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ABSTRACT
Relation prediction in knowledge graphs (KGs) aims at predicting
missing relations in incomplete triples, whereas the dominant par-
adigm by KG embeddings has a limitation to predict the relation
between unseen entities. This situation is called an inductive set-
ting, which is more common in the real-world scenario. To handle
this issue, implicit symbolic rules have shown great potential in
capturing the inductive capability. However, it is still challenging
to obtain precise representations of logic rules from KGs. The argu-
ment variability and predicate non-commutativity in symbolic rule
integration make the modeling of component symbols difficult. To
this end, we propose a novel inductive relation prediction model
named SymRITa with a logic transformer integrating rules. Sym-
RITa firstly extracts the subgraph, whose embeddings are captured
by a graph network. Meanwhile, symbolic rule graphs in the sub-
graph can be generated. Then, the symbolic rules are modeled by
a proposed logic transformer. Specifically, the input format based
on the subgraph-based embeddings is to focus on the argument
variability in symbolic rules. In addition, a conjunction attention
mechanism in the logic transformer can resolve predicate non-
commutativity in the symbolic rule integration process. Finally, the
subgraph-based and symbol-based embeddings obtained from the
previous steps are combined for the training regime, and prediction
results as well as rules explaining the reasoning process are explic-
itly output. Extensive experiments on twelve inductive datasets
show that SymRITa achieves outstanding effectiveness compared
to state-of-the-art inductive baselines. Moreover, the logic rules
with corresponding confidences provide an interpretable paradigm.
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1 INTRODUCTION
In a structured storage scenario, knowledge graphs (KGs) possess
numerous triples consisting of entities and relations, representing
factual knowledge about the real world. They have been widely
used in various downstream tasks, such as question answering
[1, 11], information retrieval [6, 35], and text generation [16], etc.
Existing KGs suffer from incompleteness according to the open-
world assumption, which weakens the performance of downstream
tasks. Therefore, some dominant methods aim at predicting missing
entities and relations using the rich implicit structural information.
There are many conventional methods for obtaining the relation
and entity embeddings, such as TransE [3], R-GCN [29], CompGCN
[34] and StAR [36].

Previous embedding-based methods are merely designed for a
transductive setting. However, in the real-world scenario, the re-
lation prediction is always implemented in an inductive setting,
which predicts the relation between two unseen entities in the test
set. The above-mentioned methods are not suitable for this situa-
tion, because they require to retrain the whole model for unseen
entities and lack an inductive ability in applications. With the de-
velopment of large language models (LLMs), some recent methods
try to implement reasoning by LLMs [46, 51], while they require
massive manual prompts and the performance does not meet the
desired outcome, especially on unseen out-of-distribution samples
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Figure 1: The issues of integrating the symbolic rule into
inductive relation prediction.

[2]. Based on the circumstance, some models [20, 32] provide a
thought of capturing inductive ability by mainly taking account
of the topological representations in KGs. Despite these methods,
they still neglect the entity-independent information that is critical
to provide inductive capability for the model.

Some methods [45] have illustrated that the symbolic rule,
specifically the first-order logic rule [4, 17], can provide entity-
independent information by its format and capture the inductive
ability during reasoning in KGs. For example, in Figure 1, with the
information of the symbolic rule:

𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝐵𝑦 (𝑋,𝑌 ) ← 𝑝𝑟𝑒𝑞𝑢𝑒𝑙𝑂 𝑓 (𝑋,𝑍 ) ∧𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝐵𝑦 (𝑍,𝑌 ),
the relation𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝐵𝑦 between the entitiesGeorge R. R. Martin1 and
AGame of Thrones in the test set can be predicted without retraining
the whole model. However, there are still some important issues in
integrating the symbolic rules into the inductive model:

(1) Argument variability. Integrated rules in KGs follow an ar-
gument variability of the logic [12], which is essential for obtaining
entity independence for the model. For instance, in Figure 1, the
entities Harry Potter and the Philosopher’s Stone and J. K. Rowling2

are generalized to arguments 𝑋 and 𝑌 respectively. The arguments
are variables in the symbolic rules, which means that if the argu-
ments in𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝐵𝑦 (𝑋,𝑌 ) ← 𝑝𝑟𝑒𝑞𝑢𝑒𝑙𝑂 𝑓 (𝑋,𝑍 ) ∧𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝐵𝑦 (𝑍,𝑌 )
are changed from 𝑋 , 𝑌 , 𝑍 to 𝐴, 𝐵, 𝐶 , the semantics of the rule does
not change. Although existing methods introduce implicit rules,
they still have difficulties in modeling the information of argu-
ments. (2) Predicate non-commutativity. The symbolic rules
have a predicate non-commutativity, which means that the seman-
tics of logic rules depends on the order of predicates [24]. As shown
in Figure 1, the atoms 𝑝𝑟𝑒𝑞𝑢𝑒𝑙𝑂 𝑓 (𝑋,𝑍 ) and 𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝐵𝑦 (𝑍,𝑌 ) are
connected by the conjunction symbol ∧ in the rule. The predicates
𝑝𝑟𝑒𝑞𝑢𝑒𝑙𝑂 𝑓 and 𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝐵𝑦 in the two atoms can not be switched
without the arguments, for it will transfer to different semantics,
even wrong semantics. For example, if we exchange predicates
𝑝𝑟𝑒𝑞𝑢𝑒𝑙𝑂 𝑓 and𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝐵𝑦, the argument 𝑍 will be instantiated to
an exact person, but a person will not be a prequel of another thing.
The rule after exchanging is obviously unreasonable during reason-
ing, which means the order of predicates is critical for representing
the semantics of the logic.
1https://en.wikipedia.org/wiki/George_R._R._Martin
2https://en.wikipedia.org/wiki/J._K._Rowling

To address the above issues, we propose a Symbolic Rule
Integration model with logic Transformer for inductive relation
prediction named SymRITa. In SymRITa, the logic transformer
module is proposed to obtain embeddings of symbolic rules dur-
ing reasoning. In detail, we firstly extract the enclosing subgraph
among the target triple, which performs as the foundation to ex-
tract implicit rules. Following the format of the first-order logic
rule, we extract them within a maximum preset length as the skele-
tons. Secondly, we implement the subgraph modeling and obtain
the subgraph-based embeddings of entities and relations through a
graph network based on the graph topological information. Then,
we propose a rule integration strategy to integrate the implicit
logic and obtain symbol-based embeddings for inductive ability.
The inputs of logic transformer are from the subgraph-based re-
lation embeddings, which aim at the argument variability in the
integration. As for the predicate non-commutativity, a conjunction
attention providing undamaged symbolic informationmechanism is
designed for the logic transformer, providing comprehensive infor-
mation for symbolic rule integration. Finally, SymRITa implements
the inductive relation prediction by combining subgraph-based
and symbol-based embeddings and jointly trains the model. The
symbol-based embedding is obtained by each symbolic rule and its
corresponding confidence, which illustrates the explanation of the
reasoning process.

