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Abstract

Visual CAPTCHAs, such as reCAPTCHA v2, hCaptcha, and

GeeTest, are mainstream security mechanisms to deter bots

online, based on the assumption that their visual challenges

are bot-hard but human-friendly. While many deep-learning

based solvers have been designed and trained to solve a spe-

cific type of visual challenge in a CAPTCHA, vendors can

easily switch to out-of-distribution visual challenge of the

same type or even new types of challenge with very low cost.

However, the emergence of general-purpose AI models (e.g.,

ChatGPT) challenges the bot-hard assumption of existing vi-

sual challenges, potentially compromising the reliability of

visual CAPTCHAs.

In this work, we report the first generalized visual

CAPTCHA solver, Halligan, built upon the state-of-the-art

vision language model (VLM), which can effectively solve

unseen visual challenges in CAPTCHAs without making any

adaptation. Our rationale lies in that a visual challenge can

be reduced to a search problem where (i) its instruction is

transformed into an optimization objective and (ii) its body

is transformed into a search space for the objective. With

well designed prompts built upon known VLMs, the transfor-

mation can be generalized to unseen visual challenges. Our

extensive experiments show that Halligan is a game-changer

to the known practice of adopting visual CAPTCHAs, which

achieves a solving rate of 60.7% on 2,600 challenges be-

longing to 26 types of visual CAPTCHAs. Further, we use

Halligan to infiltrate human-driven CAPTCHA farms, achiev-

ing an average solving rate of 70.6% on previously unseen

visual challenges from CAPTCHAs in the wild over a 30-day

period. Based on the experimental results, we further shed

light on puzzle-less anti-bot alternatives in this era.

1 Introduction

Visual CAPTCHAs (Completely Automated Public Turing

test to tell Computers and Humans Apart) are challenge-
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Figure 1: Diverse visual CAPTCHA challenges adopted in

practice, expected to be bot-hard but human-friendly.

response tests that verify if a user is human or bot [66], which

establishes proof-of-personhood by presenting users with in-

teractive puzzles, where solving them is a key step toward

passing the CAPTCHA. It has been a conventional web-abuse

prevention mechanism for over 20 years [39]. Among the

top 1 million websites in 2024, over 256K websites are esti-

mated to use CAPTCHAs, where 94% of the CAPTCHAs are

visual CAPTCHAs (see Figure 1) [5]. The effectiveness of

CAPTCHAs is based on the assumption that the challenges

are bot-hard but human-friendly.

The security ecosystem of the visual CAPTCHAs has long

been a cat-and-mouse game between attackers and defenders

[31, 39, 52, 58, 70]. Attackers evolve their solvers [24, 25, 27,

35,51,53,72,73] from text-based CAPTCHAs (e.g., distorted

letters or numbers [66]) to Google’s reCAPTCHAv2 (e.g.,

identifying objects in a 3× 3 or 4× 4 grid of images) [13]

with vision reasoning [36, 37], image classifiers [43, 60, 61],



object detectors [44, 55], visual question answering [64], and

side-channel attacks [54]. In response, CAPTCHA vendors

swiftly evolve their CAPTCHAs with new visual challenges

such as AWS WAF [3], Arkose Labs’ FunCAPTCHA and

MatchKey [1], DataDome [6], GeeTest [7], and Lemin [10].

In such a campaign where the attackers design solvers for a

specific type of visual challenge, the defenders can quickly

adopt an unseen visual challenge, almost nullifying all the

efforts of the attackers.

However, with the advancement of AIGC (AI-Generated

Content) technologies, such bot-hard assumption of

CAPTCHA is challenged. On one hand, vision language

models (VLM) can potentially understand almost all known

types of visual challenges. On the other hand, the emergence

of agentic AI (i.e., systems that can autonomously plan and

execute tasks using external tools) [59] further enables the

potential development of generalized CAPTCHA solving

solution that can interact with real-world websites.

Moreover, unlike password authentication, which restricts

the number of attempts, CAPTCHA services allow many tries

to accomodate user error, creating an opening for abuse. Our

survey of CAPTCHA policies [5] shows that 11 services

use low thresholds (pass once), 2 use medium thresholds

(2–3 passes out of N, depending on factors like VPN use),

together covering over 260,000 of the top 1 million websites. 2

services use high thresholds (requiring all N passes), covering

8 sites. In the best-case scenario, with a solving rate of p (e.g.,

50%), the success probability after k attempts is 1− (1− p)k

(e.g., 96.8% for k = 5 and p = 50%). While stricter policies

improve security, they risk degrading website usability. Thus,

we argue that the advent of AIGC marks a paradigm shift in

which CAPTCHA attackers may, for the first time, outpace

defenders by repeatedly using VLMs to solve unseen visual

challenges in CAPTCHAs.

This work introduces Halligan1, which is (1) a VLM agent

designed as a general-purpose visual CAPTCHA solver that

remains effective even on previously unseen visual challenges

and (2) concrete evidence that visual CAPTCHA challenges

are increasingly vulnerable in the AIGC era. We show that a

visual challenge can be reduced to a search problem where

(i) its instruction (in natural language) can be transformed

into an optimization objective and (ii) its body or interface

(comprising visible entities) can be transformed into a search

space for the objective.

Technically, we design Halligan as a CAPTCHA-to-action

system which parses a visual challenge into a sequence of

actions (e.g., drag, slide, click, etc.) on CAPTCHA entities

(e.g., frames, elements, keypoints, etc.). It uses two high-level

ideas (implemented through three steps in Section 3):

• CAPTCHA Abstraction: The agent must first abstract the

visual challenge into a model comprising entities such as

frames, keypoints, and elements. Interactable entities are

1The name is from a multipurpose tool to breach different locked doors.

then visually identified, enabling the VLM to infer precise

locations for applying actions.

• CAPTCHA Solving: The agent must formulate a search

problem based on the visual challenge, generating an opti-

mization objective and constructing a search space through

interaction. It can use tools to help evaluate candidate solu-

tions (i.e., CAPTCHA states) against the objective. Starting

from an unsolved state, the agent explores the space by

applying actions to CAPTCHA entities (e.g., drag frame

A, slide element B to C, click keypoint D) until an optimal

solution is found, which is considered the solved state.

Halligan achieves a solving rate of 60.7% on 2,600 chal-

lenges from 26 types of visual CAPTCHAs. By skillset, it

performs well on vision tasks like object detection and visual

reasoning (71%) with room to improve in 3D spatial reason-

ing (17%). By search space, it handles discrete actions like

click, select, swap effectively (68%), with potential gains in

continuous actions like drag and slide (29%). As a general-

purpose CAPTCHA solver, Halligan outperforms both spe-

cialized solvers in their target domains [64, 76] and generalist

web navigation agents [40,46]. Further, we use Halligan to in-

filtrate human-driven CAPTCHA farms, achieving an average

solving rate of 70.6% on previously unseen visual challenges

from CAPTCHAs in the wild over a 30-day period. Our find-

ings highlight a concerning trend: attacking visual CAPTCHA

challenges has become feasible and affordable, which neces-

sitates the call for puzzle-less CAPTCHA alternatives in this

AIGC era (See our discussion in Section 5).

In summary, our contributions are as follows:

• To the best of our knowledge, we are the first work to present

a generalized visual CAPTCHA solver, Halligan, which

can effectively solve unseen visual challenges automati-

cally, highlighting vulnerabilities in the visual CAPTCHA

ecosystem in practice.

• Technically, we reduce the visual CAPTCHA-solving prob-

lem into an optimization problem. By orchestrating a set of

VLM agents, Halligan can abstract the visual challenge of

any CAPTCHA into a general model and solve the formu-

lated search problem effectively.

• We present the most scalable and diverse interactive

CAPTCHA benchmark to date, featuring 26 visual

CAPTCHA types and 2,600 unique challenges, to support

future research in the community.

• We extensively evaluate Halligan with both close-world

and open-world experiments. In the closed-world setting,

we evaluate Halligan on 2,600 prepared CAPTCHAs. In

the open-world setting, we evaluate Halligan on 3,000 un-

known CAPTCHAs in the wild by infiltrating human-driven

CAPTCHA farms. Both shows that Halligan is a new state-

of-the-art in solving visual CAPTCHA challenges.
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Figure 2: Overview of Halligan, consisting of three steps. 1 Objective Identification step infers the task objective. The 2

CAPTCHA Abstraction step generates an abstract CAPTCHA model from the visual CAPTCHA challenge, where CAPTCHA

entities such as frame and interactable UI elements are present. The 3 CAPTCHA Solving step formalizes a search problem to

generate a solution, translated into executable Python code to interact with and solve the visual CAPTCHA challenge.

Ethical Research. We acknowledge the risks of a generalized

visual CAPTCHA solver to the Internet. To mitigate this,

we followed strict ethical guidelines (See section on Ethical

Consideration). Our research goal is to highlight the potential

risks of VLMs and the vulnerabilities of visual CAPTCHA

challenges, rather than create or optimize harmful attacks.

