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Abstract
Recent years have seen the development of phishing detec-

tion and identification approaches to defend against phishing
attacks. Phishing detection solutions often report binary re-
sults, i.e., phishing or not, without any explanation. In con-
trast, phishing identification approaches identify phishing
webpages by visually comparing webpages with predefined
legitimate references and report phishing along with its target
brand, thereby having explainable results. However, there are
technical challenges in visual analyses that limit existing solu-
tions from being effective (with high accuracy) and efficient
(with low runtime overhead), to be put to practical use.

In this work, we design a hybrid deep learning system,
Phishpedia, to address two prominent technical challenges in
phishing identification, i.e., (i) accurate recognition of identity
logos on webpage screenshots, and (ii) matching logo variants
of the same brand. Phishpedia achieves both high accuracy
and low runtime overhead. And very importantly, different
from common approaches, Phishpedia does not require train-
ing on any phishing samples. We carry out extensive experi-
ments using real phishing data; the results demonstrate that
Phishpedia significantly outperforms baseline identification
approaches (EMD, PhishZoo, and LogoSENSE) in accurately
and efficiently identifying phishing pages. We also deployed
Phishpedia with CertStream service and discovered 1,704 new
real phishing websites within 30 days, significantly more than
other solutions; moreover, 1,133 of them are not reported by
any engines in VirusTotal.

1 Introduction

Phishing, an important step in an attack chain, has evolved
over the past years to such an extent that it is now available and
delivered as a service [19, 49, 71]. As per recent reports [26],
the price of phishing kits more than doubled from 2018 to
2019, making them the “new bestseller” in the dark market.
It is thus not surprising that phishing attacks soared by 4-5
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times during the COVID-19 pandemic [3]. Meanwhile re-
searchers have been developing new and different solutions to
detect phishing pages. We classify them broadly as phishing
detection and phishing identification approaches.

Phishing detection solutions are often based on dynamic
black lists, or supervised machine learning models that are
trained on datasets with ground truth. While some phishing
detection models use only URLs (for training and predict-
ing) [22, 27, 36, 76], others additionally use HTML contents
for feature extraction [31, 39, 44–46, 62, 63, 79, 80, 82]. They
suffer from three fundamental limitations: (i) biased phishing
datasets used for training leads to biased models, (ii) keep-
ing the model up-to-date requires continuous supply of large
labelled phishing datasets, and (iii) there is no explanation
for the predicted results. In addition, note that similar looking
webpages can be rendered via very different HTML scripts.
This leads to technical challenges in inferring the visual se-
mantics of webpages, affecting detection accuracy. Besides,
attackers can easily adopt evasion techniques for deceiving
such solutions [38, 68].

In contrast, phishing identification solutions maintain a ref-
erence set of brands (or their webpages) targeted by phishing
attacks; based on such a legitimate reference database a model
is built. Subsequently, in operation, if the model predicts that
a given webpage is similar to that of a specific brand in the
reference database, but yet has a domain name that is different
from the identified brand, then the webpage is classified as
a phishing page [11, 13, 21, 46, 59, 74]. The goal of phish-
ing identification models is to go beyond detecting phishing
pages, and also identify the phishing targets.

Some of the early phishing identification proposals com-
pare the screenshot of a given webpage to the screenshots of
all the webpages in the reference database. For example, Fu
et al. [21] propose to compute the similarity of screenshots
of two webpages using Earth Mover’s Distance (EMD) tech-
nique. However, such an approach is limited by the fact that
webpages and their contents are dynamic and also updated
frequently [20,64]. This results in lower accuracy; in addition,
the computational overhead increases with the increase in



Figure 1: Problem of SIFT-based identification approach. It
takes a logo (left) and a screenshot (right), and checks whether
the screenshot contains such a logo. SIFT first extracts fea-
ture points from the logo and the screenshot, then matches
their feature points to recognize whether the given logo ap-
pears in the screenshot. The red lines between the logo and
the screenshot show the matching relations between the re-
spective feature points. In this figure, the Verizon logo does
not appear in the screenshot. However, SIFT matches many
irrelevant feature points and reports a wrong match.

the number of referenced screenshots (see Section 5.2.3 for
our experimental evaluations). More recent works therefore
moved to the use of the very identity of brands — logos — for
the purpose of phishing identification [11, 13, 16, 74]. Com-
parison of logos of a suspicious website to that of the brands
in a reference database is tolerant to variations in webpages
and their designs. Besides, with the advent of techniques such
as Scale-Invariant Feature Transform (SIFT), it is possible to
compare images that have differences in scale and orientation.
However, SIFT-based approaches [11, 74] are not only com-
putationally expensive (our experiments show that it takes
around 19 seconds for processing each screenshot; see Ta-
ble 2), but are also inaccurate. As illustrated in Figure 1, SIFT
often does not extract the relevant feature points to match
reference logos. This is also reflected in our experimental
evaluations (Section 5.2.3).

Addressing the limitations of the current state-of-the-art
research on phishing identification, in this work we propose
Phishpedia, a practical and explainable phishing identification
system. We design Phishpedia as a hybrid deep learning sys-
tem which consists of two pipelined deep learning models for
identifying phishing pages. More specifically, we decompose
the phishing identification problem into i) an identity logo
recognition problem, and (ii) a brand recognition problem. We
address the former with customized object detection model
and the latter with a transfer-learning based Siamese model.
The hybrid deep learning system allows Phishpedia to achieve
high accuracy in identifying phishing attempts and their tar-
gets. And very importantly, Phishpedia achieves this without
requiring any phishing dataset for training the models, thus
avoiding potential biases in phishing samples (see discussion
in Section 6.4). Besides, Phishpedia also provides explain-

Figure 2: Screenshot of Phishpedia, highlighting the iden-
tity logo annotated with the phishing target brand and the
input boxes for providing user credentials. It also generates a
warning of how the attacker is disguising the domain name.

able visual annotations on the phishing page screenshot (see
Figure 2 for a sample output from our system). Furthermore,
since deep-learning based image recognition solutions are
prone to evasion attacks [24, 25, 48], we also incorporate a
gradient masking technique on to Phishpedia to counter ad-
versarial attacks (Section 3.3). Finally, given a screenshot and
its URL, Phishpedia predicts within 0.2 second, which also
makes it more practical than existing solutions.

We conduct comprehensive experiments to evaluate Phish-
pedia. First, we compare Phishpedia with state-of-the-art
phishing identification approaches (i.e., EMD, PhishZoo, and
LogoSENSE) using six months of phishing URLs obtained
from OpenPhish premium subscription. The experiments
show that Phishpedia significantly outperforms the baseline
approaches in terms of identification accuracy and runtime
overhead. Second, we show that our hybrid deep learning sys-
tem is able to defend some well-known gradient-based adver-
sarial attacks such as DeepFool [48], JSMA [24], StepLL [34],
and FGSM [35]. Third, we conduct a phishing discovery ex-
periment where we run Phishpedia with five phishing detec-
tors/identifiers to look for new phishing webpages in the wild.
The results show that Phishpedia has a huge performance ad-
vantage over the baselines in discovering new phishing pages
on the Internet. In comparison to other solutions, Phishpedia
reports much more phishing webpages and with much less
false positives — Phishpedia discovered 1,704 phishing web-
pages within 30 days and 1,133 of them are not detected by
any engines in VirusTotal [9]. Moreover, 74.6% of them were
not reported by VirusTotal even after one week.

