment Result

Program LoC

(K)

Trace Length #Ch #Exec

Ch

#R Dynamic Slicing ADD AFTER ERASE

Pass Fail Pre Rec Time (s) Pre Rec Time (s) Pre Rec Time (s) Pre Rec Time (s)

All

find-a 20 2853 941 72 19 2 0.13 1.00 9.8 1.00 0.50 17 1.00 1.00 125 0.67 1.00 18.1

find-b 40 6357 6360 244 20 1 0.09 1.00 104 0.08 1.00 61 0.20 1.00 321 1.00 1.00 110.9

find-c 40 634 630 244 3 1 0.50 1.00 9.6 1.00 1.00 10 1.00 1.00 39 1.00 1.00 78.3

make 23 52526 35188 1292 269 4 0.04 1.00 118.5 0.06 1.00 1833 0.67 1.00 946 0.80 1.00 76.3

bc 10 40772 29 420 15 1 0.25 1.00 15 1.00 1.00 25 1.00 1.00 12 1.00 1.00 21.4

diff 20 2741 2885 372 59 1 0.02 1.00 24.7 1.00 1.00 45 1.00 1.00 31 0.33 1.00 33.4

gawk 20 8988 9771 701 2 1 0.50 1.00 128.6 1.00 1.00 73 1.00 1.00 5 1.00 1.00 46.5

overall 24.7 16410.1 7972.0 477.9 55.3 1.6 0.06 1.00 58.6 0.12 0.91 294.9 0.65 1.00 211.3 0.73 1.00 55.0

DS vs

AD vs

ER

grep 6 2178 1358 596 53 3 0.13 1.00 27.7 0.14 1.00 / / / / 1.00 1.00 35.6

indent 15 10538 10723 802 47 1 0.00 0.00 58.5 0.50 1.00 / / / / 1.00 1.00 25.5

tar 21 5725 6059 619 51 1 0.04 1.00 22.1 0.00 0.00 / / / / 0.33 1.00 25.3

ls 87 1450 1401 73 13 2 0.14 1.00 13.5 0.18 1.00 / / / / 1.00 1.00 134.6

bash 20 111905 116345 1249 68 1 0.05 1.00 208.1 0.50 1.00 / / / / 0.50 1.00 106.3

overall 26.8 20555.6 15974.2 557.0 51.6 1.6 0.06 0.95 61.7 0.1 0.9 / / / / 0.73 1.00 59.4

DS vs

ER

make-1 23 77781 81466 1404 188 1 0.01 1.00 96.3 / / / / / / 0.33 1.00 36.2

make-2 23 433075 431620 2092 464 2 0.01 1.00 158.9 / / / / / / 0.50 1.00 75

grep-1 6 6705 5913 1428 93 1 0.03 1.00 25.6 / / / / / / 0.50 1.00 52.4

grep-2 6 4061 2848 1549 95 1 0.08 1.00 23.1 / / / / / / 1.00 1.00 53.4

find-1 40 538 544 1328 25 2 0.13 1.00 10.8 / / / / / / 0.50 1.00 110.6

find-2 40 7732 8384 1147 93 1 0.02 1.00 15.5 / / / / / / 0.33 1.00 134

coreutils-1 91 557 523 2531 38 1 0.09 1.00 9.8 / / / / / / 1.00 1.00 83.1

coreutils-2 107 4621 659 662 43 2 0.11 1.00 13.2 / / / / / / 1.00 1.00 75.4

global 217 119016 101140 24 13 1 0.14 1.00 2032.1 / / / / / / 0.33 1.00 1877.6

gettext-a 805 200753 214485 851 364 1 0.01 1.00 1306.2 / / / / / / 0.25 1.00 619.4

gettext-b 861 213847 215028 225 117 2 0.03 1.00 2837.7 / / / / / / 0.33 1.00 758.9

gettext-c 758 223464 223480 237 50 1 0.05 1.00 1806.4 / / / / / / 0.33 1.00 716

overall 137.5 64117.4 61574.2 840.1 91.8 1.5 0.04 0.97 378.2 / / / / / / 0.56 1.00 221.0

2432 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

Authorized licensed use limited to: National University of Singapore. Downloaded on May 18,2022 at 15:26:05 UTC from IEEE Xplore. Restrictions apply.

as ADD reverts the former change, the code of the latter
change would not be triggered. As a result, ADD reports
only one change. In contrast, both AFTER and ERASE can
track through data flow (AFTER tracks the data flow by
solving the weakest precondition and ERASE tracks the
data flow by data slicing) so that both the failure-inducing
changes will be tracked through the causality chain.