2 Threat Model

Attacker (CAPTCHA Solver). The attacker aims to solve

the visual challenge presented in a CAPTCHA. We assume

that the attacker has access to local or online visual language

models (VLM). In addition, they are free to build agentic

programs to orchestrate different VLM agents. There is no

hard requirement on computational resources, a consumer-

grade laptop that can load models in memory is sufficient to

carry out attacks. Besides, the attacker cannot decide how the

CAPTCHA is displayed, i.e., web browser, desktop, mobile.

The attacker can only operate on vision-level with absolute

rendering-device-specific viewport coordinates, but no access

to the source code of the CAPTCHA. Finally, we assume that

the CAPTCHAs are not vulnerable to side-channel attacks

[54] where extra information can be exploited due to flaws in

the design or implementation of the CAPTCHA.

Defender (CAPTCHA Service). The defender can evolve

novel visual CAPTCHA challenges and employ both visual

and prompt-based adversarial techniques (e.g., Gaussian noise

and prompt injection).

3 Approach

Figure 2 shows an overview of Halligan, which solves a vi-

sual CAPTCHA challenge by orchestrating the interaction

between VLM-based agents and a number of external tools

to parse and manipulate the CAPTCHA, it has three steps:

Step 1: Objective Identification (Section 3.2). We first de-

sign a VLM agent to parse an optimization objective in the

form of natural language description from the CAPTCHA.

To this end, important CAPTCHA entities (and their textual

description) as well as their relations are processed to guide

the agent to output a relevant objective.

Step 2: CAPTCHA Abstraction (Section 3.3). Next, we

abstract the visual CAPTCHA challenge into a CAPTCHA

model where only relevant information is preserved, such

as CAPTCHA layout and interactable GUI elements. A

CAPTCHA model is a CAPTCHA solution, laying founda-

tion for constructing the search space.

Step 3: CAPTCHA Solving (Section 3.4). Then, we use two
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Figure 4: Examples of CAPTCHA entities such as frame,

element, and keypoint.

types of tools to search for the optimal solution for the ob-

jective, i.e., (1) Space Exploration Tools to apply actions on

CAPTCHA models to derive new models (a.k.a., new solu-

tion) and (2) Solution Evaluation Tools to evaluate whether a

new CAPTCHA solution can fit the objective well. The search

process converges when Halligan outputs the optimal solution

within budget. Finally, we translate the optimal solution into

a piece of Python code to apply a sequence of actions to solve

the visual CAPTCHA challenge. Given the space limit, all

the prompt designs of VLM agents are available at [12].

Next, we first introduce the CAPTCHA model used in this

work, followed by the details of each aforementioned step.

3.1 CAPTCHA Meta-model

Figure 3 shows the meta-model of visual CAPTCHA chal-

lenges discussed in this work, describing the CAPTCHA enti-

ties and their relations. Any instance of the model is a concrete

CAPTCHA model used in the following steps. Overall, a vi-

sual CAPTCHA challenge consist of a set of frames which is

a container for other CAPTCHA entities. A frame can con-

tain nested frames, keypoints, and elements. Keypoints are

clickable points and elements are visible objects in a frame.

Figure 4 shows the examples of CAPTCHA entities.

In addition, a frame can instruct, act, refer, and terminate

another frame, where Table 1 shows the semantic relations

between frames. Figure 5 shows an example where a visual

CAPTCHA challenge consists of three frames, with contain,

instruct, and act relations. Specifically, frame1 act frame2

because the interaction with frame1 can change how frame2

renders; and frame0 instruct frame1 because frame0 provide

textual guidance on how to manipulate frame1. Finally, an

Table 1: Semantic Relations between Frames

Relation Description

instruct(A, B) Frame A provides instructions on how to interact
with Frame B.

act(A,B) Interacting with Frame A produces visible changes
in Frame B (e.g., slider, prev/next choice button).

refer(A,B) Frame A provides additional context for Frame B

(e.g., match the pattern or quantity).
terminate(A,B) Once Frame A is in a state that aligns with the in-

struction, interact with Frame B to terminate (i.e.,
submit) the challenge.

𝒇𝒓𝒂𝒎𝒆𝟎

𝒇𝒓𝒂𝒎𝒆𝟐𝒇𝒓𝒂𝒎𝒆𝟏
Figure 5: Examples of the semantic relation between frames,

where frame1 act frame2, frame0 instruct frame1, and frame0

contains both frame1 and frame2.

element can be interactable or non-interactable. Interactable

elements can be draggable, slidable, next, clickable, inputable,

pointable, swappable, and selectable. Table 2 shows the de-

tails of each interactable CAPTCHA element.

3.2 Objective Identification

Figure 15 shows our VLM prompt to derive the CAPTCHA

objective from a set of parsed frames in a visual CAPTCHA

challenge (see Section 3.3 for CAPTCHA abstraction). The

objective is in natural language form, serving as a strength-

ened intention against potential VLM hallucinations that

might deviate from the intended task. The input is a set

of frames F = {F1,F2, . . . ,Fn} such that (1) the set of all

frames form a partition of the original visual challenge space

(∪F =C) and (2) a frame may either be fully contained within

another frame or disjoint from it, but they can never partially

overlap (Fi ∩Fj ̸= /0 =⇒ (Fi ⊆ Fj or Fj ⊆ Fi) for i ̸= j). The

outputs are description of each frame, the inferred relation

between the frames, and the objective description. We let

VLM generate the outputs sequentially, serving as a chain-of-

thought to improve the quality of generated objective.

3.3 CAPTCHA Abstraction

Given an arbitrary visual CAPTCHA challenge c, the ab-

straction is to parse c into an instance of CAPTCHA model

according to the meta-model (see Section 3.1). We parse the

frames, elements, and keypoints as follows.



Table 2: Classification of Interactable Element

Category Interactable Description

UI NEXT Can be clicked to submit or skip the
task

CLICKABLE Can be clicked to transition a frame
Discrete INPUTTABLE Can be used to enter text data

POINTABLE Can point to location(s) in the region
SWAPPABLE Can exchange places with another

SWAPPABLE
SELECTABLE Can be toggled as an answer choice

Continuous DRAGGABLE Can be moved in two dimensions
SLIDEABLE Can be moved in one dimension

Frames. A frame extractor fframe(Ic) = {F1,F2, · · · ,Fn} takes

the screenshot of c, Ic, as input and produces set of frames

Fi. We approach this as a connected components problem

by pre-processing Ic through median blur, adaptive binary

thresholding, and morphological transformations to remove

background noise and enhance large foreground structures.

Figure 4(a) shows an example. We then identify all disjoint

groups of 4-connected pixels with the same value in the bi-

narized image of Ic, order the groups by size. Each group is

transformed to a frame.

Elements. An element extractor felement(Fi) =
{E1,E2, · · · ,En} takes any frame Fi as input and pro-

duces a set of elements. We approach this as an image

segmentation problem and selected the Fast Segment

Anything Model (FastSAM) [77], which uses a Convolutional

Neural Network (CNN)-based YOLOv8-seg detector and

the YOLACT [22] method for instance segmentation.

Furthermore, this model is adopted in the industry for parsing

GUI elements in Robotic Process Automation (RPA) [11].

To identify CAPTCHA element types (interactable and non-

interactable; see Section 3.1), we perform element annotation

as shown in Figure 6. Given a frame f , the agent generates

natural language descriptions of all elements of interest (e.g.,

"right arrow button") We then use the Contrastive Language-

Image Pre-Training (CLIP) model [57] to encode and retrieve

the element in f most relevant to each description. Finally,

the agent annotates each element’s type using its descrip-

tion and retrieved image. The final output is an executable

Python block using get_element(description: str) to

retrieve elements and set_element_as(type: str) to an-

notate them. The full CAPTCHA abstraction prompt available

in [12].

Keypoints. A keypoint extractor fkeypoint(Fi) =
{K1,K2, · · · ,Kn} takes any frame Fi as input and pro-

duces a set of keypoints. We treat this as a superpixel

segmentation problem and apply Simple Linear Iterative

Clustering (SLIC) [17] algorithm to get clusters based on

color and proximity similarity. Next, we compute a saliency

map and retain clusters with an average saliency above the

50th percentile threshold. The cluster centroids become

keypoints.
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Figure 6: Annotating a parsed element with its type (e.g.,

clickable, slidable, or draggable).

3.4 CAPTCHA Solving

Given the objective o (see Section 3.2), the initial CAPTCHA

solution s (see Section 3.3) and the visual CAPTCHA chal-

lenge c, we formulate the visual CAPTCHA-solving problem

as a search problem by (1) exploring the search space and (2)

evaluating the best solution c∗ in the space regarding o. For

both the space exploration and the solution evaluation, we pre-

pare a set of tools (see Table 3) to derive new solutions (i.e.,

a CAPTCHA model) or compare the solutions. Next, we use

CAPTCHA model and CAPTCHA solution interchangeably.

Search Space Exploration Given a CAPTCHA solution

c, we define a set of Space Exploration tools (first section

in Table 3) to derive new solutions c′ such as typing an ele-

ment, clicking an element, swapping some tiles in a frame,

slide an element, and drag an element on the CAPTCHA so-

lution c. In this work, we construct a compatibility mapping

between the type of interactable CAPTCHA element and the

types of tools. For example, if only swappable elements are

detected, only tools relevant to swapping are exposed and

made available to reduce tool-misuse. Given the solution c,

our VLM agent select any of the compatible tools to generate

a set of solutions neighboring c, denoted as C. For example,

in a visual CAPTCHA challenge that involves dragging a

slider horizontally, we can create a solution space by invoking

slide_x() to obtain visual CAPTCHA states at discretized

intervals along the sliding track.