Our main contribution are in the following three folds:
• A novel framework named SymRITa integrates the symbolic
rules into the continuous neural network model to solve the
inductive relation prediction. To the best of our knowledge,
it is the first method to model symbol-based embeddings
and combine them with subgraph-based embeddings for
obtaining the inductive ability.
• In order to model the discrete symbolic rules for resolving
entity independence in the inductive setting, we propose a
logic transformer and design a conjunction attention mech-
anism to satisfy the argument variability and strengthen
the predicate non-commutativity of first-order logic rules
extracted from KGs.
• Experiments of the relation prediction on twelve inductive
datasets verify the effectiveness of SymRITa compared to the
latest inductive methods. Meanwhile, SymRITa obtains first-
order logic rules with confidences, which can potentially
explain the reasoning process.

2 RELATEDWORK
2.1 Inductive Relation Prediction
For the inductive relation prediction task on KGs, we divide them
into two main categories: rule-based and graph-based.

Rule-based methods extract logic rules from KGs enhancing
the inductive ability instead of fusing with external information
[39, 40]. Associated methods mine closed-paths rules from enu-
merated candidates in KGs by statistical indicators, such as head
coverage in AMIE [13, 14], pointwise mutual information in SHER-
LOCK [30], and other indicators in early works [21, 25]. RuleN
[22] extends AMIE with a fine-grained evaluation, which extracts
more rules with high qualities. Considering the lack of scalability
of these associated methods, some other differential methods solve
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the inductive problem by learnable weights for rules during the
reasoning process in KGs. NeuralLP [45] learns the confidences and
the structures of logic rules through an end-to-end model, which
consists of a controller system implemented by a recurrent neural
network (RNN). DRUM [28] extends NeuralLP with the Bi-RNN
to extract logic rules with flexible length. Both of the methods are
based on the framework named TensorLog [7], which transfers
the discrete rule extracting to continuous learnable parameters.
Nevertheless, these methods are still struggling with inadequate
inductive reasoning performance based on the framework with
limited inductive ability and high resource consumption.

Graph-based methods try to take account of the topological
information of KGs to get more sufficient inductive ability. GraIL
[32] mines the inductive ability of KGs from extracted subgraphs
and models them by a graph neural network (GNN). CoMPILE
[20] is proposed based on GraIL, considering the implicit inductive
ability by interacting messages between edges and entities. TACT
[5] extends GraIL by a relational correlation network to supply
different patterns of topological information between relations.
RED-GNN [52] models the KG by a relational directed graph, in
order to capture the local evidence of the KG for inductive reasoning.
However, these methods merely utilize the topological information
without taking advantage of the implicit semantics.

Distinguished from the previous methods, SymRITa combines
the topological structure with symbolic rules, which is significant
for improving the inductive ability of the model.

2.2 Symbolic Reasoning
Symbolic reasoning aims to integrate symbolic formulas into the
reasoning tasks, which would not only develop the performance
but also the interpretability of the reasoning process. For the visual
problems, NS-VQA [47] incorporates symbolic structure as prior
knowledge to a visual question answering task. It recovers a struc-
tural scene representation from the image and a symbolic program
trace from the question, and then executes the program to obtain
an answer. For the logical question answering task, LReasoner [37]
proposes a context extension framework based on logical equiva-
lence laws to capture symbolic logic from the text. As for the graph
networks, SGR [19] performs reasoning over a group of symbolic
nodes whose outputs explicitly represent different properties of se-
mantics in a prior graph. It learns shared symbolic representations
for domains or datasets with the different label set.

Symbolic reasoning is applied to text [37, 42], graphs [19], images
and multi-modal scenarios [47]. For solving the inductive setting
and getting the inductive capability, we innovatively introduce the
symbolic reasoning into the inductive relation prediction.

3 PRELIMINARY
3.1 Inductive Relation Prediction
Inductive relation prediction in KGs aims to predict the relation
between two unseen entities. A target triple is denoted as (ℎ, 𝑟𝑇 , 𝑡)
in the train KG 𝐺 = {𝑅, 𝐸,𝑇 }, in which 𝑟𝑇 ∈ 𝑅 is the target relation.
ℎ, 𝑡 ∈ 𝐸 are head and tail entities, respectively. 𝑅 and 𝐸 are sets
of relations and entities in 𝐺 , and 𝑇 ⊆ 𝐸 × 𝑅 × 𝐸 is the set of
triples. Inductive relation prediction intends to predict if the triple
(ℎ′, 𝑟𝑇 , 𝑡 ′) is valid with two unseen entities ℎ′ and 𝑡 ′ in a testing

KG𝐺 ′ = {𝑅, 𝐸′,𝑇 ′}.𝐺 and𝐺 ′ share the same relation set. However,
entities in 𝐺 and 𝐺 ′ are disjoint, i.e. 𝐸′ ∩ 𝐸 = ∅. For clarity, we
summarize important symbols in Table 4 in Appendix B.

3.2 Symbolic Rule in KGs
The symbolic rule [23] learned from KGs is a first-order logic Horn
rule [27], which consists of a head atom and a series of atoms as
the body. Here is a first-order logic rule with length 𝑁 :

𝛽

head︷    ︸︸    ︷
r𝑇 (𝑋,𝑌 ) ←

body︷                                                ︸︸                                                ︷
r1 (𝑋,𝑍1) ∧ r2 (𝑍1, 𝑍2) ∧ ...r𝑁 (𝑍𝑁−1, 𝑌 ) . (1)

in which r1, r2, ..., r𝑁 , r𝑇 are predicates, represented as relations in
KGs. 𝑋,𝑍1, 𝑍2, ..., 𝑍𝑁−1, 𝑌 are arguments generalized from entities
in KGs. The body atoms r1 (𝑋,𝑍1), · · · , r𝑁 (𝑍𝑁−1, 𝑌 ) are connected
by a conjunction symbol ∧ and point to the head by an implication
symbol←. In rule (1), an atom contains two arguments and adjacent
atoms share the same argument. During inference, arguments are
instantiated to entities 𝑥, 𝑧1, 𝑧2, . . . , 𝑧𝑁−1, 𝑦 and form a closed path.
In the KG, we can use the target relation to simulate the head
predicate of the rule. Also, 𝛽 ∈ [0, 1] can be used to represent
the confidence of the rule. According to [45], these are important
components in the first-order logic rules extracted from KGs.

4 METHODOLOGY
In this section, we demonstrate SymRITa with the help of the frame-
work in Figure 2. SymRITa is in three parts.

4.1 Subgraph Modeling
SymRITa extracts the enclosing subgraph S𝑇 based on the target
triple 𝑎𝑇 = (ℎ, 𝑟𝑇 , 𝑡) from 𝐺 . The entities in S𝑇 are selected by the
intersection of 𝑞-hop undirected neighborhoods of the target triple.
The triples among the selected entities conduct the subgraph S𝑇 .
Furthermore,S𝑇 is used for labeling nodes by a double radius vertex
labeling scheme [50]. The labeling process initializes the entities in
the subgraph, and provides the initialized vector with the inductive
ability by the topological structure [32]. Then, we initialize the node
𝑖 with a vector [one-hot(𝑑 (𝑖, ℎ))⊕one-hot(𝑑 (𝑖, 𝑡))] ∈ R(2𝑞+2) as the
node feature, where ⊕ is the concatenation operation of vectors.𝑑 (·)
generates the shortest topological distance between two entities.