Comparison Between AFTER and ERASE. In Table 3, we
can see that ERASE achieves the same recall with AFTER
while better precision than AFTER. We investigate the rea-
son for the ERASE’s advantage over AFTER. We observe
that, comparing to AFTER, ERASE can get rid of the
changes introduced by refactoring or re-implementing.
Note that ERASE matches the steps between original and
regression traces and apply data alignment slicing only
when the variable values of matched trace steps are differ-
ent. As refactoring or re-implementing the code of partial
function does not affect the values of their final written vari-
ables, ERASE can avoid reporting such changes. Note that,
AFTER needs to transfer code into a conjunctive predicate
P , as long as minimum satisfiable core of P involves refac-
toring or re-implementation code, it incurs false positive.
Listing 2 shows a non-failure inducing change (i.e., rename)
reported by AFTER as failure-inducing change in find-b pro-
gram, which does not affect the control/data dependency.

Listing 2. False Positive of AFTER in find-b Program

1 - if(get_comp_type(&s, &comp))

2 + if(get_comp_type(&timearg, &comp))

False Positive Reported by ERASE. ERASE may include
more changes than failure-inducing ones when an irrelevant
change appears in the propagation of the regression bug.
Listing 3 shows an example for diff program where the
change (casting data type) appears in the cause of alignment
slicing and mending. ERASE conservatively reports the
change as failure-inducing as the change is control depen-
dent by the observable faulty step. Nevertheless, with the
explanation (i.e., causality graph) presented to the develop-
ers, it is convenient for them to manually inspect the false
positives of ERASE.

Listing 3. Additional Change in diff Program

1 + while((char const*)p < suffix_begin)

2 - while(p< suffix_begin)

5.1.2.2 RQ2 (Effort for Inspecting Explanation):
ERASE also reports explanation in terms of causal
graph. We investigate the inspecting effort by the size of
generated causal graph. Table 4 shows the comparison
between the reported steps in by dynamic slicing (DS)
and the reported explanation by ERASE. In Table 4, we
show the reported steps by dynamic slicing and ERASE
on both passing and failing traces. Moreover, we also
show the times of steps reported by dynamic slicing
over that of ERASE (i.e., Adv (times)). We can see that
dynamic slicing reported on average 7175.0 (3104.5 +
4046.5) steps for each regression, which is overwhelm-
ingly large for developers to check. In contrast, ERASE
reports a more reasonable number of explanation, i.e., on
average 30.2 (13.1 + 17.1) steps).

5.1.2.3 RQ3: Performance: As showed in Table 3, in terms
of the performance overhead, ERASE incurs less runtime
overhead than dynamic slicing (221.0s versus 378.2s), ADD
(55.0s versus 294.9s), and AFTER (55.0s versus 211.3s). In
addition, we further investigate the runtime performance of
ERASE , as shown in Table 5.

The time overhead of ERASE is divided into five parts:
Diff includes the time for source code comparison and rear-
rangement, Execution presents the time for executing the
program and collecting the information, Dependence is the
time for computing dynamic control- and data-dependen-
cies, Alignment lists the time for trace alignment, and S& M
is the time for performing alignment slicing and mending.
Note that ERASE computes dynamic data- and control-
dependencies and performs alignment slicing and mending
based on the practical demand for them.

As showed in Table 3, compared to techniques AFTER ,
ADD and dynamic slicing, ERASE achieves the speedups of
4.03X, 4.69X and 1.71X, respectively. AFTER uses symbolic
execution and SMT sovler and ADD needs to repetitively
revert the modification and execute the program, ERASE
only needs to execute the original and regression version
once. Comparing to the time overhead in dynamic slicing
for computing almost every dynamic data- and control-
dependency, ERASE only focuses on those dependencies
different in original and regression version. Given that the
trace alignment and alignment slicing and mending takes
acceptable time, ERASE can output other approaches in
terms of efficiency.