We summarize our contributions in this work:

• We propose a phishing identification system Phishpe-
dia, which has high identification accuracy and low run-
time overhead, outperforming the relevant state-of-the-
art identification approaches.
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Figure 3: Phishpedia framework: a hybrid deep learning system consisting of pipelined object detection model and Siamese
model (highlighted red boxes).

• We prototype our Phishpedia system, which provides
explainable annotations on webpage screenshot for ex-
plaining the phishing report, facilitating its practical use.
For example, with Phishpedia, a security analyst or a
user has readily available easy explanations that tell why
a page is classified as a phishing attempt.

• We conduct a systematic evaluation of Phishpedia us-
ing six months of phishing URLs obtained from Open-
Phish (Premium service). The experiments demonstrate
the effectiveness and efficiency of our proposed system.
Besides, Phishpedia discovers 1,704 real phishing web-
pages within 30 days.

• To the best of our knowledge, we collected the largest
phishing dataset for evaluating phishing identification so-
lutions (i.e., including phishing brand information). We
publish two datasets [7] for cyber-security and AI com-
munity: (i)∼30K phishing webpages with their phishing
brands, screenshots and HTML contents, and (ii) the la-
belled identity logos in over 30K webpage screenshots.

2 Overview of Phishpedia

2.1 Threat model

The threat model considered in this work is the following.
An attacker constructs a fake webpage W that disguises as a
legitimate website W of a particular brand (e.g., Paypal). The
constructed webpage W has a user interface, more specifically,
a form with input boxes, that allows a user to input credential
information (e.g., username, password, bank account details,
etc.). The attacker then sends the URL of the webpage W to
many users, via e-mail, social networks, etc. A user obtaining
such a link becomes a victim when she clicks on the URL of
this phishing page and provides sensitive account information
corresponding to the legitimate website W . Our goal is to
detect such a phishing webpage, identify the target brand, and
generate intuitive annotations for explaining the reason(s) for
classifying the webpage as a phishing page.

2.2 Overview

Figure 3 provides an overview of our proposed system, Phish-
pedia. Phishpedia takes as input a URL and a target brand
list describing legitimate brand logos and their web domains;
it then generates a phishing target (if the URL is considered
as phishing) as output. We refer to the logo that identifies
with the legitimate brand as the identity logo of that brand.
Moreover, input boxes are the small forms where a user inputs
credential information such as username and password.

Given a URL, we first capture its screenshot in a sandbox.
Then, we decompose the phishing identification task into two:
an object-detection task and an image recognition task. First,
we detect important UI components, specifically identity logos
and input boxes, in the screenshot with an object detection
algorithm [57, 58] (Section 3.1). As the next step, we identify
the phishing target by comparing the detected identity logo
with the logos in the target brand list via a Siamese model [33]
(Section 3.2). Once a logo in the target brand list (e.g., that
of Paypal) is matched, we consider its corresponding domain
(e.g., paypal.com) as the intended domain for the captured
screenshot. Subsequently, we analyze the difference between
the intended domain and the domain of the given URL to
report the phishing result. Finally, we combine the reported
identity logo, input box, and phishing target to synthesize a
visual phishing explanation (as shown in Figure 2).

3 Design and development of Phishpedia

3.1 Detection of UI components

We first explain some important concepts. An object detection
model takes as input an image and generates a set of bounding
boxes to annotate the position and size of the objects on
the image. In our problem setting, the image is a webpage
screenshot and objects of interest are either logos or input
boxes. The model is to generate a bounding box for each
object (i.e., logo or input box) with a confidence score.

We analyze multiple solutions for detecting the position
and shape of a logo and input box [83], and we select Faster-
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Figure 4: Faster-RCNN model for logo/input box detection
RCNN model [58] to solve this problem as it is best in meeting
our requirement of reporting logos completely. We compare
Faster-RCNN model with other candidates in Section 5.5. We
briefly describe its network structure for explaining how we
apply it to detect logos and input boxes.

Figure 4 presents the network structure of Faster-RCNN; it
is a two-stage object detection model, consisting of a region
proposal network (RPN) [58] and a Fast RCNN model [23].
Given an input screenshot, we use a backbone network (e.g.,
Resnet50 [28]) to transform the input screenshot into a fea-
ture map of shape M×M× c, where M denotes the size of
the feature map and c denotes the channel size. Taking the
feature map as input, Faster-RCNN uses RPN to predict a
set of bounding boxes on the input screenshot, presenting a
set of “objects” for the screenshot. As shown in Figure 4,
for each bounding box (grey rectangles), RPN will report an
objectness score to indicate its probability of containing an
object (i.e., UI component in our settings) and its shape. Then,
the Fast-RCNN model takes the input of the output feature
map and bounding boxes to (i) predict the object class (i.e.,
logo or input box) and (ii) refine shape and size of each object.
Readers can refer to [58] for more details of Faster-RCNN.

As a result, given a screenshot, the Faster-RCNN model
reports a set of candidate logos L = {l1, l2, ..., ln}; each li
(i ∈ [1,n]) is attached with a confidence score. We rank the
logos by their score and take the top one as the identity logo.

3.2 Brand recognition
The target brand list consists of multiple brands considered
for phishing identification. For each brand, we maintain a
list of logo variants and a list of legitimate domains, for two
reasons. First, maintaining multiple brand logo variants al-
lows us to match logo images in a more precise and flexible
way. Second, a brand can correspond to multiple legitimate
domains. For example, the brand Amazon can have domains
such as “amazon.com” and “amazon.jp.co”. Capturing such
information allows us to reduce false positives.

Given a reported identity logo l, if its similarity with a logo
lt in the target brand list is higher than a predefined threshold
θ, then we report the corresponding brand as the phishing
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Figure 5: Phishing target brand distribution (CDF), based
on ∼30K collected phishing webpages. The top 5 phishing
brands are Microsoft (7962), Paypal (4811), Chase Personal
Banking (1085), Facebook (993), and Amazon (807).

target brand. In general, how accurately can we recognize
the brand logo we detect, partially depends on the number
of brands under protection. Since there are many brands in
the world, the general brand recognition may require a very
long target brand list. However, we argue that the length of
the target brand list is not necessarily that long. First, our
empirical study on around 30K phishing webpages based on
OpenPhish feed (Section 5.1) shows that the top 100 brands
cover 95.8% phishing webpages; see Figure 5. This empirical
result is aligned with the intuition that for phishing activities
to be profitable, the attackers would have to target well-known
large enterprises or financial entities [47]. Besides, a user can
add new brands along with their logos and domain names
(e.g., local banks) to customize the protected target list.
Logo comparison. The key technical challenge here is to esti-
mate the similarity of two logos. One straightforward solution
is to consider logo recognition as an image classification task,
where the input is a logo image and the output is its brand.
However, image classification models have two inherent draw-
backs. First, classification models cannot support adding a
new brand in the target brand list during runtime [56]. Once
we add a new brand, we need to retrain the whole network.
Second, and more importantly, classification models need us
to pre-define classes (i.e., brands in our settings). Thus, given
a logo with an unseen brand in the training dataset, the model
will always classify it as one of existing brands, which can
cause large false positives in real-world application.

In this work, we choose Siamese neural network model [18,
33,70] to address the above challenges. In general, a Siamese
neural network model transforms an image into a representa-
tive vector; thus the similarity of two images can be estimated
by the similarity of their representative vectors (e.g., cosine
similarity). Typically, a Siamese model is trained by feeding



the model with a pair of images. A positive sample is a pair
of images of the same class and a negative sample is a pair of
images of different classes. Then, a loss function (e.g., Triplet
loss [65]) that predicts high scores for positive samples and
low scores negative samples is employed.