For subgraph modeling, we employ a graph neural network
(GNN) [29] based approach with relation-aware and triple-aware
attention to obtain entity and relation embeddings in aS𝑇 . In detail,
the update process of the entity embeddings is:

𝒗 (𝑙+1)
𝑖

= 𝜙 (
∑︁

𝑟 ∈𝑅,𝑗∈N𝑟
𝑖

𝛼
(𝑙 )
𝑖,𝑟

W(𝑙 )𝑟 𝒗 (𝑙 )
𝑗
+W(𝑙 )0 𝒗 (𝑙 )

𝑖
), (2)

𝝎 (𝑙 )
𝑖, 𝑗,𝑟

= 𝜎1 (W(𝑙 )1 [𝒗
(𝑙 )
𝑖
⊕ 𝒗 (𝑙 )

𝑗
⊕ 𝒓]), (3)

𝛼
(𝑙 )
𝑖, 𝑗,𝑟

= 𝜎2 (W(𝑙 )2 [𝝎𝑖, 𝑗,𝑟 ⊕ 𝒓𝑇 ]), (4)

where we use 𝒗 (𝑙+1)
𝑖

to be the embedding of node 𝑖 in (𝑙+1)−𝑡ℎ layer
from 𝐿1 layers during message passing. 𝜙 denotes the multilayer
perceptron (MLP) operation to aggregate the neighbor information.
N𝑟
𝑖
collects the neighbors of node 𝑖 by relation 𝑟 .W(𝑙 )𝑟 andW(𝑙 )0

are transformation matrices to update the message from layer 𝑙 to
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Figure 2: The overall framework of SymRITa. It firstly obtains subgraph-based embeddings of relations and entities. Then,
the relation embeddings are the input of logic transformer to integrate symbolic rules and obtain symbol-based embeddings.
Finally, the subgraph-based embeddings and symbol-based embeddings are used for training and prediction process.

𝑙 + 1. 𝛼 (𝑙 )
𝑖,𝑟

is the triple-aware attention weight of neighbor triple
connected by relation 𝑟 . 𝝎𝑖,𝑟 denotes the triple-aware embedding
and is further used for calculating the triple-aware attention weight
𝛼
(𝑙 )
𝑖,𝑟

. 𝒓𝑇 is the embedding of the target relation 𝑟𝑇 . 𝜎1 and 𝜎2 are

activation functions, andW(𝑙 )1 ,W(𝑙 )2 are transformation matrices.

4.2 Symbolic Rule Integration
As for the symbol components in rules, we design a strategy to
embed them for enhancing the inductive ability during reasoning.
This is the main part of our SymRITa, and we propose a graph
transformer-based method to model the rules in subgraphs.

4.2.1 Logic Extraction and Sorter. We construct the implicit logic
rules from the extracted subgraphs. From the format of the first-
order logic rule shown as Eq. (1), the relational paths in a subgraph
are significant parts of the implicit logics in a KG. If we get the
relational paths from the head to tail of the target triple 𝑎𝑇 , we
could obtain the skeletons of logic rules in S𝑇 . Specifically, we use
the breadth first search (BFS) algorithm [8] for extracting every
topological relational path whose length is not longer than 𝐿𝑚𝑎𝑥
from ℎ to 𝑡 in S𝑇 . The set of 𝑛 logic rules among 𝑎𝑇 is denoted
as {𝑓1, · · · , 𝑓𝑛}. If 𝐿𝑚𝑎𝑥 is preset as 3, S𝑇 owns 4 relational paths
from Figure 2 to represent the implicit logic rules for reasoning the
relation between ℎ to 𝑡 . According to Eq. (1), the arguments (e.g.
𝑋,𝑌, 𝑍 ) and conjunction symbols (i.e. ∧) are significant in rules,
so the predicates in a single extract relational path should be in
order, for instance, the relation order of 𝑓1 = {𝑟1, 𝑟2} in S𝑇 . The
information of arguments and the semantics of conjunction symbol
in the rules is fused in SymRITa, which will be demonstrated in the
following sections.

Then, the symbolic rules are sorted by their semantics in order to
match the significance of the corresponding rule during reasoning.
From [10], the order of inputs is significant in the transformer. It is

inspired by the encoder of the language model, that adjacent tokens
have similar positional embeddings. Therefore, we calculate the
similarity of semantics and make the adjacent rules have similar
semantics. Based on a rule learning work [44], we design a strategy
to calculate the semantic similarity between 𝑟𝑇 and the rule body
𝑓𝑘 , in which 𝑟𝑇 and 𝑓𝑘 = {𝑟𝑘,1, · · · , 𝑟𝑘,𝑙𝑘 } connect the same ℎ and 𝑡 .
𝑙𝑘 is the number of relations in the format of 𝑓𝑘 . In SymRITa, we
denote the similarity to be 𝜃𝑘 :

𝜃𝑘 = 𝜑 (𝑓𝑘 ) · 𝒓𝑻 =
(∑︁

𝑟𝑖 ∈ 𝑓𝑘
𝒓 𝒊
)⊤𝒓𝑻 (5)

where 𝜑 is an aggregator for combining all the relations in 𝑓𝑘 .
The value of the semantic similarity 𝜃𝑘 indicates the rationality
of a first-order logic rule body 𝑓𝑘 . We sort them by values of 𝜃
in a descending order, and represent them as a sequence F =

{𝑓 ′1 , 𝑓
′
2 , · · · , 𝑓

′
𝑘
, · · · , 𝑓 ′𝑛 }, where 𝑛 indicates the number of bodies in

F . This process can determine the relation sequence in symbolic
rule integration, which is a reference for the positional information
sent to the next part named logic transformer.

4.2.2 Symbolic Rule Graph and Logic Transformer. As a critical
part of the rule integration, we propose a module to embed not
only the semantics of relations in rules, but also the semantics of
arguments and conjunction symbols. Inspired by the work of graph
transformer [49], the architecture of logic transformer is devised.
From the previous subsection, SymRITa treats the relations to be
the predicates in the first-order rules. Because of the entity inde-
pendence, we should not embed the exact entities in S𝑇 . Therefore,
we design a module aiming at different arguments in the adjacent
atoms connected by conjunction symbols.

As described in Section 3, when considering the arguments, they
are always fused with the semantics of predicates to construct the
body atoms in a first-order logic rule. For example, the head atom
consists of the target relation 𝑟𝑇 and exact arguments𝑋 and𝑌 , while
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Figure 3: The components of logic transformer.

the body relations of the rule are connected by conjunctions ∧ and
arguments with variability. It can be structured to a directed graph,
which is shown in the gray block in Figure 2 named symbolic rule
graph. The nodes refer to atoms in the body (gray nodes), and the
directed edges (blue arrows) are conjunction symbols connecting
the same argument in adjacent atoms. Directed symbolic rule graphs
follow the perspective of the reasoning process by the first-order
logic rules as Eq. (1).