TABLE 4
Results Reported by Dynamic Slicing and ERASE

Regression

Trace
Length

Dynamic
Slicing

ERASE
Adv

(times)
Pass Fail Pass Fail Pass Fail

find-a 2853 941 210 252 8 10 25.7
find-b 6357 6360 635 607 17 14 40.1
find-c 634 630 204 184 3 5 48.5
make 52526 35188 4825 2796 8 36 173.2
bc 40772 29 6 7 1 3 3.3
diff 2741 2885 599 576 25 37 19.0
gawk 8988 9771 870 1303 8 3 197.5
grep 2178 1358 342 145 10 3 37.5
indent 10538 10723 516 5732 8 6 446.3
tar 5725 6059 1802 1768 9 8 210.0
ls 1450 1401 182 178 20 20 9.0
bash 111905 116345 12495 13694 15 23 689.2
make-1 77781 81466 4476 5367 22 31 185.7
make-2 433075 431620 3689 3976 18 23 187.0
grep-1 6705 5913 1035 983 13 15 72.1
grep-2 4061 2848 689 1054 9 15 72.6
find-1 538 544 135 236 8 7 24.7
find-2 7732 8384 752 775 18 15 46.3
coreutils-1 557 523 85 103 7 9 11.8
coreutils-2 4621 659 256 218 10 9 24.9
global 119016 101140 18716 18679 8 38 812.9
gettext-a 200753 214485 7291 7317 28 28 260.9
gettext-b 213847 215028 245 16727 3 19 771.5
gettext-c 223464 223480 14454 14438 38 34 401.3
average 64117.4 61574.2 3104.5 4046.5 13.1 17.1 198.8

WANG ET AL.: EXPLAINING REGRESSIONS VIA ALIGNMENT SLICING AND MENDING 2433

Authorized licensed use limited to: National University of Singapore. Downloaded on May 18,2022 at 15:26:05 UTC from IEEE Xplore. Restrictions apply.

5.1.3 Threats to Validity

The main threat in our study is that we can only compare
ERASE with ADD and AFTER on their reported regressions
as AFTER is not publicly available. In the future, we will
generalize the comparison results on more regressions by
implementing their approaches. Moreover, 24 real regres-
sions can still be not generalized enough. Nevertheless, we
have tried our best to mitigate this threat by sampling
regressions with different criteria to make our subject
regressions representative.

5.2 Applicability Experiment

We applied our approach on the bugs in Defects4J reposi-
tory [36]. Up till now, Defects4J repository records 395
real-world bugs from 6 open source Java projects. For
each bug in the repository, it has a buggy version and
fixed version, and the changes between two versions
include only bug fixing. In our experiment, we regard the
fixed version as the correct version and buggy version as
the regression version. Note that, in this experiment, the
changes from buggy version to fixed version for each
Defects4J bug are pure failure-inducing change. Never-
theless, our trace-based approach reports changes
involved in alignment slicing and mending process (see
Section 3.4) as failure-inducing changes. Thus, we would
like to know whether those pure changes in Defects4J
bugs can always be reported by ERASE. The rationale is
that we regard those large number of bugs as “tests” to
evaluate the limitations of our approach to understand
and categorize the scenarios where ERASE can and can-
not work, providing guidance for the practical use of our
approach.

5.2.1 Subject Bugs

In this experiment, we use 298 out of 395 bugs in Defects4J
repository, as showed in Table 6. We discard 97 bugs
because either (1) the regression bug is trivial as the regres-
sion error happens at last step on buggy trace, or (2) the
buggy trace or the fixed trace is over-long (i.e., over 1 mil-
lion steps).

5.2.2 Result

Of the 298 Defects4J bugs, our approach localizes 265 bugs,
i.e., reports the steps executing the fixed code, which occu-
pies 88.9 percent of the bugs. We summarize the reasons of
our approach’s failure on the remaining 33 regression bugs
in Table 7.

Language Specific Implementation. The major reason (27+3
bugs) lies in that some language specific feature makes data
and control flow analysis fail, including the use of Java
native method and runtime exception. First, the use of Java
native method such as System.arrayCopy() causes
some data flowmissed. In addition, some runtime exception
(e.g., try-catch structure) alters the control flow in an
implicit way. Missing such implicit exception-caused con-
trol flow breaks the causality chain leading towards the root
cause.

Multi-Threaded Program. Our current implementation
only supports recording trace steps for single-threaded pro-
grams. We may miss some steps when some key steps hap-
pen in other threads than main thread. Multi-threaded
programs are out of the scope of this work. In order to fully
support localizing multi-thread regression bugs, we can
revise the trace matching algorithm described in Section 3.2.
We will address this issue as our future work.

Untraced Static Change. We also observed that some static
change may not be recorded in trace but they still take effect
in the execution. For example, in the 56th bug of Lang proj-
ect, the root cause lies in missing using transient key-
word. More specifically, without the transient modifier
to tell JVM not to serialize a field, the program mistakenly
serializes some fields, leading to a runtime exception. In
such case, we cannot trace to such a change as JVM plays a
role to deal with the effect of transient keyword.