(a) v1 (b) v2 (c) v3

Figure 6: Logo Variants for Adobe Brand

However, our experiments show that training a Siamese
model for comparing logos through the above conventional
way is ineffective. The conventional training procedure for
Siamese model selects three images 〈Ic1 , I′c1

, Ic2〉 as a sample
to calculate Triplet loss [65], where Ic1 and I′c1

belong to class
c1, and Ic2 belongs to class c2. The goal of training is to make
sure the similarity of images in the same class (sim(Ic1 , I

′
c1
))

should be larger than that in different classes (sim(Ic1 , Ic2)).
The challenge in applying such training procedure lies in the
fact that the logos under the same brand can be very different
(e.g., Figure 6). It is difficult to force the model to learn
similar representative vectors for different logo variants of the
same brand (e.g., Figure 6a and Figure 6b). Indeed, from the
experiments we carried out, we observe that if we force the
model to achieve this challenging goal, it incurs the side effect
of predicting brands of different classes as similar. Readers
can refer to Section 5.5 for the performance of conventional
Siamese model training procedure.

In this work, we leverage transfer learning [53, 54] to ad-
dress the above challenges. As shown in Figure 7, we first
design a logo classification task so that the backbone network
(e.g., Resnetv2 network [29]) captures the features of logo
images. Through the classification task, we allow the model
to extract different features from different logo variants of the
same brand. We connect the backbone network with a fully
connected network with one hidden layer. We use Logo2K+
dataset [75] to train this task for classifying 2341 brands.
Then, we take the backbone network as a base and connect
it with a global average pooling (GAP) layer to construct a
representative vector of 2048 dimensions. The GAP layer
aggregates the feature map output from backbone network
and represents semantic features of logo images. Thus, differ-
ent representative vectors are learned for very dissimilar logo
variants (e.g., those in Figure 6). Without enforcing the model
to learn a unified representative vector for dissimilar images,
we avoid the risk of introducing false logo-matching results.
We then compute the cosine similarity of the representative
vectors of two logo images as their similarity.

Finally, to perform the logo brand classification task, we
observe that we can optionally apply a fine-tuning of the
model training to make the Siamese model more adaptive to
the protected logos in the target brand list. Assume the size
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Figure 7: Transfer Learning Task

of target list is n; after training the model on the Logo2K+
dataset, we can replace the fully connected layer with another
fully connected layer with n output neurons, corresponding
to the number of target brands. Thus, we can train the model
specifically for the brands in the target list. Our experiment
(see Section 5.5) shows that such an optional training process
can improve the logo recognition while still preserving the
flexibility of adding unseen new logos in the target brand list.

3.3 Defending against adversarial attacks
Deep learning models are known to be vulnerable to adver-
sarial attacks [15]. State-of-the-art adversarial attacks are de-
signed for both object detection models (e.g., DAG [78]) and
classification models (e.g., DeepFool [48] and FGSM [25]).
Let a neural network be a function f (x), x being a sample.
Generally, most gradient-based approaches carry out attacks
based on the partial derivative ∂ f

∂x , to find the minimum pertur-
bation δ on x for obtaining x′ = x+δ, such that the targeted
model can be deceived; i.e., f (x′) 6= f (x).

Traditional defense techniques against adversarial attacks
usually adopt various adversarial training approaches [37, 51,
66, 72]. However, adversarial training approaches also lowers
the original model’s performance and they may not work
well for some unseen adversarial samples [66, 72]. Instead,
we design a new simple adversarial defense technique to
transform our Faster-RCNN and Siamese model to counter
some of the well-known gradient-based adversarial attacks,
while (i) still preserving the model performance, and (ii) not
requiring additional (adversarial) training that increases the
system complexity.

Specifically, we replace the ReLU function in some layers
of both models with a step ReLU function. In this approach,
we design the step-ReLU function as Equation 1, where the
linear function of the traditional ReLU is replaced with a step
function; Figure 8 illustrates this. The parameter α determines
the gap size in the step function.

f (x) = max(0,α · d x
α
e) (1)



(a) Traditional ReLU (b) Step ReLU

Figure 8: ReLU v/s Step-ReLU Activation Functions

The insight here is that the partial derivative ∂ f
∂x of step-relu

is either 0 or infinite, which reduces the effect of gradient-
based attacks such as DeepFool [48], JSMA [24], StepLL [34],
and FGSM [35]. Moreover, the transformed layers of ReLU
activation function can largely preserve the precision of the
output values of activation function, which in turn helps in
preserving the performance of the original network model.

4 Implementation

We build Phishpedia on top of the components described
in the previous section. We select 181 brands in our target
list as these are the most popular phishing targets covering
99.1% of phishing attacks according to our empirical study
(see Figure 5). It is worth recalling that, Phishpedia requires
no phishing dataset for training.
Object detection model. We train our Faster-RCNN model
based on Detectron2 framework [77]. Different from the orig-
inal Faster-RCNN model [58] which trains region proposal
network and Fast-RCNN model interchangeably, our adopted
Detectron2 framework uses four feature pyramid layers and
trains both models jointly for better training efficiency. The
dataset used for training our model is described in Section 5.1.
Siamese model. We train our Siamese model via PyTorch
framework. We choose Resnetv2 [29] as the backbone net-
work. We use Logo2k+ dataset [75] for training the brand
classification task as base model for transfer learning.

Both neural networks are trained on an Ubuntu16.04 server
with Xeon Silver 4108 (1.8GHz), 128G DDR4 RAM, and
NVIDIA Tesla V100 GPU. All experiments for evaluations
(Section 5) are conducted on the same server.

5 Performance evaluation

Next, we carry out comprehensive experiments to answer the
following research questions:

• RQ1: How accurate is Phishpedia in identifying phish-
ing pages, in comparison to state-of-the-art baselines?

• RQ2: What is the accuracy of the core components of
Phishpedia, namely, the object detection model and the
Siamese model?

• RQ3: How does Phishpedia perform if the target brand
list is added with new logos during runtime (in other
words, when Phishpedia is presented new logos not seen
by the trained Siamese model)?

• RQ4: What are the alternative technical options for
Phishpedia and how do they perform?

• RQ5: How well does Phishpedia defend against state-
of-the-art adversarial attacks?

• RQ6: Does Phishpedia facilitate discovering of phishing
pages in the wild (i.e., the Internet)?

To answer RQ1, we conduct experiments comparing the
performance of Phishpedia with other baseline approaches
on ∼30K phishing webpages (obtained by subscribing to
Openphish Premium Service) and another ∼30K benign web-
pages (from Alexa’s top-ranked websites). To answer RQ2,
we evaluate the performance of our object detection model
and Siamese model separately. For RQ3 and RQ4, we con-
duct a controlled experiment to evaluate the performance of
Phishpedia when unseen logos are added to the target brand
list, and also when we adopt alternative technical options for
Phishpedia. To answer RQ5, we evaluate the model accuracy
and the success rate of adversarial attacks before and after
applying the gradient masking technique on the our models.
For RQ6, we conduct a phishing discovery experiment to com-
pare the performance of Phishpedia and five other solutions
in reporting real-world phishing webpages in the wild (see
Section 6). The experiment details are available at [7].