Search Solution Evaluation Then, for each new solution

c′ ∈C, we call our prepared Solution Evaluation tools (second

section in Table 3) to compare and select the local optima c∗.

To achieve this, we design VLM agents to rank and compare

the solutions in the space. In addition, a solution can be op-

tionally enhanced with additional changes to be evaluated by

the VLM agent more reliably. For example, annotating objects

with bounding boxes to assist in reasoning or counting, or

cropping and zooming in on relevant objects. In another case,

when tasked with “select the choice with the same number and

type of icons as the reference image”, the agent can invoke

the ask() tool to gather details about the reference image for



Table 3: Space Exploration and Solution Evaluation Tools.

Name Input Description Output

Space Exploration Tools

type(x, text) Click on element x and enter text text Solution
c′

click(x) Click on the center of element x Solution
c′

swap(f ) Enumerates all possible swaps of
SWAPPABLE components in the frame f

Solutions
C

slide(x, dir, c) Click and drag element x in direction dir

(top / down / left / right), bounded by its
parent, observe changes in a CAPTCHA
entity c

Solutions
C

drag(x,y) Click and drag element x to element y Solutions
C

Solution Evaluation Tools

rank(S, o) (GPT-4o) Rank a set of solutions S

according to objective o and produce a
ranking R

a ranking
R

compare(si, s j , o) (GPT-4o) Compare two solutions si and s j

regarding the objective o, returns 1 if si is
over s j ; -1 if s j is over si; and 0 if si is
equivalent to s j .

an
element
e ∈
{1,−1,0}

Enhancing Tools (called by Solution Evaluation Tools)

mark(x, obj) (GroundingDINO) Annotate element x
with bounding boxes of detected object obj

x’

focus(x, obj) (GroundingDINO) Zoom in (crop) element
x around object obj to identify small details

x’

ask(x, q, fmt) (GPT-4o) Ask a question q about element x

and answer in format
a ∈ fmt, fmt ∈ {String,Bool, Int}

a

match(x, y) (Hu moments [45] + color palette) Check if
element x and element y are visually
similar

True /
False

comparison. To support this, we provide a set of Enhancing

Tools (third section in Table 3) designed to enrich visual in-

put with helpful cues. Finally, the VLM agent autonomously

decides when to invoke solution evaluation tools like rank()

or compare(), and selects which enhancing tools to apply on

the solution for improved reasoning.

In summary, we design Halligan to find the optimal solu-

tion for a visual CAPTCHA challenge using a hill-climbing

approach. By iteratively identifying local optima based on

the objective o and exploring new solutions, we progressively

approach the global sub-optimum, where the solution aligns

with the CAPTCHA objective.

Attacker Countermeasures. Lastly, we introduce low-cost

pre-processing techniques to improve robustness of solving

visual CAPTCHA challenges. Non-local means denoising

and Richardson–Lucy deconvolution address noise and blur

using fast, non-deep-learning methods. Additionally, a filter-

ing stage prompts the VLM agent to discard irrelevant frames

that are not part of the actual challenge. Further analysis of

their effectiveness is in Section 4.3.

4 Experiments

We evaluate Halligan with the following research questions:

• CAPTCHA-Solving Capability (RQ1): How is Halligan’s

visual CAPTCHA-solving performance compared to the

state-of-the-art visual CAPTCHA solvers?

• CAPTCHA Objective Identification and Abstraction

(RQ2): What is the performance of each step in Halligan

such as CAPTCHA abstraction and CAPTCHA objective

identification?

• Adversarial Study (RQ3): How do visual transformation,

prompt injection, and distraction attacks affect the perfor-

mance of Halligan?

• Field Study (RQ4): What is Halligan’s attack success rate

on real-world visual CAPTCHA challenges in the wild?

• User Study (RQ5) How effective and efficient are attacker-

crafted VLM prompts compared to Halligan?

Given the space limit, more experimental details and anal-

ysis are available at [12].

4.1 CAPTCHA-Solving Capability (RQ1)

4.1.1 Baselines

In this study, we select the following visual CAPTCHA

solvers as our baselines.

GUI Agent (B1). The agent uses the same method as Halligan

to identify interactables but applies pure Chain-of-Thought

(CoT) [69] reasoning. Formally, it operates as a Partially

Observable Markov Decision Process (POMDP) GUI agent

[26,28,34,42,48], selecting actions based on current observa-

tions to transition between states. This also serves as an abla-

tion study, highlighting the benefits of framing CAPTCHA

solving as a search problem rather than prompting the agent

for immediate actions.

WebVoyager (B2) [40]. This GPT-V web navigation agent

parses the HTML DOM to annotate interactive elements on

a page screenshot. It is the first to use multimodal inputs

(screenshot and textual element lists) to generate web actions.

We extend its prompt to cover all actions in Table 2.

ShowUI (B3) [46]. This web navigation agent uses Qwen2-

VL-2B with high-quality GUI-instructional fine-tuning. Given

only a page screenshot, it outputs actions in absolute coordi-

nates. It is the SoTA to date.

VTTSolver (B4) [36]. The authors propose a modular system

combining Faster R-CNN, CNN, and BiLSTM to solve visual

reasoning CAPTCHAs like Tencent VTT, achieving SoTA

performance on these variants.

GeeSolver (B5) [76]. It uses a ViT encoder with masked au-

toencoder training and a sequential decoder to attack eight

real-world text-based CAPTCHAs from Google, Yandex, Mi-

crosoft, Wikipedia, Weibo, Sina, Apple, and Ganji. It is se-

lected for its effectiveness and robustness.



PhishDecloaker (B6) [64]. It deploys visual CAPTCHA

solvers against CAPTCHA-cloaked phishing websites. It

handles 4 types of visual CAPTCHAs: reCAPTCHA v2,

hCaptcha, slider, rotation with Faster-RCNN, VQA, template

matching, and CNN models respectively. Selected for target-

ing mainstream visual CAPTCHAs.

4.1.2 Benchmark

Existing visual CAPTCHA datasets [9,14] consist of samples

in the form of static image-label pairs. However, CAPTCHA

services issue interactive challenges, which makes static

image-label pairs less representative of real-world scenar-

ios. To create a realistic and reproducible test environment,

we develop an interactive benchmark with 26 types of vi-

sual CAPTCHAs, totaling 2,600 challenges. We select the

CAPTCHA types based on their availability (as paid ser-

vices), popularity (from the top 1 million websites [5]),

and AI-completeness (requiring AGI for human-level per-

formance). We exclude technically feasible CAPTCHAs that

lack widespread practical use (e.g., video or sensor-based),

and those solvable through non-interactive methods (e.g.,

behavioral-only or proof-of-work CAPTCHAs).

To replicate CAPTCHAs, we use Playwright to crawl 100

challenges per type from demo sites with custom API keys,

collecting layout (HTML, CSS, JavaScript) and challenge

data (image, instructions). For 5/26 types without demos or

APIs, we find real websites to scrape by referencing domains

in [31] that correspond to the desired visual CAPTCHA types.

Two co-authors labeled separate challenge sets to establish

ground truth. For continuous-answer (drag, slide) tasks, they

agreed on a tolerance range. A third author helped resolve any

disagreements. We set up challenges on a Flask server with

server-side rendering. Upon submission, the server provides

JSON feedback (solved: True/False) to verify if the state

matches ground truth. A demo is available at [4].

4.1.3 Experiment Setup

Halligan and other agents (i.e., B1-B3) are evaluated online

through interactive challenges presented sequentially in a

web browser. Upon submission, the browser automatically

loads the next challenge. The solve rate can be automatically

calculated by checking all submissions in the server. Both

Halligan and B1 use GPT-4o as the VLM agent due to its

low cost, efficiency, and high performance [15]. Halligan uses

PyAutoGUI to observe and interact with these challenges.

It can propose code solutions with up to 3 retries in case of

execution errors. GUI Agent is implemented using Playwright

and is equipped with the same action tools as Halligan. It

can invoke an action per turn up to 10 turns per challenge,

where a turn comprises a complete (state-action-observation)

sequence. In contrast, B4-B6, are evaluated offline using static

image-label pairs as they do not provide GUI interaction

Table 4: Results of the comparison study. B1: GUI Agent, B2:

WebVoyager, B3: ShowUI, B4: VTTSolver, B5: GeeSolver,

B6: PhishDecloaker. (+x) represents change ablated to B1. -

indicates solver is incompatible with the CAPTCHA.