TABLE 5
Runtime Performance in Four Techniques

Regression Diff Execution Dependence Alignment S&M Total

find-a 8.2 8.7 0.9 0.2 0.1 18.1
find-b 84.7 15.6 6.5 3.5 0.6 110.9
find-c 66.1 8.0 1.1 3.0 0.1 78.3
make 12.2 27.4 34.3 1.0 1.4 76.3
bc 5.7 7.7 7.2 0.2 0.6 21.4
diff 8.8 14.4 9.6 0.4 0.2 33.4
gawk 15.2 11.2 14.2 4.6 1.3 46.5
grep 7.8 12.2 15.3 0.2 0.1 35.6
indent 7.9 10.7 6.0 0.6 0.3 25.5
tar 6.8 12.6 4.8 0.8 0.3 25.3
ls 117.6 8.2 4.9 3.5 0.4 134.6
bash 23.5 62.3 10.2 3.1 7.2 106.3
make-1 9.8 13.8 1.9 2.2 8.5 36.2
make-2 13.9 21.8 25.8 10.6 2.9 75.0
grep-1 16.3 8.7 18.2 6.9 2.3 52.4
grep-2 12.3 10.7 24.2 3.5 2.7 53.4
find-1 67.9 25.8 8.9 3.2 4.8 110.6
find-2 82.3 32.1 10.6 5.4 3.6 134.0
coreutils-1 36.9 15.9 25.9 1.2 3.2 83.1
coreutils-2 28.3 16.5 23.7 4.6 2.3 75.4
global 1704.8 31.1 137.0 1.1 3.6 1877.6
gettext-a 274.7 37.9 290.0 7.6 9.2 619.4
gettext-b 383.7 45.4 307.5 7.3 15.0 758.9
gettext-c 299.7 36.6 340.3 27.0 12.4 716.0
average 137.3 20.6 55.4 4.2 3.5 221.0

TABLE 6
Subject Bugs

Bugs in Repository Project Total

Chart Closure Lang Math Mockito Time

Inspected Bugs 28 24 60 72 40 25 237
Discarded Bugs 0 109 5 34 8 2 158
Total 26 133 65 106 38 27 395

TABLE 7
Reasons for Failing Localizing the Root Cause

Reason Number

Java Native Method 27
Miss Control of Runtime Exception 3
Multi-thread 2
JVM Keyword Regulation 1

2434 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

Authorized licensed use limited to: National University of Singapore. Downloaded on May 18,2022 at 15:26:05 UTC from IEEE Xplore. Restrictions apply.

5.2.3 Discussion

In this study, we can see that our approach is effective to
localize the root cause if the data and control dependence is
complete. Nevertheless, our approach requires recording
the whole trace of a program. We discard 52 bugs because
recording a long trace and building data and control depen-
dency are memory expensive. With regard to the scalability
of recording a program with long trace, we deem that a
more practical way of adopting our approach is to record
traces partially while incorporating the debugging process
with human feedback, as proposed in [38]. More specifi-
cally, we may first ask programmers’ feedback for a small
range of suspicious code. Based on the range, we can record
a small portion of traces and apply alignment slicing and
mending on the fly to generate a partial causality graph.
Programmers may further provide feedback based on gen-
erated explanation so that we can generate a new portion of
traces and apply our approach again. By this means, pro-
grammers can interactively reach the root causes. We will
leave the implementation of such a strategy to our future
work.

5.2.4 Threats to Validity

The major threat in our feasibility experiment lies in that we
discard 52 bugs whose trace length are over 1 million. Thus,
the performance of our approach on the regression bugs
with over 1 million steps is not clear. In the future, we can
try developing a more efficient trace collection technique to
generalize our finding to all the Defects4J bugs.

6 RELATED WORK

Program Slicing. A classical debugging technique is dynamic
slicing [8] and its variants [2], [10], [39], [40], which works
on a single trace of the program and outputs statements rel-
evant to the slicing criterion. Thin slicing [39] includes a
subset of data-dependencies, data slicing [40] includes all
data-dependencies, full slicing [8] includes data- and con-
trol-dependencies, relevant slicing [2], [10], and data- and
control-dependencies, also includes potential-dependen-
cies. The main difference between ERASE and them is that
ERASE alternatively and iteratively conducts slicing and
mending on the passing and failing traces.

Regression Fault Localization. Comparing to traditional
fault localization solution [38], [41], [42], regression fault
localization techniques usually can use the original version
as a reference to infer root cause. Most regression fault local-
ization works are based on delta debugging [12], [13] and
symbolic analysis [16], [17]. Delta debugging pioneers this
field by isolating failure-inducing changes through revert-
ing different subsets of changes. Misherghi et al. [43] pro-
pose hierarchical delta debugging (HDD) to improve the
effect of delta debugging on program inputs with hierarchi-
cal structure. Artho et al. [44] propose iterative delta debug-
ging (IDD) [44] to enhance the technique by leveraging the
whole evolutionary history of the program. Effective as
they are, these approaches may miss the failure-inducing
changes due to reverting inappropriate subset of changes.