5.1 Datasets
To answer the above research questions, we collect relevant
datasets. The details are as follows:
Phishing Webpage Dataset. To collect live phishing web-
pages and their target brands as ground truth, we subscribed
to OpenPhish Premium Service [4] for a period of six months;
this gave us 350K phishing URLs. We ran a daily crawler
that, based on the OpenPhish daily feeds, not only gathered
the web contents (HTML code) but also took screenshots
of the webpages corresponding to the phishing URLs. This
allowed us to obtain all relevant information before the URLs
became obsolete. Moreover, we manually cleaned the dead
webpages (i.e., those not available when we visited them)
and non-phishing webpages (e.g., the webpage is not used
for phishing any more and has been cleaned up, or it is a
pure blank page when we accessed). In addition, we use
VPN to change our IP addresses while visiting a phishing
page multiple times to minimize the effect of cloaking tech-
niques [30, 81]. We also manually verified (and sometimes
corrected) the target brands for the samples. As a result, we
finally collected 29,496 phishing webpages for our experimen-
tal evaluations. Note that, conventional datasets crawled from
PhishTank and the free version of OpenPhish do not have



phishing target brand information. Though existing works
such as [36] and [80] use larger phishing datasets for phishing
detection experiments (i.e., without identifying target brands),
to the best of our knowledge, we collected the largest dataset
for phishing identification experiments.
Benign Webpage Dataset. We collected 29,951 benign web-
pages from the top-ranked Alexa list [1] for this experiment.
Similar to phishing webpage dataset, we also keep the screen-
shot of each URL.
Labelled Webpage Screenshot Dataset. For evaluating the
object detection model independently, we use the∼30K Alexa
benign webpages collected (for the benign dataset) along with
their screenshots. We outsourced the task of labelling the
identity logos and user inputs on the screenshots.

We publish all the above three datasets at [7] for the re-
search community.

5.2 Comparing Phishpedia with state-of-the-
art baselines (RQ1)

5.2.1 Logo frequency in phishing webpages

We randomly sampled 5,000 webpages from the phishing
webpage dataset, and manually validated that 70 of them have
no logos. That is, the ratio of phishing webpages with logos
is about 98.6%. Figure 9 shows the screenshot of a webpage
reported by OpenPhish as a phishing webpage for Adobe.
However, without a logo, we argue that the phishing attack is
unlikely to be successful, as a user may not even know which
credential to provide at such a page. In other words, to be
effective, logo is an important feature for a phishing webpage.

5.2.2 Baselines for evaluations

We select EMD [21], PhishZoo [11], and LogoSENSE [13]
as the baseline phishing identification approaches. Table 1
shows the details of baseline approaches. They are repre-
sentatives for different visual similarity based identification
approaches, i.e., screenshot similarity (EMD), SIFT-based
similarity (PhishZoo), and HOG vector based similarity (Lo-
goSENSE). The target brand list is the same for PhishZoo
and Phishpedia, which consists of 181 brands.

Since EMD is basically a measurement technique for esti-
mating the similarity of two screenshots, it can perform differ-
ently (both in terms of identification and runtime overhead)
based on the number of referenced screenshots. The larger
the number of referenced screenshots, the higher the recall
that can be achieved, but at a larger runtime cost. Therefore,
we define two versions of EMD for evaluations:

• EMDnormal: In this version, we equip EMD with 181 rep-
resentative screenshots (collected online) as its reference,
and evaluate its performance against the entire phishing
and benign webpage datasets (see Section 5.1).

Figure 9: An Adobe phishing webpage without logo, reported
by OpenPhish.

• EMDmore_ref: We performed digest matching across the
phishing webpage dataset and found that the screen-
shots in the first temporal half can match 48% of the
screenshots in the second temporal half. This indicates
that EMD with more references can potentially achieve
higher recall. Therefore, in this version, we split the
phishing webpage dataset of six months, temporally, into
two equal halves. For improving the runtime efficiency
of EMDmore_ref, we apply the digest matching on the
∼15k screenshots in the first temporal half; this reduces
the number of referenced screenshots to ∼3k.

For LogoSENSE, we let it detect phishing webpages tar-
geting five specific brands — Paypal, Microsoft, Chase Per-
sonal Banking, DHL Airway, and Bank of America. We se-
lected these brands for their popularity in our empirical study
(see Figure 5). The list is limited to five brands because Lo-
goSENSE requires us to train a classifier for each brand,
which means that we need to label enough phishing screen-
shots for each of those 181 brands and train 181 classifiers
for this experiment. Given this high cost of experimentation,
we instead manually labelled the phishing and benign screen-
shots of top-5 brands to train LogoSENSE. Yet, to have a fair
comparison, we run LogoSENSE to detect and identify phish-
ing webpages only targeting for these five brands; note that
the corresponding number of phishing pages is a high count
of 15,658; while we still maintain 29,951 benign webpages to
evaluate its false positive rates. Since the code for these three
approaches are not open sourced, we implemented them for
our evaluations (refer Section 8 for further details).

Table 1: Baselines for phishing identification
Baseline Matching Criteria Details
EMD screenshot similarity Use EMD measurement to compare

screenshot similarity.
Phishzoo logo similarity Detect and match logo in a screenshot

using SIFT approach.
LogoSENSE logo similarity Detect and match logo in a screenshot

by training a HOG vector based classi-
fier from every target brand.

In this experiment, we let the similarity threshold of
EMDnormal to be 0.92, that of EMD more_ref to be 0.96, that of



Table 2: Best performance of Phishpedia and baselines.

Tool Identification
Rate

Detection Rate Model
Prediction Time (s)Precision Recall

EMDnormal 27.7% 52.0% 76.2% 0.19
EMDmore_ref 96.7% 89.0% 74.4% 15.6
Phishzoo 28.5% 68.9% 81.8% 18.2
LogoSENSE 37.8% 20.5% 26.9% 27.2
Phishpedia 99.2% 98.2% 87.1% 0.19

Figure 10: ROC curves (with FPR in log scale) for the four
phishing identification solutions.

PhishZoo to be 0.4, and that of Phishpedia to be 0.83. These
values are the optimal thresholds after we experimented multi-
ple thresholds for each model. Readers may refer to [11], [21]
for the details on their respective thresholds.

5.2.3 Results (RQ1): Phishing identification accuracy

In Table 2, we compare Phishpedia and the baseline ap-
proaches on their phishing identification rate (Identification
Rate), the support for phishing detection (Detection Rate), and
the runtime overhead. We calculate each column as follows.
Let the number of total phishing webpages be Nump, the num-
ber of reported phishing webpages be Repp, the number of
reported true phishing webpages be Repp

TP, and the number
of reported true phishing webpages with brand reported cor-
rectly be Idp. The column ‘Identification rate’ is calculated as

Idp

Repp
TP

. Precision is computed as Repp
TP

Repp , and Recall as Repp
TP

Nump .
Table 2 presents the best results of the approaches (balanc-

ing between identification rate, precision, and recall). Note,
all the approaches take as input a URL, thus they all share the
same process and cost of transforming a URL to its screen-
shot, which takes approximately 1.88s on average. Also, the
techniques to optimize network communications and capture
screenshots are out of the scope of this work. Observe that
Phishpedia outperforms the baseline approaches in identifica-
tion rate, detection rate, and runtime overhead. EMDnormal has
a similar runtime efficiency as Phishpedia, but it has worse

(a) Home page

(b) Missed phishing page
(similarity of 0.921). Due to
change of layout, EMD does
not report this as phishing.