CAPTCHA Type Solve Rate (% solved)

Halligan B1 B2 B3 B4 B5 B6

tencent/vtt 23 (+23) 0 0 15 50 - -

mtcaptcha 66 (+35) 31 69 3 - 4 -

yandex/text 96 (+96) 0 93 0 - 43 -

botdetect 84 (+30) 54 70 47 - 96 -

recaptchav2 68 (+59) 9 0 0 - - 72

baidu/rotate 71 (+64) 7 0 0 - - 72

hcaptcha 82 (+78) 4 0 0 - - 74

geetest/slide 16 (+16) 0 0 0 - - 99

lemin 13 (+13) 0 0 0 - - -

amazon/waf 14 (+13) 1 0 0 - - -

funcaptcha/counting 54 (+33) 21 0 19 - - -

funcaptcha/hand_number 49 (+26) 23 0 17 - - -

funcaptcha/galaxies 100 (+54) 46 0 24 - - -

funcaptcha/dice_pair 43 (+26) 17 0 14 - - -

funcaptcha/card 82 (+70) 12 0 16 - - -

funcaptcha/square_icon 86 (+61) 25 0 19 - - -

funcaptcha/rotated 95 (+84) 11 0 15 - - -

arkose/3d_rollball 20 (=0) 20 0 0 - - -

arkose/dice_match 71 (+61) 10 0 24 - - -

arkose/orbit_match 48 (+29) 19 0 25 - - -

arkose/rockstack 58 (+37) 21 0 2 - - -

arkose/numbermatch 54 (+38) 16 0 14 - - -

geetest/icon 46 (+46) 0 0 0 - - -

geetest/iconcrush 98 (+92) 6 0 0 - - -

geetest/gobang 92 (+73) 19 0 0 - - -

yandex/kaleidoscope 47 (+42) 5 0 0 - - -

capabilities applicable for our benchmark.

4.1.4 Results & Discussion

Table 4 shows the results. Halligan successfully solved 1,577

out of 2,600 challenges, achieving a solve rate of 60.7%.

The results show that Halligan is capable of solving visual

CAPTCHA challenges in the benchmark without few-shot

examples, pre-training or fine-tuning. In contrast, the deep-

learning solvers for specific visual CAPTCHAs, VTTSolver,

GeeSolver, and PhishDecloaker can only solve 1/26 (3.8%),

3/26 (11.5%), and 4/26 (15.4%) types of visual CAPTCHA

challenges in the benchmark respectively. In addition, Hal-

ligan can outperform GeeSolver on text-based CAPTCHAs

such as mtcaptcha and yandex/text, while solving com-

parable number of challenges on botdetect. Furthermore,

Halligan exhibits performance on par with PhishDecloaker on

mainstream CAPTCHAs like recaptchav2 and hcaptcha.

- What types of visual CAPTCHA challenges Halligan can

and cannot solve well? We grouped results by interaction

type: discrete actions such as click and swap, and continuous

actions such as drag and slide, and computed average solve

rates using Table 4. Halligan performs well on discrete tasks

(e.g., swap, click, point) with an average of 65%. In the best

case scenario, 65% translates to a 96% success rate within



3 attempts and 99% within 5, which is alarming in practice.

In addition, we further categorize Halligan’s failure cases

for each type of visual CAPTCHA challenge as follows (see

Figure 7):

• External Tool: Failures caused by errors in tools like the

object detector used by mark() and focus() in Table 3.

• Search Objective Construction: The failures are caused

by identifying the wrong CAPTCHA objective.

• Solution Comparison: The failures are caused by the

CAPTCHA solution evaluation does not return subopti-

mal solution. In addition, we observe that some suboptimal

solution (with CAPTCHA unsolved) is very close to the

true solution (see see Figure 7(b) for example), we further

label them as a Close subcategory, which can be addressed

with additional engineering efforts.

(a) Solution Comparison (b) Close

(c) Search Objective Construction (d) External Tool

Figure 7: Examples of failure cases: (a) Expected: Object

faces the direction of hand. Actual: Object has a opposite

direction. (b) Expected: Puzzle piece fits perfectly in slot.

Actual: Near-correct solution with gap in slot. (c) Expected:

Point to the end of the car’s path. Actual: The agent assumes

the car has arrived at its destination (end path) and points at

the car. (d) Expected: All rocks are marked. Actual: 1 false

negative (rock) and positive (grass marked as rock).

Figure 8 shows the distribution. Overall, the External Tool

category takes 218 out of 1023 (21.3%), the Search Objec-

tive Construction category takes 488 out of 1023 (47.7%),

the Solution Comparison category (with non-Close category)

takes 37 out of 1023 (3.6%), and the Solution Comparison

category (with Close category) takes 280 out of 1023 (27.4%).

Our investigation shows that the External Tool failures can be

caused by bad outputs from mark() and focus() (i.e., using

object detection model), leading to faulty reasoning and incor-

rect solutions downstream. For example, mistaken bounding

box object annotations, or focusing on wrong regions. Sim-

ilarly, Search Objective Construction failures can be arise

0 20 40 60 80 100
CAPTCHA Type

arkose/3d_rollball
amazon/waf
tencent/vtt

geetest/slide
funcaptcha/dice_pair

geetest/icon
arkose/orbit_match

funcaptcha/hand_number
lemin

funcaptcha/counting
arkose/rockstack

arkose/dice_match
arkose/numbermatch

funcaptcha/card
yandex/kaleidoscope

funcaptcha/square_icon
hcaptcha

baidu/rotate
mtcaptcha

recaptchav2
botdetect

geetest/gobang
funcaptcha/rotated

geetest/iconcrush
yandex/text

funcaptcha/galaxies

Re
su

lts

20
14

23
16

43
46
48
49

13
54
58

71
54

82
47

86
83

71
66
68

84
92
95
98
96
100

12
6

34

49

35

49

2
23

30
26

10

4

9

49

51
13

15
42

24

4

1

8

2

80
57

49
50

57
5

52

25
31

5
11

18
4

14
6

6
4

3
6

5

8
22

5

2

Status
Solved
Close

External Tools
Solution Comparison

Search Objective Construction
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CAPTCHA challenge.

from ask(), rank(), and compare(), which use gpt-4o for

visual question answering. Nevertheless, with the advance of

VLM in the coming years, we expect those mistakes can be

mitigated in a way. Nevertheless, with the advance of VLM in

the coming years, we expect those mistakes can be mitigated.

- How does Halligan outperform web navigation agents (B2,

B3)? Overall, Halligan outperforms the web navigation agents

(B2, B3). Notably, WebVoyager and ShowWUI achieve solve

rates of 8.9% (232/2600) and 9.8% (254/2600), respectively.

To understand the performance gap, we randomly sampled

10 failure cases per CAPTCHA type for both agents and re-

viewed their execution logs. The key reasons for failure are

as follows: (1) Limitations in identifying interactable ele-

ments: WebVoyager detects interactable elements by parsing

the HTML DOM tree. This is effective in benchmarks like

MiniWob, where agents manipulate DOM structures (e.g.,

dragging an item by moving its <li> tag to the third <li> posi-

tion). However, CAPTCHAs often counteract such methods

by rendering their content within a single iframe or canvas

element, collapsing multiple UI components into a single non-

interactive DOM element. This explains WebVoyager’s con-

sistent 0% solve rate on services like funcaptcha, arkose,

geetest, recaptchav2, hcaptcha, though it performs well

on unobfuscated text CAPTCHAs requiring only <input>

field. In contrast, Halligan operates at the visual level, using

computer vision to detect and interpret entities. This allows

it to remain effective even when traditional DOM parsing is

thwarted by obfuscation or anti-bot defenses. (2) Overfitting

to Common Web GUI Instructions: Like Halligan, ShowUI

operates at the visual level using screen coordinates, but it

does not require annotation of interactable elements. However,

we observed that ShowUI is heavily fine-tuned on standard

web navigation tasks that focus on the next immediate ac-



tion. This short-term, step-by-step optimization often neglects

broader visual reasoning, leading to degraded performance

on funcaptcha and arkose. Additionally, the UI grounding

(2.7M elements) and navigation (137K samples) datasets are

biased toward single-click interactions (e.g., buttons, check-

boxes, links), limiting the agent’s ability on complex actions

such as dragging, swapping, sliding. In contrast, Halligan is

not modeled as a POMDP web navigation agent. Instead, it

frames CAPTCHA solving as a search problem, systemati-

cally exploring and evaluating possible actions against the

objective to identify the correct solution.

- Why and when baseline GUI agent is not effective? Halli-

gan consistently surpasses the baseline GUI agent (B1) across

all evaluated visual CAPTCHA challenges. Upon investiga-

tion, the fundamental reason lies in that Halligan’s formula-

tion to a search problem introduce external information (e.g.,

tools and external object detectors) to VLM to mitigate its

otherwise hallucination. We report our observation in details

as follows. Misinterpretation of tasks: For example, in tasks

to find 1 matching pair (e.g., dice, cards, patterns) from 6

options, B1 attempts to create pairings from 2 choices in-

stead of selecting 1. This emphasizes the need to for proper

problem modeling. Halligan splits multichoice frames into

subframes for individual reasoning. (2) Misunderstanding

action outcomes: In a task to cycle through choices using

left/right arrows to find the correct dice sum, B1 treats ar-

rows as adjusting the sum by 1. This highlights the impor-

tance of proper search space formulation, where Halligan

treats arrow buttons as generic transitions. (3) Noisy set-of-

mark prompts: B1 often interacts with the wrong elements,

as seen in challenges with dense layouts. For example, in

yandex/text, the agent mistakenly types in the hint box

rather than the input field, while Halligan avoids this by only

annotating relevant interactive elements. (4) Incorrect tool

usage: In geetest/iconcrush, to match 3 identical items

in a row, B1 uses drag() to swap items instead of simply

clicking them, whereas Halligan selectively exposes tools like

swap() based on annotated interactables. (5) Inability to han-

dle continuous challenges: The agent struggles with dragging,

pointing, and sliding tasks, as shown by a near 0% solve rate

across 5 challenge types (i.e., amazon/waf, tencent/vtt,

geetest/slide, geetest/icon, yandex/kaleidoscope).