Another line of work are based on symbolic analysis
which regards the failure of a program execution as a

constraint solving problem. Banerjee et al. [45] propose
Golden to compute weakest precondition for the regression
version and report the change Yi et al. [20] propose AFTER
in which they iteratively collect weakest preconditions,
compute unsatisfied core, and report the related changes as
failure inducing change. Qi et al. [33] propose DARWIN by
generating more passing test cases based on path con-
straints so that they can improve the accuracy. Kim
et al. [46] propose Apex which can explain the program
assignment bugs by comparing the passing symbolic execu-
tion trace of a correct implementation and the failing sym-
bolic execution trace of the buggy implementation. They
show that their approach works well in small student pro-
gramming assignments, while its performance on large
scale program is yet investigated. Symbolic analysis based
techniques are usually novel and effective in isolating the
failure-inducing changes. Nevertheless, they usually suffer
from scalability problem.

Trace Alignment. The other line of work is to compare the
traces of the original and regression traces [23], [24], [28].
The work most similar to ERASE includes dual slicing [24],
and comparative causality [14], [23], [28]. Given two sched-
ules, one inducing the failure and the other not, the tech-
nique collects the two traces and compares them to identify
the differences. The causal relation between the differences
is connected by using dual slicing algorithm. Differential
slicing [23] produces a causal difference graph that captures
the input or environment differences that cause the target
differences, as well as a sequence of differences that lead
the program from the input or environment differences to
the target differences. comparative causality targets for two
executions with different test inputs. The major difference is
that existing approach is designed for aligning traces
derived from same program under execution of different
inputs or schedules, while our approach works is designed
for aligning traces derived from two version of programs of
the same input.

Change Impact Analysis. Change impact analysis [47], [48],
[49] determines the part of program will be affected by
applying certain change. Its researches mainly include call
graph based analysis [47], static slicing [50], dynamic slicing
and so on. However, applying all the above technique in
regression fault localization leads to over-approximated
impact sets. For example, dynamic slicing identifies change
impact with respect to the specific program executions. In
contrast, ERASE compares the original and regression
traces to avoid a lot of unnecessary program impact to be
inspected.

7 CONCLUSION

We presented a trace-based technique to isolate the failure-
inducing changes and generate a causality graph for
explaining the failure. Given two versions of a program and
a test case that passes the old version while fails the new
version, ERASE aligns the passing and failing traces, and
conducts alignment slicing and mending to isolate the fail-
ure-inducing changes. The experiments show that ERASE
is more accurate than the state-of-the-art techniques. In the
future, we will extend our work as an interactive approach
for more practical use.

WANG ET AL.: EXPLAINING REGRESSIONS VIA ALIGNMENT SLICING AND MENDING 2435

Authorized licensed use limited to: National University of Singapore. Downloaded on May 18,2022 at 15:26:05 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

We would like to thank anonymous reviewers for improv-
ing this manuscript. This research has been partially sup-
ported by Ant Financial Services Group through Ant
Financial Research Program, the US National Research
Foundation, Prime Ministers Office, Singapore, under its
Corporate Laboratory@University Scheme, National Uni-
versity of Singapore and under its National Cybersecurity
R&D Program (Award No. NRF2014NCR-NCR001-30), Sin-
gapore Telecommunications Ltd., the Singapore Ministry of
Education (MOE) Academic Research Fund (AcRF) Tier 2
Grant, the National Cybersecurity R&D Directorate, the
National Satellite of Excellence in Trustworthy Software
Systems funded by NRF Singapore under National Cyber-
security R&D (NCR) programme, National Key R&D Pro-
gram of China under Grant No (2016YFB1000903), and
National Natural Science Foundation of China under Grants
(61632015, 61721002, U1766215, 61833015). Yun Lin has
equal contribution with the first author to this work.

REFERENCES

[1] F. Pastore et al., “Verification-aided regression testing,” in Proc.
Int. Symp. Softw. Testing Anal., 2014, pp. 37–48.

[2] H. Agrawal, J. R. Horgan, E. W. Krauser, and S. London,
“Incremental regression testing,” in Proc. IEEE Conf. Softw. Mainte-
nance, 1993, pp. 348–357.

[3] Y. Lu et al., “How does regression test prioritization perform in
real-world software evolution?” in Proc. 38th Int. Conf. Softw. Eng.,
2016, pp. 535–546.

[4] J. Backes, S. Person, N. Rungta, and O. Tkachuk, “Regression veri-
fication using impact summaries,” in Proc. Int. SPIN Workshop
Model Checking Softw., 2013, pp. 99–116.