(c) False phishing (similarity
of 0.947). It is caused by over
abstracting the pixel colors
(see Section 3 in [21]).

Figure 11: Qualitative analysis of EMD: EMD matches web-
page screenshot based on most frequent color pixels and their
positions, causing false positives and false negatives.

identification and detection accuracy. In contrast, EMDmore_ref
achieves a much better performance in terms of precision and
recall, but at a much higher and impractical runtime — on
average, it takes 15.6 seconds to process a given webpage.
PhishZoo also takes high computational time to decide on a
webpage, while LogoSENSE has low detection and identifica-
tion rates. Furthermore, we plot the ROC (Receiver Operating
Characteristic) curves for all the identification approaches
in Figure 10. As the FPR decreases, we observe a widen-
ing gap between Phishpedia and the baseline approaches ex-
cept for EMDmore_ref. Besides Phishpedia, EMDmore_ref is the
only other approach to achieve meaningful recall (TPR) at
lower FPRs (albeit this comes with a high computational cost).
Yet, if we consider low FPR values of 10−2,10−3 and 10−4,
which are required for operational deployment, we observe
that Phishpedia still achieves higher recall than EMDmore_ref.

Qualitative analysis of baselines. EMD suffers from ex-
tracting coarse features (e.g., pixel colors) from webpage
screenshots. Figure 11 shows a phishing page EMD missed
to report (false negative) and one that it mistakenly reported
(false positive).

PhishZoo is disadvantaged due to the technical limitations
of SIFT. SIFT matches logo by extracting, say, k feature points
from the logo and k

′
feature points from a screenshot. As long

as k
′

out of k feature points are matched, such that k
′ ≤ k and

k
′

k is larger than a threshold, SIFT reports that the logo appears
on the screenshot. We observe that its limitations largely lies
in extracting incomplete feature points and the mismatches



(a) Logo (b) Recognized phishing

(c) Missed phishing page (simi-
larity score 0.27)

(d) False phishing (similarity
score 0.48)

Figure 12: Qualitative analysis of PhishZoo (threshold 0.3).
Compared to the correctly matched logo regions (see green
circle), SIFT matches the ABSA logo to many irrelevant re-
gions (see red circles).

the extracted feature points have, as shown in Figure 12.
LogoSENSE incurs both high false positives and false nega-

tives. LogoSENSE uses a sliding window of logo size through
the screenshot. The content of the sliding window will be
transformed into a HOG vector, to be fed to a set of trained
SVM models, each of which represents a brand logo. The
output is the brand logo that has highest similarity with this
HOG vector. In our experiments, we use the sliding window
through the screenshot with three different scales as in [13].
We observe that the fixed sliding window usually covers a par-
tial logo (see Figure 13c), which challenges the corresponding
SVM model to predict well. Besides, LogoSENSE is hard to
be generalized to more complicated (or unseen) screenshots,
and therefore often reports a button as logo (as showed in
Figure 13d). We also observe that a large number of sliding
windows on a screenshot incurs much runtime overhead.

Qualitative analysis of Phishpedia. Phishpedia, with pre-
cise identity logo recognition and logo image comparison,
can overcome the challenges faced in phishing identification.
Yet, in this section, we investigate specific important cases of
false predictions made by Phishpedia.
False positive. Phishpedia makes false positive predictions
when a benign webpage has a logo looking like a well-known
legitimate brand logo. As shown in Figure 14, the logo of
the benign website looks similar to a logo variant the brand
Navy Federal (see Figure 14b). Such a pair of similar logo
confuses the Siamese model in Phishpedia. A remedy can be
that we force stronger restriction on image similarity through
aspect ratio and more detailed layout. We plan to explore this
problem in our future work.

(a) Logo (b) Recognized phishing

(c) Missed phishing (d) False phishing

Figure 13: Qualitative analysis of LogoSENSE.

(a) Detected logo (b) Matched logo

(c) Screenshot of benign website https://webkassa.kz
Figure 14: False phishing page reported by Phishpedia

False negatives. Unsurprisingly, Phishpedia misses the phish-
ing webpages targeting a brand beyond the protected target
brand list. This is a common problem for all phishing identifi-
cation approaches. In practice, we can mitigate this issue by
enhancing the target list. Section 5.4 shows the performance
of Phishpedia when the logos of new brands are added to the
target brand list at runtime.

5.3 Analyses of individual components (RQ2)

In this section, we conduct step-by-step experiments to evalu-
ate the core components of Phishpedia independently.

5.3.1 Evaluating logo detection

We use ∼29K samples in labelled screenshot dataset for train-
ing the model and around 1,600 for testing. We compute
Average Precision (AP) for each class (i.e., logo and input

https://webkassa.kz


Table 3: Object Detection Accuracy (Average Precision)
Object Class Logo Input Boxes Overall (mAP)
Training AP 52.7 73.5 63.1
Testing AP 49.3 70.0 59.7
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Figure 15: Accuracy of Siamese model (Precision-Recall
Curve). The x-axis is recall and the y-axis is precision.

box) for IoU1 threshold ranging from 0.5 to 0.95 with inter-
vals of 0.05. Table 3 presents the results. In comparison to the
Faster RCNN proposal [58], which achieved mAP of 67.9 on
PASCAL VOC dataset [73], the mAP we achieve (i.e., 63.1
for training and 59.7 for testing) in this experiment for pre-
dicting logo and input box indicates acceptable performance.

5.3.2 Evaluating logo recognition

For evaluating the Siamese model independently, we manu-
ally labelled the identity logo for 1,000 phishing webpage
screenshots over 181 brands and sampled 1,000 benign web-
page screenshots with labelled identity logos. Then, we give
2,000 identity logos (each from a screenshot) as input to our
trained Siamese model, to evaluate how well our Siamese
model can compare logos. Note that, these logos from the
screenshots are samples not in the training dataset.

We also experiment one alternative backbone network and
one alternative input (in terms of logo color). We experiment
Resnet50 [28] and RestnetV2-50 [29] as backbone networks,
and consider two forms of logo input — one in RGB and
another in grey-scale. By changing the similarity threshold
of Siamese model from 0.5 to 0.9 with 0.05 as interval, we
plot the precision-recall curve for each configuration in Fig-
ure 15. In general, the performances of four configurations
are comparable and acceptable. Moreover, the Resnetv2 with
RGB logo (blue plot) achieves the best performance. With
the above results, we conclude that both Faster-RCNN and
Siamese model achieve good performance to recognize and
compare logos.

1IoU stands for intersection of union, and is used to evaluate the overlap
of the reported bounding box with the ground truth box. The concept of IoU,
average precision (AP), and mean average precision (mAP) are established
terminologies in object detection algorithms (see [83] for more details).

5.4 Phishpedia generalization (RQ3)
In this experiment, we evaluate whether our Siamese model
is generalizable when new logos (not used in training) are
added to target brand list. To this end, we train the model on
the second stage of transfer learning (see our discussion in
Section 3.2) with only 130 brand logos in the target brand
list and check whether it can effectively match the remaining
51 brand logos (on which the model is not trained, but forms
the new target list). We randomly sample logos of 51 brands,
which cover 7,411 phishing webpages in our labelled dataset.

Among the 7,411 webpages covered by 51 “new” brands,
Phishpedia recognized 87.46% phishing webpages with high
identification rate of 99.91%. It indicates that the Siamese
model well captures generalizable features extracted from
logo samples. Thus, our approach is generalizable for adding
new logos in the target brand list during runtime.