It fails to determine precise distances or coordinates, while

Halligan formulates these tasks as discretized combinatorial

searches and uses a coarse-to-fine strategy to iteratively refine

the solution.

- What is the overhead of solving a visual CAPTCHA chal-

lenge? The median cost to attack a challenge with Halligan is

$0.0242, which is generally acceptable. In addition, it takes a

median time of 21.8s to solve a challenge with Halligan. This

is the end-to-end time from objective identification to solution

composition. In the last stage, it takes a median time of 4.5s to

2Following OpenAI’s pricing of $2.50 per 1M input, $10.00 per 1M

output tokens (2025)

     Halligan
Use the right arrow to explore
options and find the one
where all dice sums to 16.

     GUI Agent
Click the right arrow 6 times
to decrease sum by 6 and
make it 16

Figure 9: Example of baseline agent underperformance: fail-

ure to construct the correct search space due to lack of task

objective and annotated interactables.
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Figure 10: Distribution of code generation and execution time

in solution composition stage.

compose the solution and 6.3s to execute it. Figure 10 shows

the distributions of solution generation and execution times.

However, by leveraging amortization once again, this time

can be reduced to just the code execution phase, resulting in

a 3.46x speedup or a 71.1% time reduction. Halligan is on

par with existing human (3.1 – 42s) and ad hoc bot (0.016 –

17.5s) solving times [58].

4.2 CAPTCHA Objective Identification and

Abstraction (RQ2)

To assess how intermediate failures affect CAPTCHA solving

(Section 3.4), we evaluate two steps: (1) CAPTCHA abstrac-

tion (Section 3.3) and (2) objective identification (Section 3.2).

We sample 10 challenges per type to create a 260-challenge

test set, follow the setup in Section 4.1.3, and manually ana-

lyze outputs from (1) and (2). Below, we present our analysis

and key findings.
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Figure 11: Example of CAPTCHA abstraction step evalu-

ation. Green boxes are correct annotations. Red boxes are

false negatives (missed annotations), Orange boxes are false

positives (extra annotations).

4.2.1 CAPTCHA Abstraction

Evaluation Metric. We evaluate the precision and recall

of interactables annotated by Halligan (see Section 3.3 and

Figure 6). Precision is defined as # correct annotations / #

annotations by Halligan, and recall as # correct annotations

/ # ground truth annotations. An annotation is correct if it

matches both the interactable type (per Table 2) and the target

entity (frame, element, or keypoint).

Results. Halligan achieves an average precision of 0.71 and

an average recall of 0.79. Among the 260 challenges, 8/260

(3.1%) fail to execute on the first try due to errors from ref-

erencing out-of-index frames and non-existent component

attributes, which can be corrected by providing error feedback

to the agent. 120 out of 252 challenges (47.6%) reported false

positives in their abstraction, while 62 out of 252 challenges

(24.6%) reported false negatives.

Analysis of False Positives (FP). An FP occurs when Halli-

gan annotates a non-interactable entity as interactable. Of the

120 errors, 69 (57.5%) are due to irrelevant annotations on

instruction and reference frames, 4 (3.3%) are due to irrele-

vant elements, and 51 (42.5%) are due to incorrect or missing

annotations (detailed later). FPs have a negligible impact, as

the agent learns to ignore them in CAPTCHA-solving step.

Analysis of False Negatives (FN). An FN occurs when Halli-

gan misses a ground truth interactable entity. Of the 62 errors,

14 (22.6%) are due to missing frame (e.g., multichoice) and

15 (24.2%) to missing element annotations (e.g., buttons), 3

(4.8%) to incorrect annotation locations, 23 (37.1%) to in-

correct annotation types, and 7 (11.3%) to incorrect usage

of the split function (e.g., incorrect rows and columns) for

dividing multichoice frames.

Analysis of Wrong Annotation Types. These are cases

where the target entity is correct but labeled with the wrong

interactable type. Of the 23 errors, 11 (47.8%) misclassified

clickable as slideable (e.g., prev/next arrows), 4 (17.4%) mis-

classified next as clickable (e.g., submit buttons), 3 (13.0%)

misclassified selectable as pointable (e.g., multichoice op-

tions), 3 (13.0%) misclassified inputtable as pointable, and 1

(4.3%) misclassified a draggable element as clickable (e.g.,

selecting instead of dragging a puzzle piece).

Addressing Wrong and Missing Annotations. While Hal-

ligan has both false positive and negative errors, we confirm

that it successfully generates a perfect annotation at least once

for every type of visual CAPTCHA challenge. We attribute

this behavior to the inherent stochasticity of VLM outputs;

even with deterministic configurations, some level of error is

expected. We can mitigate these errors through two strategies:

(1) Sampling, generating multiple abstraction candidates and

selecting the optimal candidate via majority voting; and (2)

Caching, storing projection functions in a vector database,

indexed by a key derived from the CAPTCHA’s frames, re-

lations, description, and objective. The focus of this work is

on the security of visual CAPTCHA challenges. We leave

engineering improvements for future work.

4.2.2 CAPTCHA Objective Identification

Evaluation Metric. Given the output in Figure 15, we eval-

uate accuracy by calculating the total score divided by the

maximum score. A score of (+1) is awarded for each satisfied

criterion: (1) describe() provides accurate context for un-

derstanding the visual CAPTCHA challenge, (2) relate()

correctly identifies frame relations (as defined in Table 1), and

(3) objective() identifies the correct actions, entities, and

final goal.

Results. Halligan achieves a score of 1367 out of 1421, re-

sulting in an average accuracy of 96%.

Analysis of Failure Cases. We provide a detailed break-

down of deducted scores. Frame descriptions represents 23/54

(42.6%) cases: 18 due to missing details (e.g., dice num-

bers, icons, symbols) and 5 due to incorrect information (e.g.,

hand direction, object count). Frame relations represents 3/54

(5.6%) cases: 2 due to missing instruction-to-frame relations

and 1 for referencing an incorrect frame. Task objective repre-

sents 28/54 (51.8%) cases: 15 incorrect preemptive answers,

5 ambiguous goals (e.g., matching images should involve

matching animals, colors, or icons), 5 incorrect actions, and

3 incomplete action sequences. We observe all of these mis-

takes do not affect subsequent stages, with the exception of

incorrect preemptive answers, which lead the agent to submit

a hard-coded answer. We mitigated this by instructing the

agent to ignore answers provided in the objective and always

use tools to verify the solution.

4.3 Adversarial Study (RQ3)

We design adversarial experiments for Halligan to evaluate

its robustness against defender countermeasures aimed at re-

ducing the solver’s success rate, both with and without the

attacker countermeasures described in Section 3.4.



4.3.1 Defender Countermeasures

We focus on black-box evasion techniques commonly used to

subvert ML systems online [19,38]. This decision is supported

by real-world evasion attacks on content moderation systems

[30,63,75], cloud image services [71], and phishing detectors

[19, 64]. We introduce three defensive measures grounded

in practical scenarios: visual transformation, visual prompt

injection, and distraction.

Visual Transformation. We prepare two image augmenta-

tions: Gaussian noise, an additive transformation that intro-

duces normally distributed noise, and motion blur, which re-

duces image clarity and sharpness.

Visual Prompt Injection. Carefully crafted prompts can ma-

nipulate VLM agents into disobeying instructions or perform-

ing harmful actions [68]. To explore this, we implemented

typographic defense [20,56], which misleads agents by super-

imposing deceptive, CAPTCHA-unrelated instructions onto

the CAPTCHA image. In addition, recognizing that agents

are trained to reject unethical or harmful requests, we intro-

duced a refusal defense that superimposes warnings onto the

CAPTCHA image, emphasizing the unauthorized and unethi-

cal nature of solving it, and even threatening potential legal

consequences.

Distraction. A VLM agent’s limited context window con-

strains its attention and visual perception. Drawing parallels

to how users experience cognitive overload from excessive

online information [23], we collected 70 online advertise-

ment banners and randomly injected n banners around the

CAPTCHA (n = 1,2, . . . ,k) to evaluate how VLM agents

handle distractions.

4.3.2 Experiment Setup

We follow the same setup as Section 4.1.3 to evaluate Halligan.

However, we limit the challenge pool to those solved by Halli-

gan, randomly selecting 10 challenges per visual CAPTCHA

type, creating a test set of 260 samples. All attacks are applied

during the objective identification stage, Gaussian noise and

motion blur transform each frame F with random intensity.

Typographic, refusal, and distraction attacks randomly insert

attack frames from respective sets (Fattack), with n frames in-

terleaved with the original frames in F to form F ′ = F ⊕A.

The specific attack sets and n values are: 3 for typographic

(frames with misleading instructions), 1 for refusal (frames

with warning messages), and 4 for distraction (frames that are

advertisement banners).