[5] V. Terragni, S.-C. Cheung, and C. Zhang, “RECONTEST: Effective
regression testing of concurrent programs,” in Proc. IEEE/ACM
37th IEEE Int. Conf. Softw. Eng., 2015, pp. 246–256.

[6] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry, “An infor-
mation retrieval approach for regression test prioritization based
on program changes,” in Proc. 37th Int. Conf. Softw. Eng., 2015,
pp. 268–279.

[7] G. Yang, S. Person, N. Rungta, and S. Khurshid, “Directed incre-
mental symbolic execution,” ACM Trans. Softw. Eng. Methodol.,
vol. 24, no. 1, 2014, Art. no. 3.

[8] B. Korel and J. Laski, “Dynamic program slicing,” Inf. Process.
Lett., vol. 29, no. 3, pp. 155–163, 1988.

[9] M. Weiser, “Program slicing,” in Proc. 5th Int. Conf. Softw. Eng.,
1981, pp. 439–449.

[10] T. Gyim�othy, �A. Besz�edes, and I. Forg�acs, “An efficient relevant
slicing method for debugging,” in Proc. ACM SIGSOFT Symp.
Found. Softw. Eng., 1999, pp. 303–321.

[11] Y. Li, J. Rubin, and M. Chechik, “Semantic slicing of software ver-
sion histories,” in Proc. 30th IEEE/ACM Int. Conf. Automated Softw.
Eng., 2015, pp. 686–696.

[12] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-
inducing input,” IEEE Trans. Softw. Eng., vol. 28, no. 2, pp. 183–200,
Feb. 2002.

[13] A. Zeller, “Yesterday, my program worked. Today, it does not.
Why?” in Proc. ACM SIGSOFT Symp. Found. Softw. Eng., 1999,
pp. 253–267.

[14] W. N. Sumner and X. Zhang, “Comparative causality: Explaining
the differences between executions,” in Proc. Int. Conf. Softw. Eng.,
2013, pp. 272–281.

[15] K. Yu, M. Lin, J. Chen, and X. Zhang, “Practical isolation of fail-
ure-inducing changes for debugging regression faults,” in Proc.
27th IEEE/ACM Int. Conf. Automated Softw. Eng., 2012, pp. 20–29.

[16] J. C. King, “Symbolic execution and program testing,” Commun.
ACM, vol. 19, no. 7, pp. 385–394, 1976.

[17] C. Cadar et al., “KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs,” in Proc.
8th USENIX Conf. Operating Syst. Design Implementation, 2008,
pp. 209–224.

[18] J. Geldenhuys, M. B. Dwyer, and W. Visser, “Probabilistic symbolic
execution,” in Proc. Int. Symp. Softw. Testing Anal., 2012, pp. 166–176.

[19] S. Anand, C. S. P�as�areanu, and W. Visser, “JPF–SE: A symbolic
execution extension to java pathfinder,” in Proc. Int. Conf. Tools
Algorithms Construction Anal. Syst., 2007, pp. 134–138.

[20] Q. Yi, Z. Yang, J. Liu, C. Zhao, and C. Wang, “A synergistic analy-
sis method for explaining failed regression tests,” in Proc. IEEE/
ACM 37th IEEE Int. Conf. Softw. Eng., 2015, pp. 257–267.

[21] W. N. Sumner and X. Zhang, “Identifying execution points for
dynamic analyses,” in Proc. 28th IEEE/ACM Int. Conf. Automated
Softw. Eng., 2013, pp. 81–91.

[22] D. H. Ahn et al., “Scalable temporal order analysis for large scale
debugging,” in Proc. Conf. High Perform. Comput. Netw. Storage
Anal., 2009, pp. 1–11.

[23] N. M. Johnson et al., “Differential slicing: Identifying causal execu-
tion differences for security applications,” in Proc. IEEE Symp. Secu-
rity Privacy, 2011, pp. 347–362.

[24] D. Weeratunge, X. Zhang, W. N. Sumner, and S. Jagannathan,
“Analyzing concurrency bugs using dual slicing,” in Proc. Int.
Symp. Softw. Testing Anal., 2010, pp. 253–264.

[25] X. Zhang, S. Tallam, N. Gupta, and R. Gupta, “Towards locating
execution omission errors,” in Proc. 28th ACM SIGPLAN Conf. Pro-
gram. Lang. Design Implementation, 2007, pp. 415–424.

[26] B. Xin, W. N. Sumner, and X. Zhang, “Efficient program execution
indexing,” in Proc. 29th ACM SIGPLAN Conf. Program. Lang.
Design Implementation, 2008, pp. 238–248.