5.5 Alternative options (RQ4)
Next, we evaluate other technical options to implement Phish-
pedia. We investigate the following technical options:

• Op1: How does other well-known object detection algo-
rithm (one-stage model, e.g., Yolov3 [57]) perform logo
recognition?

• Op2: How does a Siamese model trained with one-stage
transfer learning and two-stage transfer learning perform
logo comparison (see our discussion in Section 3.2)?

• Op3: How does a Siamese model trained with conven-
tional procedure (e.g., Triplet loss function) perform logo
comparison?

• Op4: Can we replace the Siamese model with a simpler
approach such as perceptual hashing (PH) [14]?

5.5.1 Setup

For Op1, we select Yolov3, a popular one-stage object de-
tection model. We adopt a Yolov3 model implemented with
Tensorflow 1.4 framework. We train the model on the same
cluster where our Faster-RCNN model is trained (see Sec-
tion 4). For Op2, we compare the Siamese model trained
with one-stage training with the model trained with two-stage
training. For Op3, we train Siamese model in a conventional
way using Triplet loss. In this experiment, we use Triplet loss
function [65] to train the model. For Op4, we replace the
Siamese model with a standard perceptual hashing algorithm
implemented in [8].

5.5.2 Results

Table 4 shows our experimental results on the different tech-
nical options. Overall, we observe that Yolov3 has a good



Table 4: Evaluation of alternative technical options

Option Technical Option Identi-
fication

Rate

Detection Rate Model
Prediction
Time (s)

Identity Logo
Recognition

Brand
Recognition Precision Recall

Base Faster
-RCNN

two-stage
training 99.68% 99.13% 88.67% 0.19

Op1 Yolov3 two-stage
training 96.59% 96.33% 63.92% 0.20

Op2 Faster
-RCNN

one-stage
training 99.63% 99.29% 81.07% 0.19

Op3 Faster
-RCNN

non-transfer
learning 90.89% 88.61% 78.57% 0.19

Op4 Faster
-RCNN

perceptual
hashing 24.58% 59.03% 79.37% 0.10

identification accuracy although it misses a lot of phishing
webpages. Moreover, we see that two-stage training for the
Siamese model improves the recall in comparison to one-
stage training, and training Siamese model in a conventional
way has adverse effect on the overall performance. Finally, we
observe that perceptual hashing algorithm is not as competent
as the Siamese model since it is less flexible to minor changes
in logos. Thus, we conclude that Phishpedia employs a sound
solution in terms of logo recognition and logo comparison.

5.6 Adversarial defense (RQ5)
5.6.1 Experiment on Gradient-based Technique

In this set of experiments, we apply state-of-the-art adversarial
attacks on both the object detection model and the Siamese
model, with two specific goals: (i) to analyze the efficacy of
Phishpedia in defending against adversarial attacks, and (ii) to
evaluate the effect of adversarial defense technique on the
performance (in terms of accuracy) of Phishpedia.

We use DAG adversarial attack [78] to evaluate the robust-
ness of our object detection model. We apply DAG on a test
set of around 1,600 screenshots (as in Section 5.3.1). We se-
lect four adversarial attacks to evaluate the robustness of our
Siamese model: DeepFool [48], i-FGSM [25], i-StepLL [34],
and JSMA [24]. We apply these adversarial attacks on lo-
gos labelled in 1,000 screenshots as in Section 5.3.2, to see
whether the Siamese model can still accurately match them
against the logos in a target brand list. For each adversarial
attack, we set the attack iteration limit as 100. Moreover, we
take the attack learning rate ε of 0.5 for DAG attack, and 0.05
for i-FGSM, and i-StepLL attack (note, DeepFool and JSMA
use no learning rate).

Table 5 reports the effect of the adversarial attacks on the
object detection model; the prediction accuracy of both the
original model and the transformed model (i.e., after the ap-
plication of the defense technique described in Section 3.3)
are shown. Similarly, Table 6 reports results of adversarial
attacks on the Siamese model. As for the logo match accuracy
in Table 6, we have N (=1,000) logos fed into the Siamese
model. If k logos are matched to a logo variant of its correct
brand in the target list, the logo match accuracy is computed
as k

N . We observe that (i) our defense technique effectively
defends against existing state-of-the-art adversarial attacks;

Table 5: Defense effect and model accuracy for adversarial
attacks on the object detection model

Defense Accuracy (mAP)
without Attack

Accuracy (mAP) after
Applying Adversarial Attack (DAG)

Original 59.6 12.9 (-46.7)
Transformed 58.9 58.7 (-0.02)

Table 6: Defense effect and model accuracy for adversarial
attacks on the Siamese model

Defense Logo Match Accuracy
without Attack

Logo Match Accuracy After
Applying Adversarial Attacks

i-FGSM i-StepLL JSMA DeepFool
Original 93.5% 0.0% 0.1% 80.9% 0.1%
Transformed 93.5% 93.5% 93.5% 93.5% 93.5%

and (ii) the accuracy of Phishpedia is well preserved and not
affected by the defense technique.

5.6.2 Experiment with Gradient-recovering Technique

While our gradient-masking based approach is effective to
popular gradient-based attacks, some adversarial attacks are
designed to recover the gradients to facilitate the attack. In this
experiment, we adopt a state-of-the-art gradient-recovering
technique, BPDA (Backward Pass Differentiable Approxi-
mation) [12], to attack Phishpedia. BDPA assumes that the
gradient-masked layers in the neural network are known; it
then recovers the gradient by its gradient estimation technique.

Assuming the gradient-masking layers in our model are
known by an attacker, we carry out attacks on Phishpedia’s
Siamese model with different numbers of masked layers un-
der the default settings of BPDA. The results are presented in
Table 7, where we compare the model accuracy before and
after the attacks. BPDA is seen to be effective for a small
number of masked layers, but less so for a large number of
masked layers. With increasing estimated layers, BPDA intro-
duces more bias in the gradients it recovers. As a result, the
adversarial attack is conducted in a biased direction when the
number of masked layers increases.

6 Phishing discovery in the wild (RQ6)

We also design a phishing discovery experiment to compare
Phishpedia with five phishing detection/identification solu-
tions in literature, on their effectiveness in detecting new
phishing pages in the wild (i.e., the Internet).

6.1 CertStream Service
We use CertStream service [2] which contains new domains
registered from Certificate Transparency Log Network. Cer-
tificate Transparency is usually used to openly audit and mon-
itor the event where a new domain is issued a TLS/SSL certifi-
cate. In this experimental study, we use this service to retrieve
emerging new domains.