The input of the logic transformer for each S𝑇 consists of the
relation embeddings from elements in F , which satisfies the re-
quirement of the model for argument variability:

𝑭 = [

𝑓 ′1︷                ︸︸                ︷
𝒓1,1; 𝒓1,2; · · · ; 𝒓1,𝑙1 ; · · · ;

𝑓 ′𝑛︷                  ︸︸                  ︷
𝒓𝑛,1; 𝒓𝑛,2; · · · ; 𝒓𝑛,𝑙𝑛 ] . (6)

According to the sorting result of the sorter, the position number of a
node is determined by its position in the body 𝑓 ′

𝑘
and the position of

𝑓 ′
𝑘
in F . Generally, we number the relations in 𝑭 and consider them

to be the position information of the logic transformer. Therefore,
the positional embeddings are added into the rule embeddings,
which are denoted as:

𝑭𝑜 = 𝑭 + PosEmb(𝑭 ) (7)

where PosEmb(·) provides a positional embedding to each node
in the input from directed graphs. A more detailed illustration of
PosEmb(·) is in Appendix A.1.

Afterwards, we feed the overall node embedding 𝑭𝑜 into the
logic transformer. As shown in Figure 3, the self-attention module
is implemented by three matrices 𝑄,𝐾 and 𝑉 , which indicate the
query, key and value in the transformer:

𝑸 i,𝑲 i, 𝑽 i = 𝑭𝑜𝑾
i
𝑞, 𝑭𝑜𝑾

i
𝑘
, 𝑭𝑜𝑾

i
𝑣, (8)

where𝑾 i
𝑞,𝑾

i
𝑘
and𝑾 i

𝑣 are trainable parameter matrices of the i− 𝑡ℎ
head in the logic transformer, which project the input 𝑭𝑜 to the
corresponding representations 𝑸 i,𝑲 i and 𝑽 i. Then, the attention is
calculated by the matrices and the conjunction attention:

𝑨i =
𝑸 i𝑲 i⊤ + 𝜆𝑴𝑐𝑜𝑛𝑗√︁

𝑑𝐾

, (9)

Attni (𝑭𝑜 ) = softmax(𝑨i)𝑽 i, (10)

in which 𝑴𝑐𝑜𝑛𝑗 is the conjunction attention we propose to in-
troduce the operator information to the rule integration. 𝜆 is a

hyper-parameter adjusting the weight of the conjunction atten-
tion. 𝑑𝐾 is the scaling factor. We use the adjacent matrix 𝑴𝑐𝑜𝑛𝑗

to represent the symbolic rule graph. The element in 𝑴𝑐𝑜𝑛𝑗 is de-
fined as 𝑴𝑐𝑜𝑛𝑗 [𝑖, 𝑗] = 1 when the nodes 𝑖 and 𝑗 have a directed
edge or a path. For example, in Figure 3, the position of the nodes
are from the symbolic graphs corresponding to the input of the
logic transformer, which is represented as Eq. (6). For the rule
body 𝑟5 (𝑋,𝑍1) ∧𝑟1 (𝑍1, 𝑍2) ∧𝑟7 (𝑍2, 𝑌 ), the elements of𝑴𝑐𝑜𝑛𝑗 [4, 5],
𝑴𝑐𝑜𝑛𝑗 [4, 6] and 𝑴𝑐𝑜𝑛𝑗 [5, 6] are set to 1. These three elements in
𝑴𝑐𝑜𝑛𝑗 simultaneously represent the directed graph in Figure 3.

After 𝐿2 layers, the representations of the hidden states 𝑯 (𝐿2 )
are treated as the output of the logic transformer:

𝑯 (𝐿2 ) = [

𝑓 ′1︷                  ︸︸                  ︷
𝒉1,1;𝒉1,2; · · · ;𝒉1,𝑙1 ; · · · ;

𝑓 ′𝑛︷                   ︸︸                   ︷
𝒉𝑛,1;𝒉𝑛,2; · · · ;𝒉𝑛,𝑙𝑛 ] . (11)

4.3 Training and Prediction
After modeling the topological and logical information by sub-
graphs and symbolic rules, we fuse the representations and use
them to train the model and implement the reasoning process.
Specifically, the overall subgraph-based embedding 𝑺 is denoted as:

𝒗 (𝐿1 )
𝑇

=
1
|V𝑇 |

∑︁
𝑖∈V𝑇

𝒗 (𝐿1 )
𝑖

, (12)

𝑺 = 𝒗 (𝐿1 )
𝑇
⊕ 𝒗 (𝐿1 )𝑎𝑇 ⊕ 𝒓𝑇 , (13)

in which 𝒗 (𝐿1 )𝑎𝑇 indicates the concatenated embeddings of enti-
ties. V𝑇 is the set of nodes in S𝑇 . In this process, we apply the
JK-connection [32, 43] in getting the subgraph-based embedding
𝒗 (𝐿1 )𝑎𝑇 =

[⊕𝐿1
𝑙=1 (𝒗

(𝑙 )
ℎ
⊕ 𝒗 (𝑙 )𝑡 )

]
.

For the symbol-based embedding, we use the output 𝑯 (𝐿2 ) of the
logic transformer to obtain the overall symbolic rule representation
𝑷 in S𝑇 and the confidence 𝛽𝑘 of symbolic rule 𝑓 ′

𝑘
:

𝑷 =

𝑛∑︁
𝑘=1

𝛽𝑘𝒇
′
𝑘
=

𝑛∑︁
𝑘=1

𝛽𝑘

( 𝑙𝑘∑︁
𝑗=1

𝒉𝑘,𝑗

)
, (14)

𝛽𝑘 = softmax(𝒇 ′
𝑘
, 𝒓𝑇 ) =

exp(𝒇 ′
𝑘
⊤𝒓𝑇 )∑

𝑓 ′𝑝 ∈F
exp(𝒇 ′𝑝⊤𝒓𝑇 )

, (15)

where𝑛 is the number of rules within length 𝐿𝑚𝑎𝑥 inS𝑇 . Eventually,
we evaluate the target triple by the link prediction, so the score of
𝑎𝑇 combining subgraph and symbolic information is denoted as:

𝑠𝑐𝑜𝑟𝑒 (𝑎𝑇 ) = W𝑠𝑐𝑜𝑟𝑒 [𝑺 ⊕ 𝑷 ], (16)

whereW𝑠𝑐𝑜𝑟𝑒 refers to the weight matrix. Then the training process
is implemented by a margin-based loss [38] to distance scores of
positive and negative samples:

L =
∑︁
𝑎𝑇 ∈E

max(0, 𝜂 + 𝑠𝑐𝑜𝑟𝑒 (𝑎−𝑇 ) − 𝑠𝑐𝑜𝑟𝑒 (𝑎+𝑇 )), (17)

in which E refers to the set of triples in 𝐺 , and 𝜂 is the margin
representing the distance. 𝑎+𝑇 indicates the positive sample and 𝑎−𝑇
refers to the negative one. As for symbolic rules, we randomly
replace predicates in S𝑇 to construct negative samples.
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Table 1: Comparison of AUC-PR (%) and Hits@10 (%) results on inductive benchmarks fromWN18RR, FB15K-237 and NELL-995.
Results are from [26] and [15]. The optimal and suboptimal values are marked in bold and underline respectively.