4.3.3 Results & Discussion

Table 5 presents the evaluation results. Defensive measures

reduce solve rates by 15.4%–49.6%. However, countermea-

sures recover the solve rates to 56.5%–85.4%. Regardless, no

defense fully prevents the attacks.

Table 5: Results of the adversarial study. A and B indicate the

solve rates with (after) and without (before) countermeasures.

A1: Gaussian noise, A2: Motion blur, A3: Typographic, A4:

Refusal, A5: Distraction.

CAPTCHA Challenges Solved

Type A1 A2 A3 A4 A5

B A B A B A B A B A

tencent/vtt 3 3 4 4 2 3 3 6 4 5

mtcaptcha 1 9 7 7 0 10 3 10 8 9

yandex/text 0 9 0 3 4 9 3 10 5 10

botdetect 3 9 6 6 4 9 5 9 4 9

recaptchav2 5 6 8 8 4 9 5 7 8 8

baidu/rotate 3 6 7 9 4 10 9 10 7 9

hcaptcha 8 8 7 7 1 6 7 7 8 8

geetest/slide 1 1 4 4 1 4 4 6 4 5

lemin 0 3 3 3 0 8 2 8 3 8

amazon/waf 0 7 3 7 2 10 6 10 5 10

funcaptcha/counting 4 9 4 5 0 10 9 9 10 10

funcaptcha/handnumber 7 7 6 6 0 8 5 6 5 7

funcaptcha/galaxies 3 10 7 10 4 10 7 10 8 10

funcaptcha/dice_pair 6 6 5 5 0 8 5 8 3 8

funcaptcha/card 2 5 2 2 0 10 6 9 2 9

funcaptcha/square_icon 3 10 6 7 1 10 10 10 7 10

funcaptcha/rotated 10 10 9 9 1 10 8 8 9 9

arkose/3d_rollball 4 4 7 7 2 5 5 6 3 6

arkose/dice_match 3 5 3 7 3 9 7 8 6 8

arkose/orbit_match 1 4 2 2 1 7 5 7 7 9

arkose/rockstack 4 4 7 9 2 10 9 10 9 10

arkose/numbermatch 2 8 4 5 2 9 1 10 3 10

geetest/icon 0 6 1 1 1 6 5 5 0 9

geetest/iconcrush 0 4 5 5 1 10 3 10 9 10

geetest/gobang 0 8 3 3 3 10 6 7 6 7

yandex/kaleidoscope 3 6 6 6 3 10 8 9 10 9

Total 76 167 126 147 46 220 146 215 153 222

Analysis of Failure Cases. Figure 12 categorizes the impact

of defensive measures. Visual prompt injection has the great-

est impact on visual CAPTCHA solving (Stage 3). Among

them, typographic defenses proved the most effective by ex-

ploiting agents’ instruction-following behavior. It tricks the

agent into solving nonexistent challenges, causing logic er-

rors, undefined operations, and hallucinated functions. This

aligns with findings that VLMs are more vulnerable to text

than image manipulation [29]. However, it can be mitigated

by training VLMs with hierarchical instruction priorities [67].

Refusal attacks causes the agent to submit blank or nonsen-

sical responses. Distraction attacks mislead the agent into

referencing wrong frames, causing indexing errors.

On the other hand, visual transformation disrupts

CAPTCHA abstraction (Stage 2), tool outputs (Vision Tools),

and the VLM agent’s perception during search solution evalu-

ation (Optimization). Vision algorithms and models are vul-

nerable to these transformations, and agents struggle to split

frames or accurately identify rows, columns, and tiles. Objec-

tive identification (Stage 1) is less affected, with errors mainly

caused by illegible instructions post-transformation.

Analysis by Challenge Type. Defenses vary across chal-

lenges. In refusal defense, task rejection rate is higher when
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Figure 12: Categorization of failure cases caused by defensive

measures.

instructions mention "puzzle" or display a jigsaw puzzle, and

with traditional text-based challenges. Additionally, visual

transformation is more effective on continuous challenges,

with all four types showing fewer tasks solved compared to

visual prompt injection and distraction attacks.

Nonetheless, no defense can block 100% of attacks. While

these measures increase the attack cost, countermeasures can

recover the solve rate. Moreover, since CAPTCHA attacks can

be attempted repeatedly, even with a drop to 15% (p = 0.15)

as seen without countermeasures, the probability of success

after k attempts is 1− (1− p)k. For instance, to achieve over

80% success, we can solve for k: 1− (1−0.15)k ≥ 0.80 ⇒

k ≥ ln(0.20)
ln(0.85) ≈ 10

4.4 Field Study (RQ4)

To evaluate Halligan in realistic settings, we conducted a field

study on live, in-the-wild CAPTCHAs that involve behavioral

verification beyond solving the puzzle itself. Inspired by [31],

we infiltrated 2Captcha, a human-driven CAPTCHA farm.

Evaluation Metric. Halligan’s success is measured by its

ability to function as a worker and retrieve a CAPTCHA

token from the CAPTCHA provider (details in [31]), which

2Captcha then forwards to its customer. If the visual challenge

is not solved, 2Captcha would not receive a token. The success

rate is calculated as the ratio of total tokens received to total

CAPTCHA tasks attempted.

Worker Device Configuration. We used a personal computer

(1920×1080 resolution, Win 11 x64) with an active browsing

history. A single IP address was used without rotation.

Worker Software Configuration. We ran 2Captcha’s worker

client during the day and paused it overnight, resulting in a

non-uniform task arrival pattern. We used a single worker

account for the entire duration of the study. Fortunately, the

account was not banned, indicating that Halligan’s activity

did not arouse suspicion from 2Captcha or its customers

Worker Behavior Configuration. When Halligan interacts

with visual challenges, it uses simplified, linear mouse move-

ments. While many CAPTCHA providers analyze mouse

behavior [2, 8], the relative weight of this signal compared to

others (e.g., identity profiling) remains unclear [55, 60, 61].
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Figure 13: Results of the 30-day field study.

To offset Halligan ’s minimal behavioral signals, we relied on

2Captcha’s infrastructure (e.g., proxies) to inherit customers’

identities. Furthermore, we did not consider behavioral-only

CAPTCHAs (e.g., reCAPTCHAv3, Cloudflare Turnstile).

Data Collection and Baseline Evaluation. We used mitm-

proxy to intercept 2Captcha traffic and extract task data, in-

cluding CAPTCHA images and target URLs. Two co-authors

manually labeled the tasks for ground truth. Halligan was

evaluated online on live tasks, while baseline solvers (B4–B6)

were tested offline using the labeled data.

4.4.1 Results & Discussion

We ran the study for a duration of 30 days. In the end, we

accepted a total of 3000 CAPTCHA tasks.

Analysis by Time. Halligan successfully attacked the visual

challenges in 2,117 out of 3,000 CAPTCHA tasks, with a

daily success rate fluctuating between 55% and 84%, and

an average of 70.6%. Results are shown in Figure 13. Halli-

gan encountered 9 distinct CAPTCHA providers, 4 of which

(2captcha, amazon, prosopo, xcaptcha) were not part of

the benchmark. We define 2captcha as a generic service for

text-based CAPTCHAs. Some services, such as 2captcha,

amazon, and prosopo, were targeted daily, while others,

like arkose, geetest, hcaptcha, and recaptcha, appeared

intermittently. Regardless of popularity, any CAPTCHA

provider is vulnerable to attack. When analyzing tasks by

CAPTCHA type, Halligan encountered 25 unique variants, 17

of which were not present in the benchmark, accounting for

75.2% (2,252 out of 3,000) of the tasks. Despite this diversity,

the visual challenges part of the task consistently relied on a

limited set of interaction types (e.g., click, drag, slide), which

Halligan was able to handle. In contrast, the baseline solvers

addressed only 6 variants.

Analysis by CAPTCHA Service. Table 6 shows success rates

by CAPTCHA service. Although recaptcha has the highest

market share, it accounts for 6% of tasks. In contrast, services

with frequently updated challenges (e.g., prosopo, hcaptcha,

arkose, and geetest) make up 50.3% of all tasks. Halligan

outperforms or matches all baseline solvers. We analyzed



Table 6: CAPTCHA success rates by CAPTCHA providers.

Service Tasks Solve Rate (%)

Halligan B4 B5 B6

prosopo 652 560 (85.9%) - - -

amazon 549 518 (94.4%) - - -

2captcha 672 498 (74.1%) - 121 (18.0%) -

hcaptcha 250 197 (78.8%) - - 116 (46.4%)

recaptcha 181 130 (71.8%) - - 88 (48.6%)

geetest 390 99 (25.4%) 4 (1.0%) - 0 (0.0%)

arkose 218 72 (33.0%) - - -

xcaptcha 84 40 (47.6%) - - -

mtcaptcha 4 3 (75.0%) - 2 (50.0%) -

Table 7: Top 10 targeted domains in field study.