Table 7: The performance of BPDA on our Siamese model
with different number of masked layers

#Masked Layers Accuracy before Accuracy after attack
3 93.5% 64.6%
7 93.5% 90.5%
13 93.6% 92.3%
17 (all) 93.6% 92.6%

6.2 Phishing discovery experiment
By integrating the reported emerging new domains and a
phishing detector or identifier, we construct a phishing locator.
We apply Phishpedia to scan and identify phishing webpages
from the reported emerging domains every day. In this experi-
ment, (as detailed in the next section) we select five known
approaches in the literature to evaluate how many real-world
phishing pages can they report and how precise their reported
phishing pages are. We ran all the solutions for 30 days (from
Sep, 10 to Oct 9, 2020). During the experiments, we record
the landing URL and screenshot of each URL for postmortem
analyses. For each solution, we use the configuration corre-
sponding to the best results in Section 5.2.3; this results in
each solution reporting a different number of phishing pages.
Among the reported phishing URLs, we picked top reported
phishing webpages (that is, the ones predicted with highest
probability) for manually investigating the ground truth. The
number of samples picked for each solution we evaluated is
given in Table 9. Each reported phishing webpage is eval-
uated by two examiners independently. For those phishing
webpages upon which they did not agree, we let them discuss
and come to a consensus. Then, we use VirusTotal [9] to check
whether it reports the same results. VirusTotal is equipped
with more than 70 engines for malicious webpage detection
(e.g., Google Safebrowsing). If a real phishing webpage is
reported by a specific solution (i.e., one of the five baselines
or Phishpedia), but none of the VirusTotal engines report it
suspicious on the same day, we consider that the solution
discovered a zero-day phishing webpage.

6.3 Baselines
We select the baselines covering phishing detectors and identi-
fiers, as shown in Table 8. URLNet [36] and StackModel [80]
are the two most recent techniques reported to outperform
other state-of-the-art detection techniques. Besides, they work
on different inputs: URLNet uses only URL string as input,
where as StackModel predicts on URL and HTML content
of a given page. Based on our discussion with various in-
dustry players, we are also aware that solutions similar to the
above are being considered by security vendors. For the exper-
iments here, we train both models with our dataset of phishing
(from OpenPhish) and benign (from Alexa) webpages (see
Section 5.1). Furthermore, we select PhishCatcher [5] as an-
other baseline candidate, as it is an open-source version of
the commercial product PhishFinder [6] searching for phish-

Table 8: Solutions for searching new phishing pages
Tool Category Input Description
PhishCatcher Deteciton URL A rule-based phishing de-

tector to compare how sim-
ilar a new domain (e.g.,
foceb00k.com) is with an
existing legitimate domain
(e.g., facebook.com).

URLNet Deteciton URL A CNN-based approach
that predicts on a given
URL.

StackModel Deteciton URL+HTML A tree-model consisting
of multiple layers of ran-
dom forest which takes
input features extracted
from URL and HTML
code.

EMD Identification URL+Screenshot See Section I.
Phishzoo Identification URL+Screenshot See Section I.
Phishpeida Identification URL+Screenshot See Section III.

Table 9: Phishing discovery results
Tool Category #Reported

Phishing
#Top Ranked

Samples
#Real

Phishing
#Zero-day
Phishing

PhishCatcher Deteciton 1,421,323 1000 5 4
URLNet Deteciton 422,093 1000 13 3
StackModel Deteciton 327,894 1000 9 6
EMD Identification 299,082 1000 3 2
Phishzoo Identification 9,127 1000 8 5
Phishpeida Identification 1,820 1000 939 623

ing webpages with CertStream. Similar to other phishing
detectors such as URLNet and StackModel, it also assigns
suspicious score based on its predefined rules. Finally, we
also consider EMD and PhishZoo in this experiment as they
are state-of-the-art phishing identification approaches. Note,
LogoSENSE is not selected as it can support only a limited
number of brands, leading to unfair comparison.

6.4 Results

Table 9 summarizes the results on discovered phishing web-
pages. All discovered phishing webpages and their reports are
published at [7]. We observe that, compared to other baseline
approaches, Phishpedia reports far more accurate phishing re-
sults. Indeed, among all the reported 1,820 phishing webpages
by Phishpedia, the total number of real phishing webpages is
1,704. Of these identified by Phishpedia, 1,133 are new real
phishing webpages that are considered as benign by Virus-
Total. These discovered phishing webpages range over 88
brands. Figure 16 shows the top 20 brands phishing webpages.
Following the suggested practice of using VirusTotal [52], we
conducted a postmortem analysis on all discovered real phish-
ing webpages after one week, finding that 74.6% of them are
still not reported by VirusTotal.

6.4.1 Why does Phishpedia outperform the baselines?

Based on the experiment results, we also have two observa-
tions for Phishpedia’s advantage over the baseline approaches:
Observation 1: Plausible URL/domain is not a strong in-
dicator for phishing. PhishCatcher reports highest num-
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Figure 16: Top 20 brands from the found phishing webpages

Figure 17: A benign website with suspicious name.

ber of pages as phishing, but it has very low accu-
racy. We note that, PhishCatcher reports high suspi-
ciousness score for domains containing plausible brand
name, such as “https://www.amazon-voucher.com/” and
“http://amazoninnpousada.com/”. Figure 17 shows an exam-
ple of the latter. Several works in literature [31, 67, 80] make
an assumption that a domain address looking similar to that
of a legitimate website is more prone to be phishing. How-
ever, our phishing discovery experiment does not support this
assumption, and we find less correlation between name plau-
sibility and phishing suspiciousness. While such a conclusion
is counter-intuitive, it is statistically sound given that Phish-
Catcher reports very few real phishing webpages.
Observation 2: Overfitting or the learned bias is a fatal
drawback of machine learning approaches. We find that
machine-learning based approaches do not perform well in
such a real discovery study, even though they tend to show
very accurate results on experimental datasets [36, 80]. Stack-
Model [80] is a tree-based model, which allows us to gen-
erate the feature importance to explain why the model con-
siders a webpage as phishing. Given a benign webpage, say,
“https://www.httpspro-afld-amazon2020.cu.ma”, we find that
the StackModel reports it as phishing because it has small
HTML length and low domain occurrence i.e., the frequency
of domain name appearances in the HTML text. We observe
that, in the OpenPhish dataset, those two features (i.e., HTML

Figure 18: A website constructed through Webmail system
(http://webmail.eventgiftshop.com/).

code length, and domain occurrence) are strong indicators for
phishing. Nevertheless, there is no causality between these
two features and the phishing intention. However, the bias
learned by the model causes a large number of false posi-
tives in the phishing discovery experiment. Overall, machine
learning models usually learn more of association than causal-
ity from the dataset, which is risky for their application on
real-world scenario.

6.4.2 Investigating False Positives

Next, we investigate the false positives reported by Phishpedia
during this discovery experiment; these are due to two reasons:
(i) template-based websites and (ii) benign websites with a
logo of some of the biggest and very popular companies such
as Google, Facebook, or LinkedIn.
Template-based websites. We find that most false positives
are due to some websites built with templates provided by
web hosting services (e.g., https://www.cpanel.net/). After
setup, the website usually has a secondary web domain such
as “webmail.eventgiftshop.com”. However, the web admin-
istrator preserves the default logo as shown in Figure 18.
Phishpedia reports it as phishing in this experiment. Arguably,
given such a webpage design, even a human user would find
it difficult to decide whether it is a phishing page. As a quick
remedy, we could set up a white-list to suppress the warning
of Phishpedia to report webmail-based webpages. However,
such websites may be considered as having a bad UI design
from a security point of view, for provide phishers with a
chance to construct indistinguishable phishing webpages.
Benign websites with logos of big company. We also ob-
serve that Phishpedia sometimes mistakes a benign website
having a logo of a large well-known company such as Google,
Facebook, LinkedIn, etc. We refer to them as plausible web-
sites for Phishpedia. Such logos appear for the purposes of
advertisement or Single Sign-On (SSO) used for convenient
registration. Figure 19 and Figure 20 present two examples.
Given that a plausible website renders a big-company logo on
its screenshot, Phishpedia might interpret the screenshot as a
page of that big company and report it as a phishing webpage.