Metric Category Method WN18RR FB15K-237 NELL-995
v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

AUC-PR

Rule-based
RuleN 90.26 89.01 76.46 85.75 75.24 88.70 91.24 91.79 84.99 88.40 87.20 80.52
Neural-LP 86.02 83.78 62.90 82.06 69.64 76.55 73.95 75.74 64.66 83.61 87.58 85.69
DRUM 86.02 84.05 63.20 82.06 69.71 76.44 74.03 76.20 59.86 83.99 89.71 85.94

Graph-based

GraIL 94.32 94.18 85.80 92.72 84.69 90.57 91.68 94.46 86.05 92.62 93.34 87.50
TACT 95.43 97.54 87.65 96.04 83.15 93.01 92.10 94.25 81.06 93.12 96.07 85.75
CoMPILE 98.29 99.36 93.60 99.51 83.06 90.21 93.12 93.24 82.39 93.30 95.71 52.98
LogCo 99.43 99.45 93.99 98.75 89.74 93.65 94.91 95.26 91.24 95.96 96.28 87.81
RMPI-NE 95.09 95.43 88.58 94.82 85.22 92.08 91.77 92.27 81.07 93.64 94.99 88.82
RMPI-NE-TA 95.05 95.48 88.35 94.87 85.90 92.96 92.72 93.33 77.89 94.31 95.89 72.34

Ours SymRITa 99.58 99.46 94.02 98.77 89.77 93.74 95.19 95.28 92.59 95.99 96.94 91.91

Hits@10

Rule-based
RuleN 80.85 78.23 53.39 71.59 49.76 77.82 87.69 85.60 53.50 81.75 77.26 61.35
Neural-LP 74.37 68.93 46.18 67.13 52.92 58.94 52.90 55.88 40.78 78.73 82.71 80.58
DRUM 74.37 68.93 46.18 67.13 52.92 58.73 52.90 55.88 19.42 78.55 82.71 80.58

Graph-based

GraIL 82.45 78.68 58.43 73.41 64.15 81.80 82.83 89.29 59.50 93.25 91.41 73.19
RED-GNN 79.90 78.00 52.40 72.10 48.30 62.90 60.30 62.10 86.60 60.10 59.40 55.60
TACT 84.04 81.63 67.97 76.56 65.76 83.56 85.20 88.69 79.80 88.91 94.02 73.78
CoMPILE 81.91 76.64 57.35 71.80 62.20 82.01 84.67 87.44 58.33 88.86 93.63 60.81
LogCo 90.16 86.73 68.68 79.08 73.90 84.21 86.47 89.22 61.75 93.48 94.44 80.82
RMPI-NE 89.63 83.22 70.33 79.81 70.00 82.85 83.18 86.52 60.50 94.01 91.78 84.27
RMPI-NE-TA 87.77 82.43 73.14 81.42 71.71 83.37 86.01 88.69 60.50 93.49 95.30 66.42

Ours SymRITa 91.22 88.32 73.22 81.67 74.87 84.41 87.11 88.97 64.50 94.22 95.43 85.56

5 EXPERIMENTAL RESULTS
In this section, we firstly introduce datasets, baselines, experiment
settings, and details. Then, we implement comparison experiments,
ablation studies, weight analysis and others to demonstrate the
performance of SymRITa.

5.1 Datasets and Baselines
Datasets.We follow the inductive link prediction in the basic model
GraIL [32] which proposes benchmarks derived from WN18RR [9],
FB15K-237 [33] and NELL-995 [41], and each has been divided into
four versions. Each version of a dataset consists of a pair of KGs
named train-graph and ind-test-graph, whose entities are without
intersection. Each train-graph has its valid KG for evaluation during
training. The statistics of benchmark datasets are illustrated in Table
5 in the Appendix C.1.

Baselines. For comparison, we select typical models for the
inductive relation prediction task, including rule-based RuleN [22],
Neural-LP [45] and DRUM [28], and graph-based GraIL [32], CoM-
PILE [20], TACT [5], and recent works RED-GNN [52], LogCo [26],
and RMPI [15]. For a fair comparison, all the results of baselines
are from published papers, which are implemented by a consistent
link prediction setting.

5.2 Metrics and Experimental Settings
Metrics. In the comparison and other tasks for evaluating the
performance of SymRITa, we implement both classification and
ranking metrics for multiple runs considering the random seeds
and samples. For the classification task, AUC-PR is an indicator to
calculate the area under the precision-recall curve and it evaluates
if the triple is valid. In order to calculate the AUC-PR, we generate
a negative triple by replacing the head or tail with a random entity

of each positive triple in the test set. For the ranking metric Hits@𝑘 ,
we evaluate it in a general link prediction mode by ranking the
score of test triples among 50 random negative samples, and see if
the true triple can rank in the top 𝑘 .

Experimental Details. For the subgraph extraction, we obtain 3-
hop enclosing subgraphs by the double vertex labeling. In the graph
embedding process, we employ a 3-layer GNN with the dimension
of 64. For the logic transformer, we set the dimension of the hidden
state as 256, the number of heads as 6, and the number of layers
as 2. For the hyper-parameters 𝜆, we set it to 0.8 and illustrate
the reason in Section 5.5. During the training process, we set the
batch size as 16 and we use Adam [18] as the optimizer with a
learning rate being 0.0005. The maximum length of rules is set
as 𝐿𝑚𝑎𝑥 = 2, 3 and the margin value in the training loss is 5. We
implement the experiments on one NVIDIA’s Tesla V100 graphic
card. More detailed settings are in Appendix C.2.

5.3 Comparison Results
In this subsection, we use the two metrics on the classification and
ranking tasks respectively to illustrate the effectiveness of SymRITa.
SymRITa is evaluated on twelve inductive benchmarks of KGs from
[32]. The reasoning results are shown in Table 1. All the results of
baselines are from published papers at top conferences.

For the classification task reflected by the metric AUC-PR,
SymRITa can obviously outperform all the selected state-of-the-art
baselines, since it obtains optimal or suboptimal values of AUC-PR
on all the datasets in Table 1. Specifically, except for WN18RR_v4,
SymRITa outperforms all the listed inductive relation prediction
methods on the classification task. Even on WN18RR_v4, SymRITa
gets the suboptimal value of AUC-PR, which is 0.74% slightly lower
than the SOTA method CoMPILE. Nevertheless, the average boost
of SymRITa on WN18RR compared to CoMPILE is 0.28%. As for
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Table 2: Ablation results on inductive benchmarks derived from FB15K-237_v1 and NELL-995_v1.