Domain Category Rank CAPTCHA

edge.app Crypto 65,136 Prosopo

galxe.com Crypto 29,108 GeeTest

catch.com.au E-commerce 32,132 Amazon WAF

gopluslabs.io Crypto 60,181 GeeTest

yahoo.net News & Media 2,294 reCAPTCHA v2

fazenda.gov.br Government 3,881 hCaptcha

tjpe.jus.br Government 86,001 Amazon WAF

micropact.com Technology 118,073 Amazon WAF

booking.com Travel 285 Amazon WAF

linkedin.com Social Media 19 Arkose Labs

the logs of failed cases among baselines and found that: (1)

four providers are unsupported by B4–B6; (2) B4 and B5

overfit to benchmark training data and fail under real-world

shifts in layout and style, as seen in geetest, mtcaptcha,

and 2captcha; (3) B6 relies on parsing DOM-level elements

in geetest, which is infeasible in non-browser environments;

(4) B6 underperforms on recaptcha due to its assumption of

simple 3×3 tasks, while real-world challenges often involve

4×4 grids and multi-step prompts; and (5) B6 struggles with

hcaptcha due to its evolving pool of tasks requiring fine-

grained pointing and complex visual reasoning.

Analysis by Targeted Websites. We traced all 3,000 task

requests to 1,146 unique URLs, corresponding to 119 fully

qualified domain names (FQDNs) and 106 eTLD+1 domains.

Of these, 63 eTLD+1 domains (59.4%) were targeted by re-

peated CAPTCHA attacks (>1 task). We enriched the domains

with categorical and popularity information from Cloudflare

Radar and Tranco. Table 7 lists the top 10 most targeted web-

sites. Despite the widespread use of reCAPTCHA v2, it does

not dominate the rankings. Instead, half of the domains rely

on CAPTCHA services that frequently update, forcing attack-

ers to depend on human-driven CAPTCHA farms. We also

categorized the eTLD+1 domains, revealing that CAPTCHA

attacks impact websites of all sizes, from global platforms to

local government services, as shown in Table 10.

4.5 User Study (RQ5)

To compare Halligan against manually crafted prompts, we

invited participants to solve visual CAPTCHA challenges.

Table 8: User Study Results. P: Participants 1-5. H: Halligan.

T0: Time (min) to first working prompt. Ttr: Time (min) to

complete training set. Str: Solve rate on training set. Ste: Solve

rate test set. T > 30: Time limit exceeded (30 min).

Ps. CAPTCHA A CAPTCHA B CAPTCHA C

T0 Ttr Str Ste T0 Ttr Str Ste T0 Ttr Str Ste

P1 >30 >30 0.00 0.00 10.2 28.0 1.00 0.48 3.7 >30 0.80 0.22

P2 2.9 >30 0.90 0.21 7.8 24.3 1.00 0.16 5.5 >30 0.80 0.34

P3 11.6 >30 0.30 0.18 12.8 >30 0.80 0.17 6.0 >30 0.80 0.34

P4 14.9 >30 0.20 0.18 24.6 >30 0.20 0.21 20.5 >30 0.60 0.31

P5 14.5 >30 0.20 0.28 3.9 16.1 1.00 0.36 5.3 >30 0.10 0.18

H 0.7 1.2 0.70 0.76 0.3 1.2 1.00 0.98 0.3 0.7 0.50 0.54

4.5.1 Experiment Setup

Participants. We recruited 5 Computer Science participants

with 2+ years of LLM prompting experience.

Study Procedure. Participants were tasked with designing

prompts for solving 3 types of visual CAPTCHA challenges

using GPT-4o. Each type included 10 training and 90 test-

ing challenges. The goal is to create prompts that generate

parseable JSON outputs (e.g., actions, coordinates) executable

on-screen. We selected 3 CAPTCHA types: baidu/rotate,

geetest/iconcrush, and funcaptcha/counting (referred

to as A, B, and C respectively). These were chosen based on

(1) participants’ prior familiarity and (2) varying difficulty lev-

els for Halligan (with solve rates of >50%, >70%, and >90%).

Participants received a pre-test briefing and completed a short

survey. During the test, they completed a warmup exercise

and had up to 30 minutes to create prompts for each chal-

lenge type. Afterward, we conducted a post-test interview to

understand their experience.

Environment. Testing was conducted on a 1920x1080 Win-

dows desktop using Chrome browser, with apps for prompting

GPT-4o, capturing screenshots, annotating images, and dis-

playing mouse coordinates.

Evaluation Metrics. We recorded the time each participant

took to produce their first working prompt (T0) and the total

time to complete all training challenges (Ttr). Prompt effec-

tiveness was measured by the number of training (Str, out of

10) and testing (Ste, out of 90) challenges solved. A challenge

was considered solved if the VLM output could be automati-

cally mapped to the correct on-screen action.

4.5.2 Results & Discussion

Table 8 summarizes our results. Users took 11.0, 11.9, and 8.2

minutes on average to craft working prompts for challenge

types A, B, and C, while Halligan required just 0.4 minutes per

type. User prompts often lacked stability and required further

tuning, leading to timeouts (>30 mins) in 80% of cases. In

contrast, Halligan generated stable Python code in under a

minute that generalized across all challenges. On the test set

(Ste), Halligan outperformed the best user prompts by 172%,



104%, and 58% on types A, B, and C, respectively.

How do user prompts generalize to test samples? Users of-

ten overfit to the training set, resulting in relatively lower test

performance. In challenge A, P1–P5 noted that VLMs strug-

gles with image orientation, with P2–P4 attributing this to lim-

ited training data. They used overly specific cues (e.g., “this

image contains...”, “the answer should be more/less than...”),

failing to realize that framing the task as a search problem

enables semantic reasoning over rotation.

How do users learn to construct prompts? User perfor-

mance does not transfer across CAPTCHA types, even expe-

rienced LLM users exceed the time limit. Top performers on

one type (e.g., P1, P5) struggle with others, indicating a steep

learning curve despite similar task structures. Participants

relied on ad-hoc heuristics like angle-to-distance formulas

(P1, P5 on challenge A), elimination rules (P2 on challenge

B), or brute-forcing with the same prompt (P3 on challenge

C). In contrast, Halligan requires no feedback or heuristics, it

compares all choices to find the best solution.

5 Discussion

The Call for CAPTCHA Evolution. Modern CAPTCHA

systems are multilayered, combining visual challenges, be-

havioral biometrics (e.g., mouse, keyboard, touch, motion),

and identity profiling (e.g., network, device, fingerprinting,

cookies). The rise of VLMs has lowered the barrier for at-

tacking the visual challenge layer, weakening its effective-

ness and shifting greater reliance onto other parts of the sys-

tem. This shift exacerbates the long-standing trilemma in

CAPTCHA design: balancing security, usability, and privacy.

Referencing [41], we outline eight puzzle-less alternatives:

(1) Behavioral-only CAPTCHAs: Use passive, frictionless

layers (e.g., Cloudflare Turnstile); (2) Information Dispar-

ity: The user knows something a bot doesn’t (e.g., security

questions); (3) Hardware Attestation: The user has something

a bot doesn’t (e.g., WebAuthn); (4) Biometrics: The user is

something a bot isn’t (e.g., fingerprints); (5) Social Networks:

Others vouch for the user (e.g., referrals); (6) Strong Network:

An authority verifies the user (e.g., KYC, OAuth); (7) Proof-

of-Work: Use computation to make scaling bot attacks costly

(e.g., mCaptcha); (8) Honeypot: Traps bots with elements

invisible to users (e.g., hidden forms).

Limitations. Currently, Halligan struggles with temporal chal-

lenges, which involve time-based dynamic elements indepen-

dent of user actions [50], as well as challenges obscured by

other elements. In the field study, future work could assess

the impact of different signals on token validity.

Threats to Internal & External Validity. Internally, we

compare Halligan’s performance to human solve times from

[58], differing challenges may cause discrepancies; Exter-

nally, our evaluation is limited to GPT-4o, but the core ideas

(CAPTCHA meta-model and search problem) are broadly ap-

plicable. We expect newer VLMs to yield even better results.

In the field study, successfully solving the visual challenge

may be a necessary but not sufficient condition for token va-

lidity. Some providers (e.g., Google reCAPTCHA Enterprise)

perform additional checks on the network traffic, fingerprint,

or behavioral patterns [61, 64, 65] when the token is used

on the target site. As such, our results provide a best-effort

estimation of Halligan’s effectiveness based on (1) solving

the visual challenge component of the CAPTCHA and (2) re-

trieving tokens from the provider. Since 2Captcha customers

can report invalid tokens, we also considered the continued

activity of the worker account (i.e., not banned) as an indirect

and positive signal supporting token validity.

Practical Applications. Prior work [64] uses CAPTCHA

solvers to detect CAPTCHA-cloaked phishing sites. In Sec-

tion 4.1.3, if Halligan outperforms [64], it can uncover more

threats. To test this, we used 2,600 phishing kits from Dy-

naPD [47], split into 26 groups (100 each), each assigned a

different CAPTCHA type from our benchmark. We compared

two setups: PhishDecloaker (1) with and (2) without Halligan.

Setup (2) detected 1,226 more phishing sites than (1).