Figure 19: A benign website mis-reported by Phishpedia. The
screenshot has only one logo - that of Facebook.

Figure 20: A benign website correctly reported by Phishpedia,
which aims to report identity logo instead of arbitrary logos.

In order to further evaluate how Phishpedia perform on
these plausible webpages, we additionally collected 131,975
URLs from CertStream, and experimented Phishpedia on the
webpages with logos of Google, Facebook, and LinkedIn.
As a result, we found 47 (0.036%) such webpages, and our
manual validation confirms that four of them are real phishing
webpages. Among the 47 webpages, Phishpedia reports 7 of
them as phishing; the precision is 4

7 and the recall is 4
4 .

Intuitively, Phishpedia is robust to such websites because
it recognizes identity logo instead of arbitrary logos. When
Faster-RCNN model reports multiple logos, Phishpedia uses
the logo with highest confidence (see Section 3.1). Neverthe-
less, such webpages may still cause false positives. We will
address them in our future work.

6.4.3 Investigating False Negatives

We also investigate the false negatives of Phishpedia in the
phishing discovery experiment. Note that the metric recall
is hard to obtain as the ground truth can only be validated
manually, which is laborious for large-scale evaluations. In
this experiment, we sample 1,500 CertStream URLs. Our
manual evaluation found no phishing URLs. Therefore, we
further used PhishCatcher to select 1,500 CertStream URLs
and we confirm 16 real phishing webpages among them.

Taking the phishing label of the above 1,500 CertStream
URLs reported by PhishCatcher as ground truth, we com-
pare VirusTotal, EMD, PhishZoo, URLNet, StackModel, and

Table 10: Precision and recall of Phishpedia and baselines on
the URLs filtered by PhishCatcher.

Solution Precision Recall
VirusTotal 28.00% 43.75%
EMD 1.00% 43.00%
PhishZoo 1.20% 43.75%
URLNet 1.22% 93.75%
StackModel 1.30% 100.0%
Phishpedia 87.50% 87.50%

Phishpedia for their precision and recall. The results are given
in Table 10. Phishpedia achieves a good balance between the
precision and the recall, in comparison to other baselines.

7 Discussions

7.1 Webpage semantics

Our vision for Phishpedia is to identify the semantics of a web-
page screenshot so that we can compare its rendered intention
with its real domain. We achieve this by recognizing identity
logos and brands via Faster-RCNN and Siamese model. While
our experiments demonstrate promising results, the semantics
can sometimes go beyond logo-domain inconsistency. For
example, a benign webpage might have a Google icon as its
content, which can causes confuse Phishpedia. In our future
work, we will explore webpage layout information or extract
topic model from a webpage content to infer the identity of a
screenshot in a more confident way.

7.2 Application and deployment scenarios

Scenario 1: URL access interception. One of the most com-
mon channels for delivering URLs of phishing webpages is
email [32]. Vendors can have multiple options for deploying
e-mail security gateway. i) All URLs in an e-mail are sent to
Phishpedia; and the results are used to classify the mail as
phishing or to deliver to the user. ii) Every URL in an e-mail
is transformed and prefixed with a cloud-service link, so that
anytime a user clicks on the link, Phishpedia service in the
cloud analyses the URL. In this case, Phishpedia fits in with
negligible additional delay.
Scenario 2: Complementing phishing detectors. Phishpe-
dia can also be used for providing explanations to existing
phishing detectors. A typical example is an analyst at a SOC
(security operations centre) going through a list of URLs that
have been classified as phishing by multiple phishing detec-
tors. Phishpedia can then be used to identify the phishing
target and provide visual explanation on webpage screenshot.
Scenario 3: Threat intelligence gathering. With its high
precision, Phishpedia can run as an independent service, to
discover new phishing pages on the Internet. This live threat
intelligence can be used to maintain dynamic black lists for
users to block access to phishing pages.



8 Threats to Validity

In our experiments, an internal threat is that we re-
implemented all the baseline approaches because their imple-
mentations are not publicly available. While this may result
in not obtaining the best performance of these models, we
emphasize that we experimented the baselines with multi-
ple thresholds. For example, for LogoSENSE, we evaluated
multiple versions and report the results of best performance.
We also publish all our baseline implementations in [7] for
replicating the experiments. An external threat is that, Virus-
Total engines can be adversely affected due to cloaking of
phishing websites. Therefore, it cannot be determined whether
improved detection comes from Phishpedia, or the crawling
infrastructure that Phishpedia runs on.

9 Related Works

Phishing webpage detection. Current phishing detection ap-
proaches can be classified according to their input, i.e., URL,
HTML content, and visual screenshot. URL features have
proved well on the datasets collected from some open phish-
ing platform such as PhishTank and OpenPish [36, 55, 60, 62].
Rakesh et al. [55] explored features such as URL length,
frequency of suspicious symbols and characters, etc., and
they showed that their selected features have better perfor-
mance on a variety of machine learning models. Guang et
al. [36] proposed URLNet which uses character-level and
token-level convolutional neural network for prediction. Re-
searchers also explored detecting phishing based on HTML
features [10, 17, 27, 31, 38, 50, 69, 80]. Ke et al. [31] used
frequency of keywords appearing in specific HTML tags and
that of brand names as features, and use three traditional clas-
sifiers to make the prediction. Other works used both URL
and HTML contents to achieve a better prediction accuracy.
Cantina [27] and Li et al. [80] enhanced traditional URL and
HTML features by introducing IP addresses and top name
domain. Moreover, visual analysis (e.g., OCR technique) is
often used as a complementary technique to extract text in
images to enhance HTML features [31, 62, 63, 82]. We refer
to surveys for more details [32, 61].
Phishing target identification. Existing identification tech-
niques detected phishing target via search engine [44, 63, 79]
and by employing target brand list [11, 13, 21, 74]. Samuel et
al.’s Know-Your-Phish work [63] is representative for search-
engine based approach. They extracted dominant keywords
from HTML content (including text recognized by OCR) and
applied search engine (e.g., Google) to return the most likely
targets. However, repetitive network connections can incur
huge runtime overhead and it is also a challenge to select
appropriate keyword for search engine.

Fu et al. [21] first proposed the idea of using a target brand
list. They compared the screenshot of a suspicious webpage
with that of all websites in the target brand list, subsequently

reporting the phishing target if the similarity is above a thresh-
old. As an alternative to screenshot, Medvet et al. [46] and
Rosiello et al. [59] explored techniques to compare page con-
tent such as text, images, and layout. Following their work,
Afroz et al. and Wang et al. considered logo as a more reliable
invariant to compare, and pioneered logo-based approaches
such as Phishzoo [11] and Verilogo [74], which locate logos
on the screenshot based on SIFT. As discussed above, the
performance of SIFT limits the accuracy of the approach.

10 Conclusion

In this work, we proposed Phishpedia to identify phishing
webpage with visual explanation. Phishpedia well solves the
challenging problems of logo detection and brand recognition.
Our evaluation shows that Phishpedia performs better than
state-of-the-art approaches on experiments using real datasets
as well as the ability to discover new online phishing pages. In
our future work, we will address Phishpedia’s false positive is-
sue in benign webpages with logos of big company. Moreover,
we will extend Phishpedia into an online phishing monitoring
system to collect active phishing kits, on which we will apply
state-of-the-art program analysis techniques [40–43] to gain
more insights into the phishing campaigns.
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