Method FB15K-237_v1 NELL-995_v1
MRR H@1 H@5 H@10 AUC-PR MRR H@1 H@5 H@10 AUC-PR

SymRITa 51.98 42.43 62.20 72.20 89.77 50.34 44.00 56.00 62.50 92.59
SymRITa w/o Symbolic Rules 48.68 39.75 57.07 65.61 86.01 47.56 42.70 48.80 54.20 83.53
Δ ↓3.30 ↓2.68 ↓5.13 ↓6.59 ↓3.76 ↓2.78 ↓1.30 ↓7.20 ↓8.30 ↓9.06
SymRITa w/o Logic Transformer 48.56 38.54 58.04 66.34 87.87 48.11 42.50 53.50 58.50 85.27
Δ ↓3.42 ↓3.89 ↓4.16 ↓5.86 ↓1.90 ↓2.23 ↓1.50 ↓2.50 ↓4.00 ↓7.32
SymRITa w/o Conjunction Attention 49.77 40.00 60.98 69.26 88.04 49.92 43.50 53.00 60.10 87.85
Δ ↓2.21 ↓2.43 ↓1.22 ↓2.94 ↓1.73 ↓0.42 ↓0.50 ↓3.00 ↓2.40 ↓4.74

the recent work RMPI-NE-TA, SymRITa outperforms it on all the
datasets with the AUC-PR values. All the phenomena demonstrate
the effectiveness of SymRITa in predicting whether the triple is
valid with unseen entities.

As for the ranking task reflected by Hits@10, SymRITa can
also achieve competitive effectiveness compared to the baselines
on twelve datasets. Nine out of twelve Hits@10 values are better
than other baselines. Other methods with inductive ability, whether
rule-based or graph-based, can not obtain the all-round superi-
ority. SymRITa obtains as much as 2.98%, 1.69%, 7.60% average
performance improvements in Hits@10 on WN18RR, FB15K-237
and NELL-995 respectively compared to RMPI-NE-TA, which is the
most recent inductive relation prediction work. For the ranking
results which are slightly lower, the optimal results are distributed
in different categories of methods, instead of being achieved by a
prominent one.

Overall, the results indicate the effectiveness of SymRITa, which
integrates the symbolic rules in acquiring inductive ability in KGs.

5.4 Ablation Studies
We investigate the impacts of rules and the logic transformer in
obtaining the inductive ability of the model. As shown in Table
2, we rerun the model without the factors on FB15K-237_v1 and
NELL-995_v1 respectively, and the methods are denoted as:
• SymRITa w/o Symbolic Rules indicates the method re-
moving the constructed rules in the subgraph.
• SymRITa w/o Logic Transformer still considers the se-
mantics of rules, which are represented by relational paths
neglecting the arguments and conjunctions. To implement
this model, we replace the logic transformer with the mean
operator. It can be regarded as the effectiveness of the logic
transformer and the conjunction attention simultaneously.
• SymRITa w/o Conjunction Attention indicates the
method removing the conjunction attention in the logic
transformer.

The ablation results in Table 2 illustrate the effectiveness of the
significant factors in SymRITa. (1) The inductive performance
achieves optimal results when all components work simulta-
neously. In both FB15K-237_v1 and NELL-995_v1, the integration
of three factors helps SymRITa obtain obvious classification and
ranking improvements. (2) The extracted rules from the sub-
graph are essential in inductive relation prediction. From the
AUC-PR and link prediction results of SymRITa w/o Symbolic Rules,
the reductions indicate the significance of incorporated rules in the
model. Specifically, compared to the original SymRITa, SymRITa

Figure 4: Effectiveness of the sorting mode and the margin 𝜂.

w/o Symbolic Rules reduces the prediction results by 4.29% and
5.73% on two datasets respectively. The main reason is that the im-
plicit logics contained in the rules help improve the inductive ability.
(3) The logic transformer and conjunction attention in it are
also critical in SymRITa. The prediction performance of Sym-
RITa w/o Logic Transformer averagely drops by 3.85% and 3.51%
on FB15K-237_v1 and NELL-995_v1, respectively. The reduction of
SymRITa w/o Conjunction Attention is slighter, but the average
decline compared to SymRITa still illustrates its effectiveness.

5.5 Weight Analysis
Analysis of the sorting mode. During training, the sorting mode
of the sorter is critical in the rule integration process. It decides the
order of rules in the same subgraph. We record the classification
and ranking results with an ascending sorter and a descending
sorter respectively on FB15K-237_v1. The results are shown in
Figure 4(a). It can be figured that the descending order benefits both
classification and ranking tasks. The phenomenon is consistent
with the analysis in Section 4, that the more important rule with
its corresponding position information can precisely embed the
symbols of rules in a subgraph.

Analysis of the margin 𝜂. In SymRITa, we use a parameter
𝜂 in the loss function to optimize the training process. In the loss
function, it decides the gap between the positive and negative
samples. The results on FB15K-237_v1 are in Figure 4(b). From the
results of classification metric AUC-PR and ranking metric Hits@1,
when 𝜂 = 5, SymRITa obtains the most effective performance. It
indicates that a large or small margin will lead to a negative impact.

Analysis of hyper-parameter 𝜆. In SymRITa, 𝜆 controls the
conjunction attention weight in the logic transformer when model-
ing the rules. We rerun the training process on FB15K-237_v1 and
NELL-995_v1, and record the results of classification and ranking
tasks in different values of 𝜆 ∈ [0.1, 1.2] with a step of 0.1. The
results of AUC-PR and MRR are shown in Figure 5. From the distri-
butions of results on FB15K-237_v1, we observe that the inductive



WWW ’24, May 13–17, 2024, Singapore, Singapore Yudai Pan et al.

Table 3: The illustration of the effectiveness of SymRITa by several real cases. The output rules and their corresponding
confidences are generated by SymRITa and the model without logic transformer named “w/o LT".

Subgraph head← body
𝛽

SymRITa w/o LT

subpart_of_organization(𝑋,𝑌 ) ← top_member_of_organization(𝑋,𝑌 ) 1 0.9708
subpart_of_organization(𝑋,𝑌 ) ← company_economic_sector (𝑋,𝑍 ) ∧ subpart_of (𝑍,𝑌 ) <0.0001 0.0292

agent_controls (𝑋,𝑌 ) ← company_economic_sector (𝑋,𝑍 ) ∧ agent_controls (𝑍,𝑌 ) 1 0.1579
agent_controls (𝑋,𝑌 ) ← subpart_of_organization(𝑋,𝑍 ) ∧ agent_controls (𝑍,𝑌 ) <0.0001 0.8421
agent_controls (𝑋,𝑌 ) ← organization_headquartered_in_city (𝑋,𝑌 ) <0.0001 <0.0001

Figure 5: Effectiveness evaluation byMRR (%) andAUC-PR(%)
of parameters 𝜆 over two datasets.

performance varies with different values of 𝜆, indicating the weight
of conjunction attention in the logic transformer. For the classifica-
tion task, SymRITa obtains better AUC-PR results when 𝜆 > 0.7 or
𝜆 ⩽ 0.2, while it achieves better MRR results when 𝜆 = 0.8 in the
ranking task. On NELL-995_v1, SymRITa obtains optimal results
on both classification and ranking tasks when 𝜆 = 0.7. Therefore,
we select 𝜆 = [0.7, 0.8] when implementing the experiments.