6 Related Work

CAPTCHA Solvers. To the best of our knowledge, we are

the first to propose a generalist VLM agent for solving vi-

sual CAPTCHAs. A related work, Oedipus [32], focuses on

reasoning CAPTCHAs with a domain-specific language but

lacks open sourced code, real-world evaluations, and adver-

sarial testing. Previous work has explored CAPTCHA solving

using machine learning [24,35], deep convolutional networks

[43, 44, 60, 61], generative adversarial networks [74], trans-

formers [76], and reinforcement learning [18, 65]. Addition-

ally, research has been conducted on audio-based CAPTCHAs

and bypass techniques [16, 21, 33, 49, 62].

CAPTCHA Surveys & Studies. Guerar et al. [39] compiled

a 20-year timeline of 77 CAPTCHA schemes and proposed a

taxonomy of 10 groups, highlighting challenges and opportu-

nities in the CAPTCHA ecosystem. Weng et al. [70] focused

on image-based CAPTCHAs, proposing an attack framework

and evaluating it against 10 popular schemes, while identify-

ing 152 CAPTCHA-solving services. Motoyama et al. [52]

analyzed the behavior of 8 text-based CAPTCHA-solving

services. Searles et al. [58] conducted an empirical study with

1,400 participants on 10 CAPTCHA types. Nyugen et al. [31]

studied CAPTCHA attacks in the wild through MITM attacks

on 2 CAPTCHA farms.

7 Conclusion

We reformulated visual CAPTCHA solving as a search opti-

mization problem, enabling VLMs to effectively address the

task. Our VLM-based tool, Halligan, successfully solves 26

types of CAPTCHAs in our benchmark. Extensive adversarial,

field, and user studies further demonstrate its robustness.
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Ethical Consideration

A generalized CAPTCHA solver poses severe negative con-

sequences for the Internet ecosystem. It can undermine com-

munity trust, degrade the quality of online experiences, and

inflict financial loss on web service providers. We fully under-

stand the severity of this work. Therefore, we strictly adhered

to these guidelines when conducting research.

• Responsiblity and Disclosure. We actively communicated

our findings with AI research organizations (i.e., Ope-

nAI, Anthropic, DeepMind) and CAPTCHA services (i.e.,

Google, Cloudflare, Datadome, Arkose Labs).

• Conscientious Sharing: We restrict our source code to

registration only and permit access to researchers with veri-

fied credentials. For transparency, we will publicly release

media demonstrations and execution traces.

• Benchmark: The CAPTCHAs in the benchmark were

solved offline with no interaction with the CAPTCHA

providers. To construct the benchmark, we register our own

API keys with CAPTCHA services or use demo websites.

As a last resort, we scrape live websites.

• Field Study: Halligan’s success is measured by its ability to

retrieve a token from the CAPTCHA provider. Ultimately,

only the target site that receives this token can determine

its validity, as they possess the secret (or private key) to

make a validation request to the CAPTCHA provider, and

intermediaries such as 2Captcha could not do so. In theory,

we could have retrieved a token and tampered with it before

forwarding it to 2Captcha, thereby avoiding an active role

in facilitating attacks against target sites. However, such

tampering could raise suspicion if it resulted in errors re-

ported by 2Captcha’s customers, potentially leading to our

account being banned. Therefore, we opted for a relatively

small-scale study (100 tasks/day) to minimize risk.

• Affected Stakeholders: All experiments except the user

study do not involve human subjects. Although website

users could be indirectly affected by our benchmark collec-

tion, the potential impact remains minimal. We limit scrap-

ing to a small subset of CAPTCHAs (5 out of 26), which

are otherwise unobtainable, capping it at 100 challenges

per website. Based on published pricing from reCAPTCHA

and hCaptcha, this represents around 0.1% of the typical

monthly usage in the enterprise tier. To mitigate potential

risks to scraped websites, we sanitize all identifiable infor-

mation (e.g., domain names and CAPTCHA public keys).

• User Study: This study received an exemption from our

institutional review board due to the de-identification of par-

ticipants in interviews and tests, absence of personally iden-

tifiable information, and the fact that disclosure of results

posed no harm to participants. The study also involved no

deception or concealment. Participants were pre-screened

for normal or corrected-to-normal vision and no accessibil-

ity challenges. Informed consent was obtained, and partici-

pants were briefed on the study’s purpose, duration (up to

2 hours), and potential discomforts (visual strain from pro-

longed tasks). Participation was voluntary, with the right to

withdraw at any time. After the study, participants received

a thank-you gift (unrelated to performance), access to study

results, and optional public acknowledgment.

• Deterrence: Currently, our prototype is relatively costlier

and slower than human-driven CAPTCHA farms. We do

not intend to perfect the design, but rather demonstrate its

potential destruction when fully weaponized.

Open Science

For more details, please visit our project website https://

halligan.pages.dev. Both Halligan’s source code and the

CAPTCHA benchmark are available at https://doi.org/

10.5281/zenodo.15580923.
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A Appendix

A.1 CAPTCHA Attack Cost

Table 9: CAPTCHA attack cost (Q1 2025 pricing)

Name Cost per CAPTCHA (cents ¢)

Halligan (gpt-4o, end-to-end) 2.40
Halligan (gpt-4o, amortized) 0.60
2captcha.com 0.05 – 5.00
9kw.eu 0.13 – 0.33
anti-captcha.com 0.05 – 0.50
azcaptcha.com 0.04 – 0.10
truecaptcha.org 0.03
capsolver.org 0.08 – 0.30
deathbycaptcha.com 0.06 – 0.29

A.2 Field Study Statistics

Table 10: Commonly targeted domain categories in field

study.

Category Examples

Crypto bybitglobal.com, nexo.com, bybit.com

Social Media tiktok.com, x.com, mewe.com

Gaming roblox.com, hoyoverse.com

Government la.gov, justice.gov, hackney.gov.uk

Marketplaces avito.ru, leolist.cc

Travel airbnb.com, uber.com, amadeus.com

Technology google.com, nsis.ru, giantpartners.com, trustcommerce.com,
uxlink.io, baidu.com

E-commerce popmart.com, shopify.com, albertsons.com

Finance vermittlerregister.info

A.3 Interactables

Clickable

Swappable

Slideable

grid(tiles=25)

split(rows=2, cols=3)

Selectable

Pointable

Interactables

Abstraction Tools

Draggable

Inputtable

Next

Figure 14: Examples of interactables types (red) and ab-

stracted structure during CAPTCHA abstraction stage (blue).



A.4 Prompts

Input:

1. CAPTCHA image

2. Frame images with captions ("Frame i")

System prompt: You are given n frame(s). First, provide

a one-sentence visual description for each frame. Second,

identify the relationships between the frames. Third, using

the gathered information, determine the sequence of events

and the final visual criteria that lead to solving the task.

Output: A Python block with

1. describe(frame_id: int, description: str)

2. relate(frame_id_a: int, frame_id_b: int, relation: str)

3. objective(steps: str)

Figure 15: Objective identification prompt.

Input:

1. CAPTCHA image

2. Task objective

3. Frame images with captions ("Frame i")

4. Frame relations ("Frame i to j: relation")

5. Frame descriptions ("Frame i: description")

System prompt: Write a Python script to identify all

element/frame-level interactables using these tools:

⟨Description Parsing Tools⟩
⟨Type Annotation Tools⟩
⟨Abstraction Tools⟩
Output: A Python function using the tools above.

Figure 16: CAPTCHA abstraction prompt.

Input:

1. CAPTCHA image

2. Task objective

3. Non-interactable frame images with captions ("Frame

i")

4. Interactable frame images with captions ("Frame i:

interactable_type")

5. Frame relations ("Frame i to j: relation")

6. Interactable element images with captions ("Frame i

Element j: interactable_type")

System prompt: Solve tasks using your vision, coding,

and language skills. When using code, the user cannot

provide any other feedback or perform any other action

beyond executing the code you suggest. Do not suggest

incomplete code which requires users to modify. You can

perform these actions:

⟨Space Exploration Tools⟩
⟨Solution Evaluation Tools⟩
⟨Enhancing Tools⟩
Output: A Python function that uses the tools to compose

solution exploration, evaluation, and execution.

Figure 17: CAPTCHA solving prompt.

A.5 Example

1 def solve(frames: list[Frame]):

2 # Get the slider handle from Frame 2

3 slider_handle = frames[2]. get_interactable(0)

4

5 # Slide the handle to the right while

observing changes in Frame 1

6 observations = slide_x(slider_handle ,

direction="right", observe_frame=frames[1])

7

8 # Extract images from observations

9 images = [choice.image for choice in

observations]

10

11 # Rank the images based on the task objective:

completing the puzzle

12 ranked_ids = rank(images , task_objective="

Complete the image puzzle")

13

14 # Select the best choice based on the highest

rank

15 best_choice = observations[ranked_ids [0]]

16

17 # Refine the search around the best choice

18 refined_choices = best_choice.refine()

19

20 # Further rank the refined choices

21 refined_images = [choice.image for choice in

refined_choices]

22 refined_ranked_ids = rank(refined_images ,

task_objective="Complete the image puzzle")

23

24 # Select the best refined choice

25 final_choice = refined_choices[

refined_ranked_ids [0]]

26

27 # Release the slider at the best position

28 final_choice.release()

Figure 18: Solution for yandex/kaleidoscope CAPTCHA

generated by Halligan, which involves dragging a slider

to rearrange a grid of tiles and complete the puzzle. The

CAPTCHA is visualized in Figure 2 and Figure 5.
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