[27] U. Karg�en and N. Shahmehri, “Towards robust instruction-level
trace alignment of binary code,” in Proc. IEEE/ACM Int. Conf.
Automated Softw. Eng., 2017, pp. 342–352.

[28] J. Meinicke, C.-P. Wong, C. K€astner, and G. Saake,
“Understanding differences among executions with variational
traces,” CoRR, abs/1807.03837, 2018. [Online]. Available: https://
arxiv.org/abs/1807.03837

[29] Java version of ERASE. [Online]. Available: https://github.com/
llmhyy/tregression. Accessed: Oct. 30, 2019.

[30] C++ version of erase. [Online]. Available: https://github.com/
macromachine/ERASE. Accessed: Oct. 30, 2019.

[31] R. Cottrell, J. J. C. Chang, R. J. Walker, and J. Denzinger,
“Determining detailed structural correspondence for generaliza-
tion tasks,” in Proc. ACM SIGSOFT Symp. Found. Softw. Eng., 2007,
pp. 165–174.

[32] Y. Lin, X. Peng, Z. Xing, D. Zheng, and W. Zhao, “Clone-based
and interactive recommendation for modifying pasted code,” in
Proc. ACM SIGSOFT Symp. Found. Softw. Eng., 2015, pp. 520–531.

[33] D. Qi, A. Roychoudhury, Z. Liang, and K. Vaswani, “DARWIN:
An approach to debugging evolving programs,” ACM Trans.
Softw. Eng. Methodol., vol. 21, no. 3, 2012, Art. no. 19.

[34] Y. Lin et al., “Detecting differences across multiple instances of
code clones,” in Proc. Int. Conf. Softw. Eng., 2014, pp. 164–174.

[35] Pin. [Online].Available: https://software.intel.com/sites/landingpage/
pintool/docs/81205/Pin/html/.Accessed:Oct. 30, 2019.

[36] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of exist-
ing faults to enable controlled testing studies for Java programs,”
in Proc. Int. Symp. Softw. Testing Anal., 2014, pp. 437–440.

[37] M. B€ohme and A. Roychoudhury, “CoREBench: Studying com-
plexity of regression errors,” in Proc. 23rd ACM/SIGSOFT Int.
Symp. Softw. Testing Anal., 2014, pp. 105–115.

[38] Y. Lin, J. Sun, Y. Xue, Y. Liu, and J. Dong, “Feedback-based
debugging,” in Proc. Int. Conf. Softw. Eng., 2017, pp. 393–403.

[39] M. Sridharan, S. J. Fink, and R. Bodik, “Thin slicing,” ACM SIG-
PLAN Notices, vol. 42, no. 6, pp. 112–122, 2007.

[40] X. Zhang, R. Gupta, and Y. Zhang, “Precise dynamic slicing algo-
rithms,” in Proc. 25th Int. Conf. Softw. Eng., 2003, pp. 319–329.

[41] H. Wang et al., “Locating vulnerabilities in binaries via memory
layout recovering,” in Proc. 27th ACM Joint Meet. Eur. Softw. Eng.
Conf. Symp. Found. Softw. Eng., 2019, pp. 718–728.

[42] Y. Lin, J. Sun, L. Tran, G. Bai, H. Wang, and J. Dong, “Break the
dead end of dynamic slicing: Localizing data and control omission
bug,” in Proc. 33rd ACM/IEEE Int. Conf. Automated Softw. Eng.,
2018, pp. 509–519.

[43] G. Misherghi and Z. Su, “HDD: Hierarchical delta debugging,” in
Proc. 28th Int. Conf. Softw. Eng., 2006, pp. 142–151.

[44] C. Artho, “Iterative delta debugging,” Int. J. Softw. Tools Technol.
Transfer, vol. 13, no. 3, pp. 223–246, 2011.

[45] A. Banerjee, A. Roychoudhury, J. A. Harlie, and Z. Liang, “Golden
implementation driven software debugging,” in Proc. 18th ACM
SIGSOFT Int. Symp. Found. Softw. Eng., 2010, pp. 177–186.

2436 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

Authorized licensed use limited to: National University of Singapore. Downloaded on May 18,2022 at 15:26:05 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/1807.03837
https://arxiv.org/abs/1807.03837
https://github.com/llmhyy/tregression
https://github.com/llmhyy/tregression
https://github.com/macromachine/ERASE
https://github.com/macromachine/ERASE
https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/
https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/

[46] D. Kim et al., “Apex: Automatic programming assignment error
explanation,” in Proc. ACM SIGPLAN Int. Conf. Object-Oriented
Program. Syst. Lang. Appl., 2016, pp. 311–327.