5.6 Case Studies
As we illustrate in Section 3, the rule from KGs is in a form of
the first-order logic with its corresponding confidence 𝛽 . In Table
3, it illustrates the first-order logic rules with the confidences of
SymRITa and the model without the essential factor logic trans-
former on NELL-995_v1. SymRITa can adjust the importance of
each rule by obtaining precise embeddings of rules in a subgraph.
For instance, if the target relation is agent_controls, the two rules
in the same subgraph are shown in the last row of Table 3. The
logic transformer increases the significance of rule agent_controls
← company_economic_sector (𝑋,𝑍 ) ∧ agent_controls(𝑍,𝑌 ), which
is reflected by the improvement of 𝛽 from 0.1579 to 1. In re-
ality, we can figure that the rule agent_controls(𝑋,𝑌 ) ← sub-
part_of_organization(𝑋,𝑍 ) ∧ agent_controls(𝑍,𝑌 ) will not be
reasonable in reasoning the query (ℎ, agent_controls, 𝑡)? where
agent_controls is the target relation. In most situation, the sub-
part could not represent the entire organization, which would lead
to a incorrect reasoning result.

6 CONCLUSION AND FUTUREWORK
In order to solve the entity independence of inductive relation
prediction in KGs, we propose a method named SymRITa to in-
tegrate symbolic rules during the reasoning process. First, we ex-
tract subgraphs based on the target triple, and rules from each
subgraph. Second, we obtain the subgraph-based embeddings by
a GNN and symbol-based embeddings by the logic transformer
with a conjunction attention mechanism. The logic transformer
is designed for the challenges of argument variability and pred-
icate non-commutativity in modeling rules and preserving their
precise representations. Finally, SymRITa captures the inductive
ability by combining subgraph-based and symbol-based embed-
dings, and jointly trains the model. The experiments on twelve
inductive datasets show the effectiveness of SymRITa, and compre-
hensively demonstrate the impacts of rules and the significance of
factors from our model.

SymRITa still needs improving in terms of performance and
scalability. We will extend the symbolic rules whose atoms are
connected by disjunction, and expand the inductive scenario to
commonsense knowledge graphs [31]. Also, we will extend the
logic transformer to rule extraction and embedding decoupling in
larger train sets, fusing not only closed-path rules but also rules
with flexible forms.
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A SUPPLEMENT OF SYMRITA
A.1 Illustration of Positional Embedding
In Equation 7, SymRITa uses PosEmb(·) to obtain the positional
embedding to each node in the input from directed graphs. For the
2𝑖 and 2𝑖 + 1-th elements (𝑖 = 0, 1, · · ·𝑑/2 − 1, 𝑑 is an even number)

of each vector in 𝑭 , PosEmb(·) is indicated as:

PosEmb(𝑝𝑜𝑠, 2𝑖) = 𝑠𝑖𝑛(𝑝𝑜𝑠/100002𝑖/𝑑 ) (18)

PosEmb(𝑝𝑜𝑠, 2𝑖 + 1) = 𝑐𝑜𝑠 (𝑝𝑜𝑠/100002𝑖/𝑑 ), (19)

in which 𝑝𝑜𝑠 is the corresponding position of the vector in 𝑭 , and
𝑑 is the dimension of 𝑟 in 𝑭 .

A.2 Relation Embedding in Subgraph Modeling
As for the relation embedding in GNN in Equation 2, it is a random
initialized embedding, and updated with each iteration [29]. It is
represented by the updating of W𝑟 , which is regularizing of the
weight with different relation types:

W(𝑙 )𝑟 = 𝑎
(𝑙 )
𝑟 𝑉 (𝑙 ) , (20)

which is a linear combination of basis transformations 𝑉 (𝑙 ) with
coefficients 𝑎 (𝑙 )𝑟 such that only the coefficients depend on 𝑟 in the
𝑙-th layer.

B TRAINING PROCEDURE
SymRITa can predict missing relations of incomplete triples in an
inductive setting, and also integrate first-order rules for explanation
at the same time. In Algorithm 1, we demonstrate the process
of predicting relations by SymRITa. SymRITa uses a KG as the
input and at last outputs the score of target triple and a set of first-
order rules with confidences. For clarity, we summarize important
symbols in Table 4.

Table 4: Important symbols and their descriptions.

Symbol Description
𝑎𝑇 = (ℎ, 𝑟𝑇 , 𝑡 ) Target triple to be predicted

𝐺,𝐺 ′ Train and test KGs for inductive prediction
S𝑇 The subgraph of 𝑎𝑇
𝒗 (𝐿1 ) Embedding vector of node 𝑖 at layer 𝐿1
𝐿𝑚𝑎𝑥 Max length of the relational paths

F = { 𝑓 ′1 , 𝑓 ′2 , · · · , 𝑓 ′𝑛 } Symbolic rules extracted from S𝑇
𝑭 The embedding vector of rules in F
𝑭𝑜 The embedding vector of rules after adding

positional information
𝑺 Subgraph-based embedding

𝑯 (𝐿2 ) Output of logic transformer after 𝐿2 layers
𝑷 Symbol-based embedding

C EXPERIMENTAL DETAILS
C.1 Datasets
The statistics of benchmark datasets are illustrated in Table 5. These
datasets consist of train and test KGs with the inductive setting.
Each version of a dataset consists of a pair of KGs named train-
graph and ind-test-graph, whose entities are without intersection.
Meanwhile, train-graph contains all the relations in ind-test-graph.
Each train-graph has its valid KG for evaluation during training.

We also evaluated the inductive reasoning ability of SymRITa in a
more challenging scenarios, where unseen relations also occur dur-
ing testing. We implement experiments on datasets NELL-995.v1.v3,
NELL-995.v4.v3 and FB15k-237.v1.v4, released in [15]. The detailed
statistics of these datasets are listed in Table 6, and the results are
discussed in Appendix D.4.
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Algorithm 1 Process of integrating rules by SymRITa

Input: KG 𝐺 ⟨𝑅, 𝐸,𝑇 ⟩, target triple 𝑎𝑇 , hyper-parameters 𝜆, 𝜂, etc.
Output: Score of 𝑎𝑇 and First-order logic rules.
1: Extract subgraph S𝑇 around each 𝑎𝑇 , and initialize each node.
2: for each training iteration do
3: for each batch of triples in 𝐺 do
4: Obtain embeddings of entities and relations in S𝑇 .
5: Extract rules within the length 𝐿𝑚𝑎𝑥 and generate sym-

bolic rule graphs.
6: F ← Sort the rules with values of 𝜃 .
7: 𝑭 ← Get input of the logic transformer.
8: 𝑭𝑜 ← Add position information PosEmb(𝑭 ) in the sym-

bolic rule graphs.
9: 𝑴𝑐𝑜𝑛𝑗 ← Obtain the matrix in the conjunction attention

by symbolic rule graphs.
10: Calculate self-attention with matrices 𝑸, 𝑲, 𝑽 and 𝑴𝑐𝑜𝑛𝑗

by Eq. (10) and Eq. (9).
11: 𝑯 (𝐿2 ) ← Output the logic transformer.
12: Get subgraph-based embedding 𝑺 and symbol embedding

𝑷 with confidence of each rule 𝛽 .
13: Score 𝑎𝑇 combining 𝑺 and 𝑷 .
14: L ← Get margin-based loss by Eq. (17).
15: Update the parameters by Adam optimizer.
16: end for
17: end for
18: return Score of 𝑎𝑇 and first-order rules in F with 𝛽 .

Table 5: Statistics of Inductive Relation Prediction Datasets.

WN18RR FB15K-237 NELL-995
#R #E #Tr #R #E #Tr #R #E #Tr

v1 9 2,746 6,678 183 2,000 5,226 14 10,915 5,540
v1-ind 9 922 1,991 146 1,500 2,404 14 225 1,034
v2 10 6,954 18,968 203 3,000 12,085 88 2,564 10,109
v2-ind 10 2,923 4,863 176 2,000 5,092 79 4,937 5,521
v3 11 12,078 32,150 218 4,000 22,394 142 4,647 20,117
v3-ind 11 5,084 7,470 187 3,000 9,137 122 4,921 9,668
v4 9 3,861 9,842 222 5,000 33,916 77 2,092 9,289
v4-ind 9 7,208 15,157 204 3,500 14,554 61 3,294 9,520

Table 6: Statistics of datasets with unseen relations in the test
set. The numbers in the brackets are the numbers of unseen
relations.

NELL-995.v1.v3 NELL-995.v4.v3 FB15k-237.v1.v4
#R #E #Tr #R #E #Tr #R #E #Tr

train 14 3103 5540 76 2092 9289 180 1594 5226
test 106 (98) 2271 5550 110 (53) 3140 8308 200 (26) 3051 14554

C.2 Experimental Settings
Different parameters might influence the performance of the logic
transformer3 on different datasets, so the parameters are tuned
separately. We conduct experiments in the following search space
of parameters:
• Learning rate: {0.0001, 0.0002, 0.0005, 0.001}
• The number of subgraph hops: {2, 3, 4}
• Maximum length of relational paths 𝐿𝑚𝑎𝑥 : {1, 2, 3}

3https://github.com/pyd418/LogicTransformer

• Margin hyper-parameter 𝜂: {3, 4, 5, 6}
• Number of heads in logic transformer: {5, 6, 7, 8}
• Number of layers of GNN 𝐿1: {2, 3, 4}
• Number of layers in logic transformer 𝐿2: {2, 3, 4}
• 𝑑𝑘 , 𝑑𝑞 and 𝑑𝑣 [48]: {32, 64, 128}

D SUPPLEMENTARY RESULTS
D.1 Results on Other Metrics
In Section 5, Hits@10 represents a general result for ranking task.
Since the papers of baselines only record the values of Hits@10
of all the 12 datasets, we rerun the baselines with open codes. We
compare the values of Hits@1, 5, 10, mean reciprocal rank (MRR)
and AUC-PR. Table 7 shows some results of Hits@1, 5, 10, MRR,
AUC-PR on WN18RR_v1 compared to GraIL4, which is the basic
GNN-based method. It gives more comprehensive results to indicate
the effectiveness of SymRITa on more metrics.

Table 7: Reasoning results of ranking and classification tasks
on different metrics.

Method MRR Hits@1 Hits@5 Hits@10 AUC-PR
GraIL 79.57 75.79 84.04 84.04 94.32
SymRITa 80.48 77.65 86.97 91.22 99.58

D.2 Results of Different Sorting Mode
According to the previous work of transformer [10], the order of
inputs is significant in the transformer. It is inspired by the encoder
of the language model, that adjacent tokens have similar positional
embeddings. Therefore, we calculate the similarity of semantics
and make the adjacent rules have similar semantics. Table 8 shows
some results with random order of rules comparing to the ascending
and descending orders. It is shown that the ordered rules are more
effective than rules with a random order. As for whether the rules
are in ascending or descending order, we analyze the results in
Section 5.5. The descending order obtains better inductive reasoning
results, which may be because that the more important rule with
its corresponding position information can precisely embed the
symbols of rules in a subgraph.

Table 8: Reasoning results of different sorting modes of the
sorter in the rule integration process. The sorting mode are
random order, descending order and ascending order.

Sorting Mode MRR Hits@1 Hits@5 Hits@10 AUC-PR
Descending 48.44 37.56 60.24 70.24 88.05
Ascending 44.77 34.39 57.56 65.61 84.36
Random 42.90 31.71 56.82 64.87 84.12

Besides, inspired by the work of rule learning [45], we use the re-
current neural network (RNN) to replace the sum operation in Eq. 5
and call it SymRITa-RNN. Then, the 𝜃𝑘 is calculate as 𝑅𝑁𝑁 (𝑓𝑘 )⊤𝑟𝑇 .
Table 9 shows some results of SymRITa-RNN on WN18RR_v1. It is
4https://github.com/kkteru/grail
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shown that the results are not apparently influenced by the rela-
tion order within the rules. As shown in Table 8, the order of the
relations in a rule will not seem to affect the semantic similarity, i.e.
𝜃 , before sending them to the logic transformer. The order of rules
is important for the performance. This phenomenon may be caused
by that the relation embeddings do not contain the information of
arguments and conjunctions, so roughly considering the order of
relations when calculating 𝜃 may not have a significant impact.

Table 9: Reasoning results of different aggregator for com-
bining the relations in sorting process.

MRR Hits@1 AUC-PR
SymRITa-sum 80.48 77.65 99.58
SymRITa-RNN 80.46 78.45 99.15

D.3 Results in Transductive Scenario
We have implemented an experiment to indicate the effectiveness
of SymRITa in transductive scenario. The test entities are seen in
the train set. The value of AUC-PR of SymRITa on WN18RR_v1 is
95.44% and AUC-PR of GraIL is 57.63%. The inductive reasoning
is a more challenging task compared to transductive learning, and

SymRITa can solve both, which illustrate the scalability of SymRITa
in different reasoning scenarios.

D.4 Unseen Relation Prediction
Based on the training settings of SymRITa, the trained model can
only be tested with semi unseen relations, so we implement the
testing on three of the datasets to illustrate the effectiveness.

We record the ranking results of MRR on three test datasets
that models by SymRITa can be tested, which are in Table 10. The
ranking results outperform the baselines on three inductive datasets.
The performance indicates that the symbolic rule integration helps
SymRITa to deal with the issue with several unseen relations mixed
in the test set.

Table 10: Ranking results of MRR (%) on inductive bench-
marks with unseen relations derived from NELL-995.v1.v3,
NELL-995.v4.v3 and FB15k-237.v1.v4

Method NELL-995.v1.v3 NELL-995.v4.v3 FB15k-237.v1.v4
TACT-base 43.59 52.68 61.02
RMPI-base 59.10 70.33 56.81
RMPI-NE 56.19 59.47 57.77
SymRITa 65.54 70.71 61.64
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