[47] R. Arnold and S. Bohner, Software Change Impact Analysis. Los
Alamitos, CA, USA: IEEE Comput. Soc. Press, 1996.

[48] A.Orso, T.Apiwattanapong, J. Law,G.Rothermel, andM. J.Harrold,
“An empirical comparison of dynamic impact analysis algorithms,”
in Proc. 26th Int. Conf. Softw. Eng., 2004, pp. 491–500.

[49] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, “Chianti: A
tool for change impact analysis of Java programs,” in Proc. 19th
Annu. ACM SIGPLAN Conf. Object-Oriented Program. Syst. Lang.
Appl., 2004, pp. 432–448.

[50] M. Acharya and B. Robinson, “Practical change impact analysis
based on static program slicing for industrial software systems,”
in Proc. 33rd Int. Conf. Softw. Eng., 2011, pp. 746–755.

Haijun Wang received the PhD degree in system
engineering from the School of Electronic and
Information, Xi’an Jiaotong University, China. He
is currently a research fellow with Nanyang Tech-
nological University, Singapore. His research
interests include program analysis, regression
testing, fault localization, and software security.

Yun Lin received the PhD degree from Fudan Uni-
versity, China. He is a senior research fellow with
the School of Computing, National University of Sin-
gapore. His research interests include software
engineering and his work includes code recommen-
dation, software testing, and software debugging.

Zijiang Yang received the BS degree from the
University of Science and Technology of China,
the MS degree from Rice University, and the PhD
degree from the University of Pennsylvania. He is
an associate professor in computer science with
Western Michigan University. Before joining
WMU, he was an associate research staff mem-
ber with NEC Labs America. He was also a visit-
ing professor with the University of Michigan from
2009 to 2013. His research interests include the
area of software engineering with the primary

focus on the testing, debugging and verification of software systems. He
is a senior member of the IEEE.

Jun Sun received the bachelor’s and PhD
degrees in computing science from the National
University of Singapore (NUS), in 2002 and
2006, respectively. He is currently an associate
professor with the Singapore University of Tech-
nology and Design (SUTD). In 2007, he received
the prestigious LEE KUAN YEW postdoctoral fel-
lowship. He has been a faculty member of SUTD
since 2010. He was a visiting scholar with MIT
from 2011 to 2012. His research interests include
software engineering, formal methods, program

analysis, and cyber-security. He is the co-founder of the PAT model
checker.

Yang Liu received the bachelor’s (honours)
degree in computing from the National University
of Singapore (NUS), in 2005, and the PhD degree
in School of Computing from National University
of Singapore (NUS), in 2010. He started his post
doctoral work with NUS, MIT and SUTD. In fall
2012, he joined Nanyang Technological Univer-
sity (NTU) as a Nanyang assistant professor. He
is currently an associate professor and director of
the Cybersecurity Lab, NTU. He specializes in
software verification, security, and software engi-

neering. His research has bridged the gap between the theory and prac-
tical usage of formal methods and program analysis to evaluate the
design and implementation of software for high assurance and security.
By now, he has more than 250 publications in top tier conferences and
journals. He has received a number of prestigious awards including
MSRA fellowship, TRF fellowship, Nanyang assistant professor, Tan
Chin Tuan fellowship, and eight best paper awards in top conferences
like ASE, FSE and ICSE.

Jinsong Dong received the PhD degree from the
University of Queensland, Australia. He is a pro-
fessor with the School of Computing, National
University of Singapore. His research interests
include software engineering, program analysis,
formal verification, and model checking.

Qinghua Zheng is a professor in School of Com-
puter Science, Xi’an Jiaotong University, China.
He received the BS degree in computer software
in 1990, the MS degree in computer organization
and architecture in 1993, and the PhD degree in
system engineering in 1997 from Xi’an Jiaotong
University, China. He was a post-doctoral
researcher at Harvard University in 2002. His
research areas include computer network secu-
rity, intelligent e-learning theory and algorithm,
multimedia e-learning, and trustworthy software.

Ting Liu is a professor in School of Cyber Sci-
ence and Engineering, Xi’an Jiaotong University,
China. He received his BS and PhD degree from
Xi’an Jiaotong University, in 2003 and 2010.
He was a visiting professor at Cornell from
2016–2017. His research interests include soft-
ware engineering and cyber-physical system.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

WANG ET AL.: EXPLAINING REGRESSIONS VIA ALIGNMENT SLICING AND MENDING 2437

Authorized licensed use limited to: National University of Singapore. Downloaded on May 18,2022 at 15:26:05 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

